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Diverse drug-resistance mechanisms can emerge
from drug-tolerant cancer persister cells
Michael Ramirez1,2,*, Satwik Rajaram1,2,*, Robert J. Steininger2,*, Daria Osipchuk1, Maike A. Roth1,

Leanna S. Morinishi1, Louise Evans1, Weiyue Ji1, Chien-Hsiang Hsu1, Kevin Thurley1, Shuguang Wei3,

Anwu Zhou3, Prasad R. Koduru4, Bruce A. Posner3, Lani F. Wu1,2 & Steven J. Altschuler1,2

Cancer therapy has traditionally focused on eliminating fast-growing populations of cells.

Yet, an increasing body of evidence suggests that small subpopulations of cancer cells can

evade strong selective drug pressure by entering a ‘persister’ state of negligible growth.

This drug-tolerant state has been hypothesized to be part of an initial strategy towards

eventual acquisition of bona fide drug-resistance mechanisms. However, the diversity of

drug-resistance mechanisms that can expand from a persister bottleneck is unknown.

Here we compare persister-derived, erlotinib-resistant colonies that arose from a single,

EGFR-addicted lung cancer cell. We find, using a combination of large-scale drug screening

and whole-exome sequencing, that our erlotinib-resistant colonies acquired diverse

resistance mechanisms, including the most commonly observed clinical resistance

mechanisms. Thus, the drug-tolerant persister state does not limit—and may even provide a

latent reservoir of cells for—the emergence of heterogeneous drug-resistance mechanisms.
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T
he emergence of diverse resistance mechanisms to
targeted therapy is one of the foremost challenges in
cancer today1. Within the same patient or even tumour,

multiple mechanisms of drug resistance can coexist2–4. Random,
resistance-conferring genetic events preceding drug treatment are
an unquestionable means by which this diversity can occur5–7.
Yet, identifying alternate routes by which cancer cell populations
can arrive at resistance mechanisms is of key interest.

One recently proposed alternative route for acquiring
resistance is via a drug-tolerant persister state8–13. Across
multiple cell lines, in response to a variety of strong drug
challenges, small subpopulations of cells have been reported to
survive by initially entering a drug-tolerant (so-called) ‘persister’
state in which there is little-to-no population growth8,12.
Crucially, after long-term treatment (weeks to months) in drug
without appreciable growth, a fraction of persisters gain the
ability to expand in drug. It has been hypothesized, but never
demonstrated experimentally, that survival and expansion
through a drug-tolerant state could be part of an initial strategy
that mediates the acquisition of bona fide, genetically driven,
resistance mechanisms8. However, the diversity of resistance
mechanisms compatible with evolution from (or through) a
persister bottleneck is unclear. Previous work8 examined pooled
populations of drug-tolerant cells expanded from persisters and
did not address this question. Does passage through the persister
bottleneck in drug force cells into a single genetic/epigenetic state,
or can multiple genetic resistance mechanisms eventually emerge
(Fig. 1a)?

Here we chose a strategy that allowed us to follow
multiple instances of evolution in drug and focus on resistance
mechanisms that emerged from a persister state. We began with a
with a population of cancer cells of cancer cells that were recently
clonally derived. Next, we ‘crashed’ the clonal population with a
targeted therapy to reveal a small subpopulation of persisters,
some of which eventually gained the ability to proliferate in drug.
Finally, to avoid growth competition, we expanded surviving
colonies in isolation from one another in drug over the course of
a year. This process allowed us to establish a panel of 17 persister-
derived, drug-resistant colonies that arose from a single cell.
We used a combination of large-scale drug screening and whole-
exome sequencing to show that our drug-resistant colonies
exhibited diverse resistance mechanisms, including ones observed
clinically14. Our results suggest that the drug-tolerant persister
state does not limit—and may even provide a latent reservoir of
cells for—the emergence of heterogeneous drug-resistance
mechanisms.

Results
Drug resistance emerges from drug-tolerant persisters. We
chose as our model system the well-studied, epidermal growth
factor receptor (EGFR)-addicted non-small cell lung cancer
(NSCLC) cell line PC9 (ref. 15) for several reasons. It has been
shown that a small fraction of PC9 cells (B0.5%) can enter a
persister state to evade the strong selective pressure of
high concentrations of the EGFR inhibitor erlotinib (2.5mM,
B100� IC50)8. In addition, known resistance-conferring genetic
mutations can serve as a reference against which to evaluate any
emergent genetic diversity.

For our study, we followed the previously established
procedure with two crucial changes, which allowed us to focus
on individual resistance solutions that emerged from persisters
(Methods; Supplementary Fig. 1). First, to reduce pre-existing
genetic heterogeneity, we established our persisters from a single,
short-passage clonal parental cell line, PC9-1 (B20 doublings
from the single, originating cell). Second, to search for diversity
not evident from pooled-population studies, we isolated small,

recently expanded colonies that emerged B2 months after
seeding and expanded them in separate culture wells to eliminate
growth competition. (Except when noted otherwise, colonies were
cultured and assayed in 2.5 mM erlotinib.)

Similar to previous observations8, only a small fraction of
cells survived drug treatment (2.5mM erlotinib; Supplementary
Fig. 2a); drug-tolerant cells were largely in a state of negligible
growth during the first 6 weeks of observation; and drug
tolerance could be abolished with co-treatment of erlotinib with
trichostatin A (Supplementary Fig. 2b). Of the B50 colonies
originally isolated, 17 survived the expansion process, which took
B6–8 months to generate three confluent 10-cm plates each. We
refer to these persister-derived erlotinib-resistant colonies
as PERCs.

We tested whether our isolated PERCs were in the previously
described, reversible state of drug resistance8. A functional
signature of this state is eventual reversion to erlotinib
sensitivity after an extended (30 passages) ‘drug holiday’8

(as opposed to non-reverting resistance due to clonal genetic
events16). We continuously cultured the 17 PERCs in erlotinib-
free media for over 40 weeks and periodically retested for
erlotinib sensitivity (Fig. 1b; for our PERCs, one passage
E1 week; Methods). During the long-term drug holiday, we
observed that nearly all of the PERCs remained considerably
more resistant to erlotinib than PC9, although to varying degrees.
(We note that 50% viability of PERCs at 2.5 mM (Fig. 1b, red line)
implies, by definition, an IC50 of 2.5 mM erlotinib, which is 100�
the IC50 of PC9; thus, 50% viability in this assay implies strong
drug resistance compared with PC9.) To better understand the
one apparent exception, PERC3, we used an image-based assay to
profile PERC growth kinetics in erlotinib over a longer time
period (2 weeks in Fig. 1c versus 72 h in Fig. 1b). As expected,
PC9-1 cells experienced widespread cell death after treatment
with erlotinib before settling into a persister state (B9–14 days)
characterized by drug tolerance and negligible growth (Fig. 1c and
Supplementary Fig. 2a,c). In contrast, all tested PERCs grew in
drug; the apparent reversion to sensitivity of PERC3 simply
reflected a relatively slower, but net positive growth rate. As our
PERCs appeared not to have reverted to the original level of
PC9-1 erlotinib sensitivity, we wondered what drug-resistance
mechanisms they had acquired.

Evidence for diverse vulnerabilities via drug screening. To
investigate erlotinib-resistance mechanisms present in our
17 PERCs, we performed a large-scale drug screen17. This allowed
us to scan for therapeutic vulnerabilities among our PERCs that
were absent in PC9-1, and thereby identify pathway or
target alterations that conferred resistance. We assayed
the sensitivities of our PERCs to a panel of 560 anticancer
compounds in combination with erlotinib (Methods;
Supplementary Data 1; note that PC9-1 cells were assayed
against the drug library in erlotinib-free media, as treatment with
erlotinib potently kills these cells). To search broadly for potential
vulnerabilities, the panel contained a diverse collection of
compounds, including drugs targeted to the specific erlotinib-
resistance-conferring T790M-EGFR mutation18–21, kinase
inhibitors affecting multiple cancer-related pathways and
chemotherapy and epigenetic drugs. Each compound was
assayed over a sixfold dosage range, in duplicate and for all 17
PERCs and control PC9-1.

We focused initially on identifying PERCs whose drug
responses in combination treatment with erlotinib were strongly
altered from PC9-1’s drug response without erlotinib. There are a
number of approaches to assess drug sensitivity from dose–
response curves17,22–24. Here we chose to compute a sensitivity
score based on signed-area differences between drug-response
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curves of PERCs versus PC9-1 that took into account replicate
variability (Fig. 2a–d and Methods; an alternative scoring based
only on signed-area differences gave similar results,
Supplementary Figs 5–7). The large-scale drug screen allowed
us to interrogate drug-resistance mechanisms across our
collection of PERCs. A few broad trends were noticeable. As
compared with PC9-1, PERCs were generally resistant to EGFR
inhibitors (as might be expected, for example, Fig. 2b), Aurora
kinase inhibitors and chemotherapeutics. Further, some PERCs
developed broad resistance (for example, PERC3) or sensitivity
(for example, PERC16) to drugs belonging to multiple drug
classes (Fig. 2e,f).

We next searched for functional evidence of PERC resistance/
vulnerability in different mechanistic drug categories. It is not to
be expected that a PERC would respond similarly to every drug
within the same category. Therefore, we developed a drug-
category-response score to search within each defined category
for evidence of PERC sensitivities to a larger-than-expected
fraction of drugs (Fig. 2e and Supplementary Fig. 3; scores were
normalized per PERC across all drugs; Methods). There was no
single category for which all 17 PERCs were vulnerable. However,
we identified specific vulnerabilities of (Fig. 2c–f): PERC17 to
MET drugs (including SGX-523, INCB28060, JNJ-38877605 and
crizotinib); PERCs 10, 13 and 16 to MEK inhibitors (including
selumetinib, PD0325901 and pimasertib); and PERCs 4, 5, 10, 12
and 17 to mechanistic target of rapamycin (MTOR) drugs
(including rapamycin and everolimus). Taken together, our drug

screen identified putative, mechanistically distinct vulnerabilities,
suggesting that our PERCs evolved multiple strategies to escape
erlotinib treatment.

Evidence for diverse resistance mechanisms via sequencing. We
next sought to use genetics as a way to corroborate predicted
vulnerabilities as well as to identify mechanisms that were not
detected by our initial analysis of the drug screen. From our
exome-sequencing data, we identified genetic changes between
each PERC and the parent PC9-1 (ref. 25; Fig. 3a, Methods; only
amplifications 42.5� compared with PC9-1 are reported
below). The derivation of the PERCs from a single, clonal parent
offered a unified basis to identify and interpret genetic changes.

We first searched for mechanisms of erlotinib resistance that are
most commonly observed in the clinic. On the basis of the sequence
data, we found the T790M mutation in EGFR20,21 present in
PERCs 1, 4–9 (Fig. 3a, Supplementary Fig. 5 and Supplementary
Table 1). This caused us to re-evaluate our analysis of the drug
screen. While all PERCs became more resistant to EGFR drugs
when compared with PC9-1, comparison of PERCs with each other
revealed that those harbouring a T790M mutation showed
increased, albeit partial, sensitivity to T790M-targeting drugs
(including afatinib, dacomitinib and WZ3146 (ref. 18); Figs 2b
and 3b and Supplementary Figs 4c and 5). In addition, we found
genetic evidence for MET amplification4,26 in PERC17 (Fig. 3a).
This observation is consistent with recent findings from Engelman
and colleagues27 (published whilst our work was under
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Figure 1 | The emergence of persister-derived erlotinib-resistant colonies from PC9-1 cells. (a) Schematic outline of the emergence of drug-resistant

cancer cell populations (right), originating from a common clone (left), through the bottleneck of drug-tolerant, slow-growing persisters (middle grey lines).

The vertical axis indicates population size; the horizontal axis is time. (b) Evolution of PERC sensitivity to erlotinib after removal from drug treatment.

PERCs were grown in erlotinib-free media and periodically retested over B40 weeks for erlotinib sensitivity (2.5mM erlotinib, 72 h CellTiter-Glo assay;

Methods). Black: PC9-1; grey: PERCs. Viability values are calculated as the mean of technical replicates (n¼ 3); average s.d. between replicates is 1.23.

Dotted red line marks 50% viability as compared with drug-free growth; we note that when a PERC response curve crosses this line it has an IC50 of

2.5mM erlotinib (which is 100 times the IC50 of PC9). (c) Short-term regrowth of PERCs in erlotinib after drug holiday. After B46 weeks of growth in

erlotinib-free media, selected PERCs were grown in 2.5mM erlotinib and imaged daily for 2 weeks. Growth is quantified in terms of percentage of field of

view covered by cells (Methods). For each cell line, at each time point, 484 images were analysed and the mean fraction of cellular area calculated is

reported here (error bars denote s.d. across the 484 images). A typical single cell covers B0.05% of the field of view as defined.
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consideration) demonstrating that acquisition of EGFRT790M
mutation by drug-tolerant cells may result in a diminished
apoptotic response of EGFRT790M targeted drugs. This was
confirmed at the single-cell level using fluorescence in situ
hybridization (Supplementary Fig. 6c). PERC17 exhibited an
exquisite sensitivity to MET inhibitors (Figs 2 and 3c and
Supplementary Figs 4 and 6a) and apoptosis from short
interfering RNA (siRNA) knockdown of MET (Fig. 3d). Thus,
MET amplification is a bona fide resistance mechanism for
PERC17. To our knowledge, a MET amplification has never
previously been reported for the parent PC9 line. Together, T790M
and MET have been implicated in over half of all clinically reported
cases of EGFR-addicted NSCLC with resistance to first-generation
EGFR inhibitors14 (for example, erlotinib and gefitinib).

We next examined genetic changes in the MAPK pathway, one
of the most frequently mutated pathways associated with erlotinib

resistance28. We observed point mutations in NRAS for PERCs 10,
13, 14 (Q61K) and PERC15 (E63K), two mutational events that
have been implicated in erlotinib resistance in preclinical models29

(Fig. 3a and Supplementary Fig. 7). PERC16 exhibited an
amplification of RAF1, a genetic alteration that has not been
reported in lung cancer but has been characterized as a driver
mutation in other cancer types30 (Fig. 3a and Supplementary
Fig. 7). We used our genetic data to revisit our drug screen, and
found that PERCs 10, 13, 16 were sensitive to drugs targeting MEK
(for example, selumetinib), which is a downstream member of the
MAPK pathway (Figs 2 and 3e and Supplementary Figs 4, 7 and
9)31. PERCs 14 and 15 did not display this sensitivity across all
drugs in our initial analysis of the drug screen (Fig. 2); however, re-
examination of response curves, overlaid with genetic data,
revealed that all NRAS and RAF1 mutants had relatively higher
MEK sensitivities than the other PERCs (Fig. 3e and
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Figure 2 | Identification of PERC drug-resistance mechanisms via drug screening for therapeutic vulnerabilities. Response of PERCs versus PC9-1 to a

diverse drug library. (a) Heatmap: drug-response scores of the PERCs (screen performed in erlotinib-containing media) relative to PC9-1 (screen performed

in drug-free media). Rows: PERCs. Columns: 560 anticancer compounds. Scores (green/red colours): based on signed-area differences between

drug-response curves of PERCs versus PC9-1 (Methods). Each response score reflects six doses performed in duplicate (n¼ 2). (b–d) Shown are smoothed

response curves with respect to selected drugs (corresponding to black triangles in a). Graphs: PERCs (drugþ 2.5mM erlotinib; response curves coloured

according to scores) versus PC9-1 (only drug no erlotinib; black). Green/red: drug-response scores of PERC compared with PC9-1. Smoothed curves were

constructed by fitting the mean viability (n¼ 2) at each dose to a sigmoidal function using an unweighted least-squares fit (Methods). (e) Heatmap:

enrichment of PERCs (rows) for strong response to specific drug categories (columns). Drug-category-response scores are based on a hypergeometric test

for varying drug-response scores (Methods; Supplementary Fig. 3). Green/red: colours as in a. (f) Annotation of drugs (columns)

to specific drug categories (rows).
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Supplementary Fig. 7). Further testing revealed that all PERCs
carrying NRAS and RAF1 mutations had higher sensitivity to
co-treatment with erlotinib and MEK inhibitors than to either
alone, suggesting a role for MEK in ‘bypass’ signalling17,32 (Fig. 3f).

As might be expected, not every putative genetic mechanism
was found to correspond to a drug vulnerability. Our drug screen
helped to identify which, among multiple genomic alterations
harboured by a PERC, might serve as primary drivers of acquired
resistance. For example, in PERC9, in addition to the T790M
mutation in EGFR, we observed a mutation in PIK3CA (E542K);
this mutation is implicated in driving constitutive signalling
through AKT33, but was not corroborated with drug sensitivities
(Figs 2 and 3a). This is consistent with growing evidence that

PIK3CA mutations may be bystander mutations in NSCLC34. In
addition, the mutation in BRAF (G466A) for PERC11 was not
identified as a vulnerability with our drug data. Conversely, not
every drug vulnerability was found to correspond to an obvious
genetic mechanism. For example, we observed mTOR sensitivity
in PERC 10 for which we could not find any obvious genetic basis
(Figs 2 and 3a). Further, not all NSCLC erlotinib-resistance
mechanisms reported in the literature were exhibited by the
PERCs; we found no compelling evidence of transformation to
small cell lung cancer, epithelial-to-mesenchymal transition or
activation of IGF1R, AXL or NFK-B. We were unable to
determine the erlotinib-resistance mechanisms for PERCs 2, 3,
11 and 12, suggesting that the diversity of resistance mechanisms
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compatible with the persister state could be even greater than
what we have found. Of these, PERC3 stood out as having nearly
threefold more mutations than any other PERC, potentially
because of mutation in the DNA polymerase gene PolN (ref. 35;
Supplementary Fig. 8). Finally, some of our PERCs (for example,
with multiple concurrent genetic alterations and/or drug
vulnerabilities) may themselves be heterogeneous, comprising
multiple subpopulations with different resistance mechanisms; if
true, then there is even more diversity emerging from the
persister state than we described. Nevertheless, in total, we
discovered pharmacological and/or genetic evidence (as well as
corroborating reverse phase protein array (RPPA) data36;
Methods; Supplementary Figs 5–7) for mechanisms of erlotinib
resistance in 13 of our 17 PERCs (Supplementary Fig. 9).

Discussion
Cancer therapy has traditionally been focused on eliminating
fast-growing cells. Here we focused on drug-resistant cancer
populations that emerge from a persister state in which cells show
little-to-no growth for weeks to months in drug treatment. Our
work is a proof-of-principle study that demonstrates for the first
time that diverse drug-resistance mechanisms can emerge from
persisters, derived from a single, recent ancestor cell and grown
under the same selective pressure (Fig. 1a). This heterogeneity
presents considerable clinical challenges for ‘personalized’
therapy: even if an effective therapy is selected for one PERC,
there is no guarantee (and indeed it is not true in our data) that
this drug would be effective for other PERCs, which in practice
may have been undetected. Persisters, which are a small
subpopulation of the bulk cancer population, are currently
difficult to study in a clinical setting, and there is no known
molecular signature of having passed through this state clinically.

The diversity of resistance mechanisms we observed suggests
that passage through the persister state is not a limiting factor in
the emergence of drug-resistance heterogeneity (Fig. 1a).
Although our study was not focused on when or how resistance
arose, we believe it unlikely that our diverse resistance
mechanisms were all pre-existing at the time of drug treatment:
resistant cells would have had to emerge de novo within 20
generations from a single cell without selective pressure and then
not expand appreciably for B6 weeks in drug. We suspect, as
previously conjectured8, that persisters provide a drug-tolerant
reservoir of cells from which drug-resistance mechanisms can
eventually emerge37. Our study raises a number of interesting
questions. Would different initial cells, passing through the
persister bottleneck, give rise to the same resistance landscape?
Are persisters themselves in diverse molecular states and, if so,
would different persister states favour different sets of resistance
mechanisms? These unanswered questions provide motivation
for further studies of the timing, diversity and mechanisms by
which drug resistance can arise from (or through) the persister
bottleneck in different selective pressures and cancer types.

Our work suggests yet a new layer of complexity for treating
cancer. Diverse drug-resistance mechanisms can arise from
pre-existing mutations before treatment (as has been extensively
studied5–7) as well as from slow-growing persisters after long-term
treatment (which we study here). In fact, it is possible that both
mechanisms contribute to drug-resistance heterogeneity in the
clinic8. Certainly, eliminating, modulating or even anticipating the
range of drug-resistance solutions that can emerge from the
persister state will help guide the treatment of cancer.

Methods
Medium conditions. We made use of two types of media in our experiments. First,
‘erlotinib-free media’ is composed of RPMI 1640 (Corning #10 040 CM) supplemented
with 5% fetal bovine serum (Life Technologies #16140-071) and 1% Antibiotic-

Antimycotic (Life Technologies #15240-062). Second, ‘erlotinib media’ is composed of
erlotinib-free media and 2.5mM erlotinib HCl (Selleckchem, Cat.#S1023). Unless
otherwise stated, all experiments with PC9 and PC9-1 were performed in ‘erlotinib-free
media’ and experiments with PERCs were performed in ‘erlotinib media’.

Generation of clonal cell line PC9-1 in erlotinib-free media. We made use of the
‘EGFR-addicted’ NSCLC cell line PC9 acquired from the Minna Laboratory at
UT Southwestern; single-nucleotide polymorphism cell line fingerprinting was
performed to confirm the cell identity. Overall, 10,000 PC9 cells were seeded on a
10-cm plate. At this low cell density, most cells were isolated from one another.
PC9 clonal colonies were selected (we chose colonies that were well separated from
others to maximize the chance of being clonally derived) and transferred to a new
6-well plate. These clones were then rapidly expanded from a 6-well plate to one
10-cm plate. The process of generating a confluent plate for each of the clonal
populations took B2 weeks. Four vials of each clone were frozen down using all
cells from the single confluent 10-cm plate. We designated one of these clones PC9-
1 and used it for all subsequent experiments.

Generation of PC9-1-derived PERCs in erlotinib media. PERCs were derived by
performing the following steps (Supplementary Fig. 1a). We note that erlotinib
media was used for the whole duration of the PERC generation time (B2 months
before isolation and B7±1.5 months after isolation) and changed regularly
(Bevery 2–3 days). Five 10-cm plates were each seeded with 100,000 PC9-1 cells,
allowed to adhere overnight and then treated with erlotinib media. Most cells died,
leaving a few, isolated, drug-tolerant and slow-growing cells (‘persisters’) on the
plates. Clearly separated colonies (B50) were isolated and transferred to 96-well
plates between 6 and 8 weeks of drug treatment. Colonies were expanded from
96-well plates to 24-well plates to 6-well plates to one confluent 10-cm plate, and
then finally to three confluent 10-cm plates. Plate transfers were performed only
when the cells were grown to confluence. Nine vials of these persister-derived
erlotinib-resistant colonies (‘PERCs’) were frozen down using all cells from the
three confluent 10-cm plates. To obtain sufficient cells for our large-scale experi-
ments (drug screening, exome-sequencing and RPPA assays), we expanded the
PERCs and PC9-1 cells B6 further passages. Cell lines were periodically examined
and found negative for mycoplasma contamination during the course of this work.

Persister time course. PC9-1 cells were plated in triplicate in six-well plates with
erlotinib-free media at 40,000 cells per well (Supplementary Fig. 2a). Media was
changed to erlotinib media after allowing cells to adhere overnight. The cells were
grown for 14 days, with erlotinib media being changed every 3 days. Cells were
imaged every 2 days at 10� magnification with phase-contrast on a Nikon Ti Eclipse.

Persister drug response. PC9-1 cells were plated in duplicate in six-well plates
with erlotinib-free media at 40,000 cells per well (Supplementary Fig. 2b). Media
was changed to drug-containing media (described below) after allowing cells
to adhere overnight. Plates were treated with various drugs either singly in
erlotinib-free media or in combination with erlotinib media. The following
drugs were used: 0.1 mM WZ8040 (Selleckchem, Cat.#S1179), 0.1 mM WZ3146
(Selleckchem, Cat.#S1170), 0.1 mM SGX-523 (Selleckchem, Cat.#S1112), 0.0316mM
Crizotinib (PF-02341066; Selleckchem, Cat.#S1068) and 0.02 mM trichostatin A
(Selleckchem, Cat.#S1045). One pair of wells was used as controls with no drug in
either erlotinib-free media or erlotinib media. The cells were grown for 14 days,
with media being changed every 3 days. Cells were imaged every 3 days at � 10
magnification with phase-contrast on a Nikon Ti Eclipse.

Reversion. Long-term reversion experiments were performed by maintaining our
established PERCs in erlotinib-free media. PERCs and PC9-1 were then probed for
their responses to erlotinib periodically over the course of 40 weeks (Fig. 1b,c
and Supplementary Figs 1b and 2c). We tested for per cent viability (relative to
vehicle-treated cells) of PERCs and PC9-1 treated with 2.5mM erlotinib for 72 h using
CellTiter-Glo assays. Bright-field images of PERCs at � 10 magnification were cap-
tured daily after long-term (46 weeks) growth in drug-free media and subsequent re-
treatment with 2.5mM erlotinib (Supplementary Fig. 2c. Image analysis was used to
identify the portions of these images occupied by cells. A ‘% confluence’ for each
image was quantified by the fraction of pixels occupied by the identified cellular areas.

Drug screen. The primary screen (Fig. 2) was performed at the UT Southwestern
High-Throughput Screening (UTSW-HTS) Core Facility. For the primary screen, a
custom library was constructed using the following libraries: Kinase Inhibitor
Screening Library (96-well; Selleckchem, Cat.#L1200), Epigenetic Compound
Library (96-well; Selleckchem, Cat.#L1900), Apoptosis Compound Library
(96-well; Selleckchem, Cat.#3300), InhibitorSelect 384-Well Protein Kinase Inhi-
bitor Library I (EMD Calbiochem, Cat.#539743, Batch#D00105831) and the NCI
Oncology Set (Plates 4,762 and 4,763). Cell lines were each seeded in 384-well
plates at an empirically determined optimal seeding density (defined as the seeding
density that resulted in vehicle-treated cells being 70–80% confluent at the end of
the experiment) and allowed to adhere overnight. Compounds and negative
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controls were added using a BIOMEK liquid-handling robot on the second day,
resulting in a final DMSO concentration of 0.5%, and six, tenfold dilutions of
compound doses from 10mM to 100 pM. Cells were then incubated for 96 h at
37 �C and 5% CO2. Next, media was removed and 25ml of CellTiter-Glo diluted 1:5
with passive lysis buffer (Promega) was added using a Multidrop Reagent
Dispenser. Plates were incubated for 10 min at room temperature with shaking
and read on an Envision plate reader (Perkin Elmer). Per cent viability calculation
was performed by UTSW-HTS using the following formula for single-point
normalization: Per cent viability ¼ 100� Sample Raw Values

medianDMSOcontrol.
A small-scale ‘bypass’ experiment (Fig. 3f and Supplementary Figs 6b and 7b)

was performed at the Small Molecule Discovery Center at UCSF using the same
protocol described above. Selected PERCs were treated with ±erlotinib conditions
and either SGX-523 (MET drug) or Selumetinib (MEK drug). Drug-response
curves were measured at six doses, with multiple technical replicates (n¼ 3
þ erlotinib; n¼ 4 � erlotinib) per drug dose.

Exome-seq. Genomic DNA was extracted from confluent 15-cm plates using the
QIAamp DNA Micro Kit (Qiagen #56304; Fig. 3). The user-developed protocol for
‘Purification of genomic DNA from culture cells using the QIAamp DNA Micro Kit’
was followed, except that lysis and ethanol precipitation steps were scaled up twofold,
and samples were RNase-treated. Samples were submitted to Beijing Genome Insti-
tute (BGI) for quality control, library preparation and whole-exome sequencing. Only
samples that were found to be ‘Qualified (A level)’ in the quality-control phase were
allowed to proceed. ‘Qualified (A level)’ samples were defined as samples where (1)
the total quantity was over 6mg; (2) a single band of DNA that was greater than 20 kb
with no degradation was detectable using agarose gel electrophoresis; (3) sample
concentration was 437.5 ngml� 1; and (4) OD260/280¼ 1.8–2.0. A 150–200-bp insert
library (Agilent SureSelect Human All Exon v4 kit) was used for library construction.
Sequencing was performed at BGI on an Illumina HiSeq 2000 sequencer with a
paired-end 100-bp read length, and 100� coverage per sample.

MET knockdown. The following antibodies were used: MET (Cell Signaling #4560;
1:1,000 dilution), GAPDH (Santa Cruz #sc-47724; 1:3,000 dilution) and Cleaved
PARP (Cell Signaling #9541; 1:1,000 dilution; Fig. 3d and Supplementary
Fig. 6d–g). Transient knockdown of MET was achieved using SignalSilence MET
siRNA I (Cell Signaling #6618), with SignalSilence Control siRNA (Cell Signaling
#6568) as a negative control. Cells were seeded in a six-well plate, allowed to adhere
overnight and then transfected using Lipofectamine RNAiMax transfection reagent
(30 nM siRNA). Whole-cell lysates were collected 72 h post transfection using
RIPA buffer supplemented with phenylmethyl sulphonyl fluoride, sodium ortho-
vanadate and a protease inhibitor cocktail (Santa Cruz #sc-24948). SDS–PAGE
immunoblots were performed, and data were collected using the LI-COR Odyssey
infrared imaging system. Uncropped blots are shown in Supplementary Fig. 6.

Fluorescence in situ hybridization. Cells were harvested and fixed in methano-
l:acetic acid (3:1) and air-dried slides were prepared (Supplementary Fig. 6c). Probe
and nuclear DNA were co-denatured at 72 �C in formamide and hybridized
overnight at 37 �C. After washing and counterstaining with 4,6-diamidino-2-
phenylindole, analysis was performed using standard fluorescence microscope and
images were captured using the Applied Spectral Imaging system. Probes used are
CEP-7 (green) and cMET (red; Abbott Molecular, Downers Grove, IL).

RPPA. Cells were seeded onto six-well plates at a density of 150,000 cells per well
and cultured for 24 h (Supplementary Figs 5, 6a and 7a). Cells were lysed using the
protocol outlined by the MD Anderson Functional Proteomics Core Facility, where
RPPA was performed. Total protein concentration in lysates was determined by
performing a BCA assay, and samples were adjusted to a concentration of
1–1.5 mg ml� 1. Samples were then denatured using the SDS sample buffer
recommended by the core facility, boiled for 5 min and then stored at � 80 �C
before being shipped to MD Anderson on dry ice. Samples were then serially
diluted and arrayed onto nitrocellulose-coated slides. Slides were then probed with
the core facility’s collection of antibodies (listed on website as ‘CoreStdAbList
1_21_2014.xls’), and signal was generated using a 3, 30-diaminobenzidine colori-
metric reaction-based system. Background subtraction and spot density determi-
nation were performed using the MiroVigene software. The relative concentration
of each protein of interest was defined using the ‘Super Curve Fitting’ method
developed by MD Anderson’s Functional Proteomics Core Facility.

Drug-response score. We use the notation Vn;d
c;r to denote the percentage viability

of PERC n (¼ 1–17) treated with drug d (¼ 1–560) at concentration c (¼ 1–6) and
replicate measurement r (¼ 1–2). We sought to identify PERCs whose drug
response differed strongly and reproducibly from that of PC9-1. We made use of
the drug response in terms of the area under the curve (AUC) to quantify changes:

An;d ¼
X

c;r

Vn;d
c;r : ð1Þ

Our score for change reflected the degree to which AUCs for response curves of
PC9-1 and PERCs were distinguishable, given a notion of experimental variability.
Our measure of variability was constructed by considering the distribution of
AUCs when systematically sampling from the replicate measurements; at each of

the six concentrations c, we chose one of two replicates, giving rise to 26¼ 32
possible response curves and 32 corresponding AUCs. For every PERC n and drug
d we constructed the AUC set:

S n; dð Þ ¼ fA1
n;d ; . . . ;A32

n;dg: ð2Þ

The parent line PC9-1 was assayed twice for each drug (each with two replicates
per concentration). We denote these two replicate assays here by PC9-1r1 and
PC9-1r2 and define a corresponding AUC set for PC9-1 by combining the
corresponding AUC sets:

S PC9-1;dð Þ ¼ fA1
PC9-1r1;d ; . . . ;A32

PC9-1r1;d ;A1
PC9-1r2;d ; . . . ;A32

PC9-1r2;dg: ð3Þ

Then, the drug response for PERC n and drug d was characterized in terms
of its difference from the PC9-1 response as quantified by the test statistic of the
Student’s t-test (two sample, unequal sample sizes and variances):

Response n; dð Þ ¼ t-statistic S n; dð Þ; S PC9-1;dð Þð Þ: ð4Þ

Smoothed drug-response curves. The mean (across replicates) dose–response
curves were fit to the sigmoidal form using a least-squares unweighted model
(lsqnonlin in Matlab v2014a)38:

f c;b1yb4ð Þ ¼ b1 þ
b2

1þ exp � b3 � c
b4

� � ð5Þ

where c represents the concentration and b1y b4 are the parameters to be fit,
subject to the constraints that b140, b240 and b440.

Drug-category-response scores. We developed a statistical measure to prioritize
specific PERC/drug-category combinations. In brief, we define ‘effective’ drugs in
terms of a response threshold, we look for drug categories enriched for effective
drugs and then scan for the highest value of threshold for which a category remains
enriched. We define effective, threshold and enriched below.

(1) Effective drug. For a given PERC x and response threshold T, we define a
drug d to be effective if Response(x, d)4T for identifying drug sensitivity (and
Response (x, d)o�T for identifying drug resistance).

(2) Enriched drug category. For a given PERC x and response threshold T, we
quantify using the cumulative hypergeometric distribution, H, the extent to which a
drug category C is enriched for effective drugs by:

p x;C;Tð Þ ¼ 1�H kx;C Tð Þ; nC ;Kx Tð Þ;N
� �� �

�Ctot ð6Þ

where kx,C(T) is the number of effective drugs in category C, nC is the number of
drugs in category C and Kx(T) is the total number of effective drugs for PERC x,
N¼ 560 is the total number of drugs screened and Ctot is the total number of
category (for Bonferroni-type correction of multiple classes being tested). Here
H(k, n, K, N) calculates the cumulative hypergeometric distribution, with up to k
successes in n draws, without replacement, from a finite population of size N that
contains exactly K successes.

(3) Max threshold for enriched category. For a given PERC x and drug-category
C we compute the maximum threshold T at which p(x, C, T)oSp. This is used as
our drug-category-response score. In practice, we empirically chose Sp¼ 0.01 and
varied the threshold T from 1 to 200 in steps of 1 to identify when the various
categories fall out (Supplementary Fig. 3). To ensure that we had enough evidence
to support our hits, we only counted P values supported by at least three
responding drugs. We note that p(x, C, T) is not a monotonic function of T.

Exome-seq analysis. Data were processed and aligned to the reference genome
hg19 by BGI using Burrows-Wheeler alignment tool, BWA ALN. Somatic single-
nucleotide variants (compared with PC9-1) were called using MuTect40 with
default parameters. Somatic copy number variations (CNVs; compared with PC9-
1) were called using ExomeCNV41 with default parameters to provide a specificity
and sensitivity of 99.99%. CNVs with read ratios in the range 0.6oratioo1.4 were
filtered out.

Variants called reflect a difference in the genetic state between PC9-1 and the
PERCs. These can either arise from (a) evolution of the PERCs in drug or (b) from
the evolution of PC9-1, as it was being expanded out of drug to perform
sequencing. Events of type b) manifest as differences from PC9-1 that are common
to all PERCs and were found to be relatively rare. As our focus was on the
evolution of PERCs, we dropped such events in Fig. 3a (where only a single NRAS
deletion common to all PERCs was omitted).

Relative drug-response score. If An,d denotes the AUC for the nth PERC when
treated with drug d, then we measured a relative drug response in terms of the
percentage difference from the mean PERC AUC (across all lines) of the drug

rn;d ¼ 100�An;d � md

md
ð7Þ

where md ¼ 1
17

P17
n¼1 An;d . Here An,d was computed from the smoothed response

curve (Fig. 3b and Supplementary Figs 5,6a and 7a).

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms10690 ARTICLE

NATURE COMMUNICATIONS | 7:10690 | DOI: 10.1038/ncomms10690 | www.nature.com/naturecommunications 7

http://www.nature.com/naturecommunications


RPPA analysis. The output of the RPPA experiment was a matrix of values, each
row corresponding to a cell line (PERC or PC9-1) and each column corresponding
to an antibody. These data were analysed as follows:

(1) Normalization: the data (which are in log 2) were linearized (by raising to power
2), each row (cell line) was divided by its median, each column (antibody) was
divided by its median and the values were then converted back to log 2.

(2) Replicate averaging: replicates for each cell line were averaged to generate cell
line profiles.

(3) For each cell line and antibody, the level of the corresponding antibody for
PC9-1 was subtracted.

(4) Quality: antibodies marked as Validated (V), Caution (C) or QC by MD Anderson
RPPA Core Facility were used. (V): Pearson correlation coefficient between in-
house RPPA data and western blot data is 40.7. (C): Pearson correlation
coefficient between in-house RPPA data and western blot data is o0.7. (QC):
antibody is suitable for cell line analysis but not tissue sample analysis.

Code availability. Computer code used to generate Figs 1–3 is available as
Supplementary Software 1–3.
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