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Abstract: A comprehensive fault diagnosis method of rolling bearing about noise interference, fault
feature extraction, and identification was proposed. Based on complete ensemble empirical mode de-
composition with adaptive noise (CEEMDAN), detrended fluctuation analysis (DFA), and improved
wavelet thresholding, a denoising method of CEEMDAN-DFA-improved wavelet threshold function
was presented to reduce the distortion of the noised signal. Based on quantum-behaved particle
swarm optimization (QPSO), multiscale permutation entropy (MPE), and support vector machine
(SVM), the QPSO-MPE-SVM method was presented to construct the fault-features sets and realize
fault identification. Simulation and experimental platform verification showed that the proposed
comprehensive diagnosis method not only can better remove the noise interference and maintain
the original characteristics of the signal by CEEMDAN-DFA-improved wavelet threshold function,
but also overcome overlapping MPE values by the QPSO-optimizing MPE parameters to separate
the features of different fault types. The experimental results showed that the fault identification
accuracy of the fault diagnosis can reach 95%, which is a great improvement compared with the
existing methods.

Keywords: rolling bearing fault; CEEMDAN; DFA; improved wavelet threshold; QPSO; MPE; SVM

1. Introduction

Rolling bearings are the most important parts of rotating machinery and are widely
used in modern mechanized equipment [1,2]. The fault of rolling bearing components can
cause serious damage to the running status of the machine and the production process.
Therefore, it is important to explore a new fault diagnosis technique. However, in practical
engineering, the collected bearing vibration signals contain various interference signals
(e.g., white noise, harmonic interference), and have nonlinear and nonstationary properties,
which makes it difficult to distinguish the bearing fault types and to identify them [3].
Therefore, to improve the fault diagnosis accuracy of rolling bearings, this paper researched
three aspects of signal denoising, fault feature extraction, and fault type identification of
rolling bearings.

Common vibration signal denoising methods include empirical mode decomposition
(EMD) [4], discrete wavelet transform (DWT) [5], singular-value decomposition (SVD) [6–8],
and so on. Abdelkader et al. [9], based on EMD algorithm, proposed a method to determine
the travel point based on the energy values of the IMF components of each order, and an
improved wavelet threshold was used to denoise the selected IMF component-bearing
vibration signals. Zhao et al. [10] fused the EMD algorithm and selected and tested (ST)
the algorithm to denoise the signal, solving the low accuracy in the low-speed operation
of the bearing of the EMD denoising method based on the number of interrelationships
and the kurtosis criterion. Gao et al. [11] added the CEEMDAN algorithm to adaptive
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noise, further reducing the modal effect, yielding better convergence, and realizing the
fault diagnosis of rolling bearings.

The hard and soft thresholding functions in wavelet thresholding denoising are widely
used, but both functions have their shortcomings and can cause a certain degree of dis-
tortion when reconstructing the signal. Tajeddini et al. [12] proposed a generic threshold
function based on an unbiased risk estimation method to carry out wavelet-packet trans-
form preprocessing of the vibration signal, followed by generic threshold denoising. Kumar
et al. [13] proposed an improved modified kurtosis-mixing threshold rule to denoise the
vibration signal, which improved the signal-to-noise ratio. Yang et al. [14] used a particle-
swarm algorithm to perform adaptive optimal processing of the initial parameters of the
wavelet threshold function, which solved the problem of the initial parameters being influ-
enced by empirical values and overcame the defects such as signal noise removal not being
complete enough or removing the useful information. Chegini et al. Ref. [15] proposed a
new method of bearing vibration signal denoising based on empirical wavelet transform
(EWT) as well as the threshold function, which better overcame the defect of constant devi-
ation of the traditional soft threshold function. However, the denoising performance of the
wavelet threshold denoising method is closely related to the wavelet basis function and the
threshold function, and is not adaptive. Although the CEEMDAN algorithm is adaptive,
the definition of noise and useful signal is relatively vague, resulting in high distortion of
the denoised signal. Shi et al. [3] proposed a de-trending fluctuation analysis technique for
the critical values of the noise component and the useful signal component. This method
ensures the accuracy of signal correlation discrimination to a certain extent. Based on
the CEEMDAN algorithm decomposition of the vibration signal, Chaabi et al. [16] used
wavelet analysis, principal component analysis, and order tracking analysis to perform
multi-method denoising. In order to improve identification accuracy of rolling bearings
with nonlinear and nonstationary vibration signals, Chen et al. [17] proposed a novel
fault diagnosis method based on wavelet thresholding denoising and CMEEMDAN with
adaptive noise. To verify the denoising effectiveness of combined wavelet thresholding and
CEEMDAN, Bie et al. [18] added random Gaussian white noise to the bearing fault signal
to simulate the actual noise disturbance of rolling bearings, and adopted the CEEMDAN-
wavelet threshold function to the denoising method. The experimental results showed
that the combined denoising method could effectively remove the interference of noise.
Therefore, based on the application characteristics of each denoising method, this paper
proposed a denoising method based on a CEEMDAN-DFA-improved wavelet threshold
function. The method uses the CEEMDAN algorithm to decompose the vibration signal,
performs detrended fluctuation analysis (DFA) on the obtained eigenmode function (IMF),
calculates the scalar function value of each IMF component, selects the noise-dominated
IMF component, and applies an improved wavelet threshold function to denoise it.

The current methods of fault feature extraction for rolling bearings are mainly time-
domain analysis, frequency domain analysis, and time-frequency domain analysis; among
them, the time-frequency domain analysis method is most commonly used. Zhen et al. [19]
decomposed the vibration signal using wavelet packets and selected a suitable bandwidth
according to the Kurtosis spectrum correlation theory, and finally applied the envelope
spectrum analysis to extract the eigenfrequencies. Han et al. [20] used the Teager energy
operator to enhance the signal after wavelet denoising and then extracted the bearing fault
features by the CEEMD algorithm. Li et al. [21] used exchange entropy (PE) for bearing
fault feature extraction, but could not measure multi-scale signals. Multi-scale variational
entropy (MPE) [22,23] was introduced into fault diagnosis by Yin et al. [24]. Du et al. [25]
used MPE to extract fault features and combined them with a self-organizing fuzzy classifier
based on the harmonic mean difference (HMDSOF) to classify the fault features. MPE
can respond to the changes of vibration signals very well, but its parameters have a great
influence on the calculation of entropy values. If the parameters are not selected properly,
it will cause the arrangement entropy values of multiple signals of bearings to be mixed,
and thus the type of bearing failure cannot be identified. In order to achieve complete
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separation of arrangement entropy values under different operating conditions of the
bearings, this paper adopted quantum particle swarm optimization (QPSO) to optimize
the initial parameters of MPE, and then selected the appropriate MPE entropy values to
construct the rolling bearing fault feature vector.

Common fault classification and identification methods include artificial neural net-
works (ANN) [26], extreme learning machines (ELM) [27,28], and support vector machines
(SVM) [29,30]. The ANN has made possible many achievements in the field of pattern
identification, but its identification performance is strongly influenced by parameters and
it is easy to fall into local minima during the optimization process. Although ELM runs
fast, its generalization performance is poor. SVM has fewer adjustable parameters and
runs stably. It can obtain higher diagnostic accuracy under the condition of fewer training
samples [24]. Therefore, this paper used a SVM for fault identification of rolling bearings.
This paper also proposed a comprehensive rolling bearing fault feature extraction and
identification method based on the combination of QPSO-MPE-SVM.

The main work and contributions of this paper are summarized as follows:

(1) A CEEMDAN-DFA-improved wavelet thresholding denoising method was proposed.
The method uses the CEEMDAN algorithm to decompose the vibration signal, per-
forms DFA on the obtained IMF, calculates the scalar function value of each IMF
component, selects the noise-dominated IMF component, and applies an improved
wavelet threshold function to denoise it.

(2) Combining QPSO-MPE-SVM into an effective fault diagnosis method can accurately
extract fault features and improve the identification accuracy of bearing faults.

(3) Experimental cases were used to illustrate the effectiveness of the proposed method
in bearing vibration signal denoising, fault feature extraction, and fault identification.

The rest of this paper is organized as follows. The CEEMDAN-DFA-improved wavelet
thresholding denoising method is introduced, and its validity is verified in Section 2.
The QPSO-MPE-SVM fault feature extraction and diagnosis method is presented, and its
validity is verified in Section 3. The effectiveness of the proposed method is proven by
experimental example in Section 4. In addition, contrastive analysis among the different
methods is conducted. Finally, some conclusions are summarized in Section 5.

2. Denoising Algorithm of the CEEMDAN-DFA-Improved Wavelet
Threshold Function
2.1. Basic Algorithm Related to CEEMDAN-DFA-Improved Wavelet Threshold Function
2.1.1. CEEMDAN Algorithm

To overcome the high computing time and the residue of added noise present in the
IMFs, and to better deal with the modal mixing problem of empirical modal decomposition
(EMD), the ensemble empirical mode decomposition (EEMD) was proposed by Liu et al.
in 2009 [31]. The EEMD algorithm is effective in suppressing modal aliasing, but a certain
degree of distortion is produced when the signal is reconstructed. The improved CEEM-
DAN algorithm was proposed by Colominas et al. in 2014 [32]. The improved CEEMDAN
algorithm is summarized as follows.

(1) The jth IMF component generated by the signal decomposition by the EMD is defined
as Ej(·). The jth IMF by the CEEMDAN is defined as IMFj

′. ni(t) is for the Gaussian
white noise. The CEEMDAN performs I EMD decomposition on the noisy signal
x(t) + ε0 · ni(t) formed by the combination of the original signal and the white noise.
Then the first IMF component decomposed by CEEMDAN can be expressed as:

IMF′1(t) =
1
I

I

∑
i=1

IMFi
1(t) (1)

(2) First residual sequence of the first stage (j = 1) is expressed as:

r1(t) = x(t)− IMF′1(t) (2)
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(3) The r1(t) + ε1E1
(
ni(t)

)
(i = 1, 2, · · ·) is processed several times using the EMD algo-

rithm until the first IMF component is generated. The second IMF component is
expressed as:

IMF′2(t) =
1
I

I

∑
i=1

E1

(
r1(t) + ε1E1

(
ni(t)

))
(3)

(4) Perform step (3) above for the other remaining stages (j = 2, 3, · · ·J), then the j + 1
IMF component is expressed as:

rj(t) = rj−1 − IMFj(t) (4)

IMF′ j+1(t) =
1
I

I

∑
i=1

E1

(
rj(t) + ε jEj

(
ni(t)

))
(5)

(5) Add 1 for j and repeat step (4) until the residual sequence cannot be processed. The
number of IMF components is J. The final calculated residual sequence is expressed as:

r(t) = x(t)−
J

∑
j=1

IMFj
′(t) (6)

(6) The original signal x(t) represented by the IMF component and the residual compo-
nent is expressed as:

x(t) =
J

∑
j=1

IMF′j (t) + r(t) (7)

The CEEMDAN algorithm introduces a segment of positive and negative white noise
for each stage processing, and overcomes the reconstruction error defect of the EEMD
algorithm by processing only one residual component to find each IMF component. The
CEEMDAN algorithm is able to reconstruct the decomposed signal with close to zero
deviation. However, it also has shortcomings, for example, the definition of noise and
useful signal in IMF components containing more noise is relatively ambiguous, and direct
removal of these components can cause signal distortion.

2.1.2. DFA Algorithm

To solve the problem of CEEMDAN for noise and useful signal demarcation ambiguity,
the DFA algorithm is more accurate [33].

(1) x(i) is defined as the average of the time series x(i) in the time intervals [1,N], and
denoted as:

x =
1
N

N

∑
i=1

x(i) (8)

where N is the number of segments of length n.
(2) The time series y(k) is segmented into segments of length n. It is denoted as:

y(k) =
k

∑
i=1

[x(i)− x], k = 1, 2, 3, · · · (9)

(3) The trend ys(i) of each series segment is calculated as:

ys(i) =
k

∑
n=0

anin (10)
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(4) After removing the uncertain trend in each series segment, the second-order fluctua-
tion coefficient of the segment series is expressed as:

F2(n, s) =
1
n

n

∑
i=1

(y[(s− 1)n + i]− ys(i))
2 (11)

Fq(n) =

[
1

Nn

Ns

∑
s=1

F2(n, s)

]1/2

(12)

(5) Change the segment length n in step (1), and repeat steps (2) and (3) to obtain the
change in the fluctuation function of the time series. The correlation of the time series
represented by the Hurst function is expressed as:

H =
log2 Fq(n)

log2(n)
=

log2

[
1

Nn

Nn
∑

s=1
F2(n, s)

]
log2(n)

(13)

(6) The relationship between the scalar function α and the time series fluctuation function
F(n) is expressed as:

F(n) ∝ nα (14)

It can be seen that α is related to F(n), and F(n) is related to H. Therefore, α is related
to H. The value of α is proportional to the smoothness of the signal. When 0 < α < 0.5, it
indicates that the proportion of noise in the signal is very large; α = 0.5 indicates the signal
is not correlated; the signal has a large correlation when α > 0.5 [34]. By comparing the
values of α in the IMF components, the noise-dominated IMF components and the useful
information-dominated IMF components can be distinguished.

DFA is an algorithm for correlation discrimination of non-smooth signals. It is used to
confirm the critical value of the noise component and the useful signal component, which
can guarantee the accuracy of signal correlation discrimination to a certain extent.

2.1.3. Improved Wavelet Threshold Function

To solve the distortion problem of the signal caused by the CEEMDAN, a wavelet
threshold function is introduced to denoise the dominant component of the noise. Tradi-
tional threshold functions include hard threshold functions and soft threshold functions.
The hard threshold function can maintain the signal characteristics well, but there is a
discontinuity at the set threshold λ, which will cause serious oscillations when the signal
is reconstructed. The soft threshold function does not have the discontinuity at the set
threshold, but the wavelet coefficients after threshold quantization will have a constant
deviation, which leads to a large deviation for the signal characteristics. Therefore, Based
on the advantages of the hard thresholding function and soft thresholding function, an
improved wavelet threshold function is presented to reduce reconstruction error.

The improved threshold function must meet the following conditions.

(1) A good continuity is maintained at the set threshold;
(2) The threshold function has monotonicity and continuity when the wavelet coefficient

is greater than the set threshold;
(3) The threshold function should have an asymptote, and the curve y(x) = x can overlap

with the asymptote.

The improved wavelet threshold function is expressed as:

Ψ̂j,k =

sign
(

Ψj,k

)[∣∣∣Ψj,k

∣∣∣2 − (λe−(|Ψj,k |−λ)/k
)2
]1/2 ∣∣∣Ψj,k

∣∣∣ ≥ λ

aΨj,k

∣∣∣Ψj,k

∣∣∣ < λ

(15)
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where k and α in the expression are adjustable, k > 0, a ∈ (0.05, 0.5).
The characteristics of the improved wavelet threshold function are as follows:

(1) When ψj,k → λ , e−(|ψj,k |−λ)/k → 1 and
_
ψ j,k → 0 , the improved wavelet threshold

function is continuous at the threshold λ. When ψj,k → ∞ , e−(|ψj,k |−λ)/k → 0 and
_
ψ j,k → ψj,k , the improved wavelet threshold function is an asymptote, which makes
the reconstructed signal closer to the actual value.

(2) When k→ 0 , the properties of the improved wavelet threshold function are close to
the hard threshold function. When k→ ∞ , the properties of the improved wavelet
threshold function are close to the soft threshold function.

(3) When
∣∣∣ψj,k

∣∣∣ ≤ λ, a very large part of the wavelet coefficient is noise, and the a value
is adjusted to be as small as possible to remove the noise interference.

The selection of the threshold value has a large impact on the signal denoising effect.
The formula for the threshold selection rule used in this paper is expressed as:

λi =
δ
√

2 ln(N)

ln(i + 1)
(16)

where δ is for noise intensity. i is the number of decomposition layers. N is the signal
length. The threshold λi varies with the number of decomposition layers. The wavelet
coefficients of a noisy signal are inversely related to the number of decomposition layers.
To ensure that the reconstruction error of the signal after denoising is small, the threshold
λi should be dynamically smaller as the number of decomposition layers increases.

2.2. The Validation of CEEMDAN-DFA-Improved Wavelet Threshold Function
Denoising Algorithm

The operational flow of the CEEMDAN-DFA-improved wavelet threshold function
denoising algorithm is shown in Figure 1. Firstly, the CEEMDAN is used to decompose
the vibration signal of the rolling bearing to obtain a series of IMF components. Then,
the IMF is analyzed by DFA, and the scaling function values of each order of IMF are
calculated. According to the correlation of DFA, the IMF component dominated by noise is
selected, and the improved wavelet threshold function is used for denoising. Finally, the
IMF component after denoising and the IMF component dominated by useful signals are
reconstructed, and the reconstructed signal is the bearing vibration signal after denoising.

The verification data of the denoising algorithm come from the rolling bearing
database provided by the Electrical Engineering Laboratory of Case Western Reserve
University (CWRU) [35]. The validation data selected for this paper were the inner rings
of a bearing with a damaging size of a 0.007-inch signal. To meet match the actual work-
ing environment, random Gaussian white noise was superimposed on the used bearing
inner-ring fault signal. Figure 2 shows the time domain waveform of the bearing inner-ring
fault noise-containing signal. The noise-containing signal was first decomposed using
CEEMDAN to obtain the 12th-order IMF component, and then the IMF was calculated
by the DFA for the scaling function value α. The calculation results are shown in Table 1.
From the table, it can be seen that the scaling function value α of the first four-order IMF
components was less than 0.5. Therefore, it can be determined that the main component of
the first fourth-order IFM component is noise, and the main component of the remaining
IMF is useful information. Signal reconstruction was performed on the first fourth-order
IMF, and the reconstructed signal was denoised.

To compare the advantages of the proposed denoising algorithms, four denoising
methods were used, including CEEMDAN-DFA, CEEMDAN-DFA-hard thresholding,
CEEMDAN-DFA-soft thresholding and the CEEMDAN-DFA-improved wavelet threshold-
ing. The denoising results are shown in Figure 3.
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Figure 1. The operational flow of the CEEMDAN-DFA-improved wavelet threshold function algorithm.

Figure 2. The time domain waveform of the inner-ring fault noise signal.

Figure 3. The time domain waveform of inner-ring fault noise signal.
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Table 1. Scalar function values of each order IMF of the bearing inner ring fault signal.

IMF 1 2 3 4 5 6

α 0.4639 0.4214 0.3651 0.3124 0.5154 0.5712

IMF 7 8 9 10 11 12

α 0.6812 0.7948 0.8106 0.8637 0.8961 0.8942

The results show that both CEEMDAN-DFA and CEEMDAN-DFA-hard threshold
denoising methods cause large signal distortion. The values of the signal-to-noise ratio
(SNR) and root-mean-square error (RMSE) using the four denoising methods to the inner
ring fault signal are shown in Table 2. The proposed CEEMDAN-DFA-improved wavelet
threshold denoising method improved the SNR by 11.4% and reduced the RMSE by 16.2%
compared with the CEEMDAN-DFA-wavelet soft threshold denoising method. It can be
seen that the proposed denoising method in this paper has better performance than other
denoising methods.

Table 2. The SNR and RMSE of the inner-ring fault denoising.

Method SNR RMSE

CEEMDAN-DFA 4.9134 0.12143
CEEMDAN-DFA-wavelet hard threshold function 9.7542 0.08719
CEEMDAN-DFA-wavelet soft threshold function 13.6718 0.06024

CEEMDAN-DFA-improved wavelet threshold function 15.2324 0.05047

3. Fault Feature Extraction and Identification Algorithm of the QPSO-MPE-SVM
3.1. Basic Algorithm Related to the QPSO-MPE-SVM
3.1.1. MPE Algorithm

The theoretical foundation of MPE is based on multiscale analysis and alignment
entropy. MPE was used to coarsely granulate the initial time series to create a multiscale
time series [35]. The calculation procedure is described as follows:

(1) The initial time series x(i) is coarsely granularized to obtain the coarse-grained series
yτ

j , which is calculated as follow:

yτ
j =

1
τ

τ

∑
i=(j−1)+1

xi 1 ≤ j ≤ N
τ

(17)

(2) Calculate multi-scale alignment entropy based on sequence yτ
j .

MPE(x, τ, m, λ) = PE(yτ
j , m, λ) (18)

The MPE calculation requires the signal length N, delay time λ, embedding dimen-
sion m, and scale factor τ. The MPE can respond very well to the changes of vibration
signals, but if the parameters are not selected properly, the permutation entropy values of
multiple vibration signals will be overlapped, and thus the fault characteristics cannot be
extracted [36].

3.1.2. QPSO Algorithm

In order to achieve complete separation of the MPE values for different operating
conditions of the bearings, the QPSO is introduced in this paper to optimize the initial
parameters of the MPE. To find the global optimal solution, the calculation formula is
expressed as [37]:

mbest =
1
M

M

∑
j=1

Pj (19)
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P = rPj + (1− r)Pg (20)

Lj(t1 + 1) = P± ς
∣∣mbest − Lj(t1)

∣∣ ln 1/u (21)

where mbest is particle optimum average. M is race number. Pg is the global optimal solution
for the particle. ς is compression expansion factor.

The fitness function has a large impact on the optimization results of QPSO when
studying the trend of the data.

The MPE values of time series x(i) are a formed sequence Hp(X), Hp(X) is described
as follows:

HP(X) = {HP(1), HP(2), · · ·, HP(n)} (22)

Skewness formula is described as follows:

ske =
E
[
HP(X)− Hm

P (X)
][

Hd
P(X)

]3 3

(23)

where E is the expected value. Hm
p (X) and Hd

p(X) are the mean and standard deviations
of Hp(X).

The fitness function about QPSO is described as follows:

F(X) =
1

ske2 + 1
(24)

The fitness function has a large impact on the optimization results of QPSO. The
skewness value is inversely proportional to the fitness function. Therefore, by calculating
the minimum value of the skewness, we can obtain the best fitness function value. Using
this value to optimize the parameters of the alignment entropy, we can make the distinction
between the alignment entropy values of different fault types more obvious and make it
easier to carry out fault diagnosis and classification.

3.1.3. SVM Algorithm

Assume that {(x, y)|i = 1, 2, · · ·, k} is the input training set, where k is the number of
training set samples.xi ∈ Td is the d-dimensional feature vector. yi ∈ {−1, 1} denotes the
category of sample xi.

In order to maximize the sample interval, the optimization formula was constructed
and expressed as follows [38]:

min
w,b

||w||2
2 + C

k
∑

i=1
ξi

s.t. yi[(wix) + b] ≥ 1− ξi i = 1, 2, · · ·, k
(25)

where w is the weighting of the optimal classification surface. C denotes the penalty
parameter of the deviation item ξi. When C > 0, ξi is the error caused when the sample
points are misclassified.

The above nonlinear planning problem was transformed into a linear planning prob-
lem using the Lagrangian equation. The Lagrangian equation fuses the objective function
with the constraint function and then finds the optimum value of that equation, which is
the optimal classification surface. The classification decision function was obtained as:

f (x) = sgn

(
k

∑
i=1

αiyiK(xi, x) + b∗
)

(26)
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where αi is a Lagrangian multiplier. K(xi, x) represents the kernel function of the Mercer
condition, which is denoted as follows:

K(x, y) = exp

(
−||x− y||2

2g2

)
(27)

where g indicates the complexity of the subspace distribution of the sample data.

3.2. The Validation of the QPSO-MPE-SVM Algorithm

The process of QPSO-MPE-SVM fault feature extraction and identification is shown in
Figure 4, which is as follows.

Figure 4. QPSO-MPE-SVM fault identification flow chart.

(1) The denoised vibration signal is again disintegrated by CEEMDAN, and the IMFs are
selected according to the correlation coefficient and Kurtosis values of the IMF for
signal reconstruction;

(2) The initial parameters of the MPE are optimized using the QPSO to obtain the better
MPE parameters;

(3) The MPE values of the reconstructed signals are calculated using the optimized MPE
parameters, and the MPE values with obvious differentiation are selected to construct
the bearing fault feature set;

(4) The obtained MPE fault feature set is input to the SVM for fault identification.

The correlation coefficient value is proportional to the fault information content in
the IMF component. The kurtosis value reflects the amount of shock information in the
IMF component; the larger the kurtosis value, the more shock information in the IMF
component, and the smaller the kurtosis value, the less oscillating information in the
IMF component.

The validated data came from the rolling bearing database provided by the Electrical
Engineering Laboratory of Case Western Reserve University (CWRU) [35]. The correlation
coefficient values and Kurtosis values of each order IMF component of the bearing fault
signal (normal signal, inner-ring fault signal, outer-ring signal, and rolling-body fault
signal) at 1797 rmp were calculated and the results are shown in Figure 5.
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Figure 5. Plots of IMF component correlation coefficients and Kurtosis values. (a) The correlation coefficients of IMF; (b) The
Kurtosis values of IMF.

From Figure 5, it can be seen that the correlation coefficients of the four vibration
signals were different, the correlation coefficients of the first five order IMFs of the four-
fault signals were all above 10%, and Kurtosis values were all greater than 3. Therefore, the
first fifth-order IMF components were selected for signal reconstruction.

To prove whether the bearing fault characteristic information can be accurately ex-
tracted from the first fifth-order IMFs, we took the inner ring fault signal as an example
for research. The CEEMDAN decomposed the fault signal of the bearing inner ring and
selects the first-order and fifth-order IMF for signal reconstruction. Then, the reconstructed
signal was analyzed by Hilbert-Huang transform (HHT) envelope spectrum. The envelope
spectrum analysis of the original signal and the reconstructed signal is shown in Figure 6.

Figure 6. The HHT envelope spectrum of the inner-ring fault signal. (a) The envelope spectrum analysis of the original
signal; (b) The envelope spectrum analysis of the reconstructed signal.

The theoretical value of the characteristic frequency of the inner-ring fault signal is
162.1 Hz, and the actual value is 161.9 Hz. The error of no more than 10% between the
theoretical frequency value and the actual frequency can be determined as the same fault.
From the original signal envelope spectrum shown in Figure 6a, it can be seen that there
were other interference peaks near the peak of the fault characteristic frequency (161.9 Hz),
which could not effectively extract the fault characteristic frequency. The HHT envelope
spectrum of the reconstructed signal shown in Figure 6b, indicating that the characteristic
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frequency (161.9 Hz) can be easily extracted, and it is also easy to extract the di-frequency
(323 Hz) and tri-frequency (484.9 Hz) of the fault features.

In summary, it was proved that the first fifth-order IMF components can retain the
fault feature information, which further verifies the effectiveness of the proposed denoising
method in this paper. This scheme can realize the real-time processing of fault signals and
can be looped.

3.2.1. Optimize MPE Values Using QPSO

The initial parameters of MPE were set to N = 1024, λ = 1, m = 6 and τ = 12. The
first fifth-order IMF components of the normal signal, inner-ring fault signal, outer-ring
fault signal, and rolling-element fault signal were selected for signal reconstruction. The
MPE values reconstructed signal was calculated and the results are shown in Figure 7. It
can be seen that the MPE values of each signal were not distinguishable, so they could not
be used as an effective feature set for fault classification.

Figure 7. The MPE values without QPSO optimization.

To separate the MPE values of the four operating conditions of the bearings, the
QPSO was used to optimize the initial MPE parameters. The parameters of QPSO were
set to 30 for the number of races, 200 for the maximum number of iterations, and 10 and
0.2 for the maximum and minimum inertia weights, respectively. The parameters of the
optimized MPE are shown in Table 3. The MPE values were calculated using the optimized
parameters, and the results are shown in Figure 8. It can be seen that the MPE values of
each signal were independent of each other, which can better construct the fault feature
set. In this paper, the scale factors with stable and larger partition degrees were selected to
construct the fault feature vector, so the selected factors were 5, 6, 7, 8, and 9.

Figure 8. The MPE values optimized after QPSO.
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Table 3. Parameters of MPE after QPSO optimization.

Signal N λ m τ

Normal signal 1182 1 5 12
Inner-ring fault signal 1467 2 6 14
Outer-ring fault signal 1384 3 7 13

Rolling-body fault
signal 953 1 6 12

3.2.2. Fault Feature Extraction and Identification Using the QPSO-MPE-SVM

Sixty sets of vibration data were selected for each of the four operating conditions of
the bearings, for a total of 240 sets. These data were divided equally into two groups, one
for the training set, and the other for the test set. Two fault-identification experiments were
operated. One experiment is with the initial parameters of MPE, and the fault identification
results are shown in Figure 9; the other experiment was with the optimized parameters of
MPE by QPSO, and the fault identification results are shown in Figure 10. The indications
in the figure include 1 for the normal state, 2 for the inner-ring failure state, 3 for the
outer-ring failure state, and 4 for the rolling-element failure state.

Figure 9. MPE-SVM fault identification results.

Figure 10. QPSO-MPE-SVM fault identification results.

Analysis of Figures 9 and 10 reveals that when the MPE values without optimization
were directly input to the SVM for fault identification, the fault identification accuracy
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was 85.83%, while the fault identification accuracy could reach 97.5% after optimization
by the QPSO. In order to verify the reliability of the proposed method, several simulation
experiments were repeated, and the simulation results all showed that the proposed method
could effectively improve the accuracy of bearing fault diagnosis. Thus, the effectiveness
of the QSPO-MPE-SVM method proposed is confirmed.

4. Fault Diagnosis of Rolling Bearing of Sine Roller Screen Based on Vibration Signal

The experimental platform is shown in Figure 11. The experimental platform com-
pletes the tasks of installing sensors, driving bearings, applying radial loads and acquiring
vibration signals. The test bearing was a grease-lubricated deep-groove ball bearing, and
rolling bearing parameters as shown in Table 4. The working limit temperature of the
bearing is 400 ◦C. The rotational speed is 10–800 r/min, and the limit rotational speed
is 2000 r/min. The speed can be continuously adjusted, and the error is less than ±1%.
The applied radial load is 120 kg, the ultimate is 500 kg, the model number of the load
sensor is MZLF-2, and the sensor sensitivity is 2.0 ± 0.01 mV/V. The model number of the
acceleration sensor is KH-HZD-B-2-12, and the sensitivity is 20 ± 0.05 mV/mm/s. The
model number of data acquisition cards is USB3200N (32 bit, 4 channels, 20 MHz); the
vibration sensor (MIC-HZB-F-2-12) collected the vibration acceleration of the bearing in
real-time, and transferred the vibration signal to the data-acquisition card. The signal was
finally transferred to the computer for data processing. All the experimental data were
within the allowable error range.

Figure 11. Sine roller screen rolling bearing fault experimental platform.

Table 4. Rolling bearing parameters.

Inner Ring Diameter D1 Outer Ring Diameter D2 Rolling Body Diameter d Bearing Mid Diameter D Number of Rolling Bodies n Contact Angle θ

70 mm 130 mm 20.43 mm 100 mm 8 0◦

4.1. Rolling Bearing Feature Frequency Calculation

The rolling bearing speed is 500 r/min. The theoretical formula of the fault frequency
is expressed as:

(1) Journal rotation frequency is expressed as:

fr =
v

60
(28)

(2) Inner-ring fault characteristic frequency is expressed as:

fa =
n fr

2

(
1 +

d
D

cos θ

)
(29)

(3) Outer-ring fault characteristic frequency is expressed as:
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fb =
n fr

2

(
1− d

D
cos θ

)
(30)

(4) Rolling-body fault characteristic frequency is expressed as:

fd =
D fr

2d

[
1−

(
d
D

)2
cos2 θ

]
(31)

where v is journal rotation speed.
The calculation results by the formulas are shown in Table 5.

Table 5. The fault feature frequency of rolling bearing.

Rotational Speed Inner Ring Fault
Frequency

Outer Ring Fault
Frequency

Rolling Body Fault
Frequency

500 r/min 40.143 Hz 26.523 Hz 19.545 Hz

4.2. Rolling Bearing Fault Signal Denoising and Feature Extraction

Taking the inner ring fault signal as an example, the original vibration signal and HHT
envelope spectrum of the inner-ring fault are shown in Figures 12 and 13, respectively. It
was denoised using CEEMDAN-DFA-improved wavelet thresholding.

Figure 12. Time domain diagram of the original signal of the inner-ring fault.

Figure 13. Original signal envelope spectrum of the inner-ring fault.

The IMFs were generated by the CEEMDAN decomposition, and the value of the
scaling function α of the IMFs was calculated. α values of the first eighth-order IMFs are
shown in Table 6.

Table 6. Scalar function value of each IMF component of the inner-ring signal.

IMF IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7 IMF8

α value 0.4138 0.4096 0.2961 0.4537 0.5068 0.5564 0.6224 0.6743
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According to the DFA, correlation can be judged that the first fourth-order IMFs were
dominated by noise, so the first four-order IMFs need to be denoised. The time-domain
signal of the inner-ring fault after denoising is shown in Figure 14. The denoised signal
and the remaining IMFs were reconstructed, and the reconstructed signal is the fault signal
of the bearing inner ring.

Figure 14. Time domain diagram of the inner-ring fault signal after denoising.

The denoised signal was again decomposed by the CEEMDAN, and the correlation
coefficients and Kurtosis values of each IMF were calculated. The calculation results are
shown in Table 7.

Table 7. Correlation coefficients and Kurtosis values of IMFs of the inner-ring signal.

IMF IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7 IMF8

Correlation
coefficient 0.9214 0.4327 0.3961 0.2715 0.2049 0.0621 0.0592 0.0357

Kurtosis value 4.5217 4.9371 4.1964 3.4922 3.2614 2.5147 2.2291 2.0634

From Table 7, it can be found that the correlation coefficients of the first fifth-order
IMF components were greater than 0.1, and the Kurtosis values were greater than three.
Therefore, the first fifth-order IMF component signal was reconstructed, and the HHT
envelope spectrum of the reconstructed signal was analyzed. The analysis result is shown
in Figure 15. It can be seen that the characteristic frequency of the inner-ring fault signal
was 39.55 Hz, which is close to the theoretically calculated value (40.143 Hz).

Figure 15. Envelope spectrum of the inner-ring fault signal after denoising.

The initial parameters of the MPE of the four running signals were all set as N = 1024,
λ = 1, m = 6, τ = 12. The MPE values were calculated using the initial parameters, and
the results are shown in Figure 16a. It can be seen that the MPE values of four signals had
small differences and overlapped each other, which is not conducive to the construction of
the fault feature set.
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Figure 16. The MPE values of the four running signals. (a) The MPE values using the initial parameters; (b) The MPE values
using the optimized parameters.

The initial parameters were optimized using the QPSO, and the results are shown in
Table 8.

Table 8. The optimized parameters of MPE after QPSO.

Signal N λ m τ

Normal Signal 1285 1 5 12
Inner-ring fault signal 1836 2 7 14
Outer-ring fault signal 1587 1 6 14

Rolling-body fault signal 1054 1 5 13

The MPE values of the four running signals were calculated using the optimized
parameters, and the results are shown in Figure 16b. It can be seen that the MPE values of
the four signals achieved separation without overlap, which is suitable for constructing
fault feature sets for fault-type identification. The MPE values with scale factors (5, 6, 7, 8,
9, and 10) were selected to construct the fault feature vectors.

4.3. Rolling Bearing Failure Identification and Control Experiment

A total of 160 sets of vibration experimental data were selected from 40 sets of four
running signals, of which 100 sets were used as training samples and the remaining 60 sets
were used as test samples. Comparing the four test sets, the recognition results are shown
in Figure 17. The fault identification result of the original signal by MPE-SVM is shown in
Figure 17a. The fault identification result of QPSO-MPE-SVM to the original signal is shown
in Figure 17b. The results of MPE-SVM fault identification on the denoised (CEEMDAN-
DFA-improved wavelet threshold function) signal are shown in Figure 17c. The results of
QPSO-MPE-SVM fault identification on the denoised (CEEMDAN-DFA-improved wavelet
threshold function) signal are shown in Figure 17d.

The following conclusions can be drawn from the analysis of Figure 17.
When using the MPE-SVM method for fault identification on the original signal

without denoising, there were 23 false identifications, and the identification accuracy was
only 61.67%. When using the QPSO-MPE-SVM method for fault identification on the
original signal without denoising, there were 17 false identifications, and the identification
accuracy was 71.67%, which shows that the noise in the collected vibration signal had a
large interference to the bearing fault diagnosis.
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Figure 17. Four types of test sets identify results. (a) The results of MPE-SVM fault identification on the original signal; (b) the
results of the QPSO-MPE-SVM fault identification on the original signal; (c) the results of MPE-SVM fault identification on
the denoised signal; (d) the results of QPSO-MPE-SVM fault identification on the denoised signal.

When using the MPE-SVM method for fault identification on the denoised signal,
the number of false identifications was reduced to 10, and the identification accuracy
increased to 83.33%. When using the QPSO-MPE-SVM method for fault identification
on the denoised signal, the number of false identifications was only three and the fault
identification accuracy was 95%.

By applying the comprehensive diagnosis method proposed in this paper to the
experimental platform of rolling bearings, the fault diagnosis of the actual measured fault
signal of the inner ring of the bearing was achieved. The de-noising process and fault
feature extraction were completed, and the fault feature set was constructed to achieve
fault identification. The experimental results showed that the fault identification accuracy
could be 95%. The method was verified, by several experiments, to not only have high
accuracy and reliability, but also not be limited to inner-ring fault diagnosis, also being
applicable to vibration signals with non-smooth and non-linear characteristics (such as
outer-ring fault signals). Therefore, the method has good practical application value.

5. Conclusions

This paper proposed a CEEMDAN-DFA-improved wavelet threshold denoising
method and QPSO-MPE-SVM fault feature extraction and identification method, the
purpose being to realize the fault diagnosis of the rolling-bearing vibration signal.

The denoising process with the CEEMDAN-DFA-improved wavelet threshold method
is as follows: Firstly, the vibration signal is decomposed into IMF by CEEMDAN, and the
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DFA is performed on the IMF components. Then, the scaling function of each IMF com-
ponent is calculated to select the noise-dominated IMF component. Finally, the improved
wavelet threshold function is applied to denoise the noise-dominated IMFs. The de-noised
IMFs and the remaining other IMFs are merged to get reconfigured signals. The validation
results showed that compared with traditional denoising methods, the CEEMDAN-DFA-
improved wavelet threshold function method proposed in this paper could better remove
noise, effectively reduce the signal distortion, and maintain the original characteristics of
the signal.

The fault feature extraction and identification with the QPSO-MPE-SVM method are
as follows: Firstly, the reconfigured signal is decomposed again by CEEMDAN, and the
correlation coefficients and Kurtosis values of each order IMF component are calculated;
the IMF components with larger values about correlation coefficients and Kurtosis are
selected for signal reconstruction, and the HHT envelope spectrum analysis is performed
on the reconstructed signal to extract the fault characteristic frequencies. Then, the initial
parameters of MPE are optimized with QPSO, the MPE value is calculated for the recon-
structed signal, and the appropriate MPE value is selected to construct the rolling-bearing
fault feature vectors. Finally, the fault feature vectors are inputted to the trained SVM
for rolling-bearing fault type identification. The validation results showed that the MPE
parameters were optimized by the QPSO, which makes the MPE values of the four signals
achieve separation without overlap, which is more suitable for constructing fault feature
sets for fault type identification.

The algorithms proposed in the paper were all validated by building an experimental
platform of rolling bearings. The experimental results showed that the fault identification
accuracy of rolling bearings could reach 95%; it not only has high accuracy and relia-
bility, but also can be applicable to vibration signals with non-smooth and non-linear
characteristics, having good practical application value.
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