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Abstract: Olfactory receptors (ORs) are G protein-coupled receptors that perform important
physiological functions beyond their role as odorant detectors in the olfactory sensory neurons. In the
present study, we describe a novel role for one of these ORs, mouse olfactory receptor 23 (MOR23),
as a regulator of adipogenesis and thermogenesis in 3T3-L1 cells. Downregulation of MOR23 by
small interfering RNA in 3T3-L1 cells enhanced intracellular lipid accumulation and reduced the
oxygen consumption rate. In agreement with this phenotype, MOR23 deletion significantly decreased
intracellular cyclic adenosine monophosphate (cAMP) levels and protein amounts of adenylyl cyclase
3 (ADCY3), protein kinase A catalytic subunit (PKA Cα), phospho-5′-adenosine monophosphate
(AMP)-activated protein kinase (AMPK), and phospho-cAMP-responsive element-binding protein
(CREB), along with upregulation of adipogenic genes and downregulation of genes involved in
thermogenesis. Activation of MOR23 by α-cedrene, a novel natural ligand of MOR23, significantly
reduced lipid content, increased the oxygen consumption rate, and stimulated reprogramming of
the metabolic signature of 3T3-L1 cells, and these changes elicited by α-cedrene were absent in
MOR23-deficient cells. These findings point to the role of MOR23 as a regulator of adipogenesis and
thermogenesis in adipocytes.
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1. Introduction

G protein-coupled receptors (GPCRs) constitute by far the largest receptor family in mammals
and are involved in the regulation of virtually all cellular and physiological functions in the body.
Owing to their ability to bind to ligands with high specificity and affinity, GPCRs are preferentially
targeted for the development of new therapeutics and account for ~40% of the currently exploited drug
targets [1]. Olfactory receptors (ORs) form the largest subfamily of GPCRs [2–4] and were originally
postulated to be present in the olfactory epithelium exclusively. Nonetheless, further studies have
shown that ORs are much more versatile than previously thought and are now emerging as general
chemoreceptors that are found in various tissues, where they perform diverse patterns of regulatory
functions. For example, ORs in the gut [5], spleen [6], liver [7], gastrointestinal tract [8], prostate [9],
and testicles [10] appear to play specific signaling roles in the regulation of normal physiology and
development. These observations make ORs promising markers and potential therapeutic targets in
human diseases beyond the usefulness for the fragrance industry.
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Using mode-of-action by network identification analysis, which is a validated means for
the identification of targets and associated pathways of compounds [11–14], we have previously
demonstrated that ORs are possible genetic mediators of high-fat diet–induced obesity progression
in adipose tissues [15]. We have also reported that haploinsufficiency of adenylyl cyclase 3 (ADCY3),
which is a downstream signal-transducing component of the olfactory signaling machinery, results
in significantly increased visceral adiposity without hyperphagia in mice on either chow or high-fat
diet [16]. At the same time, we found that α-cedrene, a sesquiterpene constituent of cedarwood oil,
protects mice and rats from weight gain and metabolic aberrations without affecting their food intake,
and these beneficial effects of α-cedrene are attenuated by ~50% in heterozygous ADCY3-null mice
(unpublished finding). Subsequently, in an attempt to look for the specific OR isoform, we have tested
the response of Hana3A cells (heterologously expressing ORs) to α-cedrene. The results have led to the
identification of MOR23 as a molecular target of α-cedrene [7]. In human hepatocytes, a reduction in
olfactory receptor 10J5 (OR10J5, human orthologue of MOR23) expression by specific small interfering
RNA (siRNA) abrogates the lipid-lowering effect of α-cedrene [7]. In myoblasts, the knockdown of
MOR23 inhibits the ability of α-cedrene to decrease the intramyocellular lipid accumulation induced
by palmitic acid [17]. In the present study, we aimed to test whether MOR23 performs regulatory
functions in adipogenesis and thermogenesis in murine adipocytes.

2. Materials and Methods

2.1. Reagents

Oil Red O were purchased from Sigma-Aldrich (Louis, MO, USA). α-Cedrene
(batch No. KDCB212DA01, purity: 99.6%) was supplied by Kwang Dong Pharmaceutical Co.
(Seoul, South Korea). The antibodies against glyceraldehyde-3-phosphate dehydrogenase (GAPDH)
(#2118; 1:5000 dilution), 5′-adenosine monophosphate (AMP)-activated protein kinase (AMPK, #2532,
1:1000 dilution), cyclic adenosine monophosphate (cAMP)-responsive element-binding protein
(CREB, #9197, 1:1000 dilution), phospho-AMPK (#2531; 1:1000 dilution), phospho-CREB (#9198;
1:1000 dilution), and protein kinase A catalytic subunit (PKA Cα, cat. #4782, 1:1000 dilution) were
purchased from Cell Signaling Technology (Danvers, MA, USA). An antibody against ADCY3 (sc-588;
1:200 dilution) was acquired from Santa Cruz Biotechnology (Dallas, TX, USA). A horseradish
peroxidase (HRP)-conjugated anti-rabbit IgG antibody (1:5000 dilution; Santa Cruz Biotechnology cat.
# sc-2004; secondary antibody) was used for immunoblotting procedures.

2.2. Cell Culture

3T3-L1 murine fibroblasts acquired from American Type Culture Collection (Manassas, VA, USA)
were cultured in Dulbecco’s modified Eagle’s medium containing streptomycin (50 mg/mL), penicillin
(50 U/mL) (Life Technologies, Carlsbad, CA, USA), and 10% of fetal bovine serum (HyClone, Logan,
UT, USA) in a humidified atmosphere containing 5% of CO2 at 37 ◦C. To promote the differentiation of
3T3-L1 cells into adipocytes, we treated confluent cultures with and insulin (10 µg/mL, Sigma-Aldrich),
3-isobutyl-1-methylxanthine (0.5 mM, Sigma-Aldrich), and dexamethasone (0.25 mM, Sigma-Aldrich)
(simultaneously). After 2 days, dexamethasone and 3-isobutyl-1-methylxanthine were removed,
and incubation with insulin was continued for another 2 days. The growth medium was refreshed at
2-day intervals until complete adipocytic differentiation.

2.3. cAMP Assay

cAMP was extracted from 3T3-L1 cells using HCl (0.1 M, Enzo Life Sciences, Montgomery County,
PA, USA). After that, the intracellular concentration of cAMP in the lysates was determined according to
methods provided by cAMP ELISA kit (Enzo Life Sciences). Competitive binding is the principle of the
cAMP assay. cAMP within the sample competes with a fixed amount of horseradish peroxidase–labeled
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cAMP for sites on the monoclonal antibody. cAMP was quantified by measurement of optical density
(OD) at 450 nm on a microplate reader (Versa Max, Molecular Devices, San Jose, CA, USA).

2.4. siRNA Knockdown

3T3-L1 preadipocytes were seeded in 12-well plates (105 cells per well) and transfected with a pool
of nontargeting siRNA control oligonucleotides (ON-TARGET plus Control pool, D-001810-10-05;
Dharmacon), or siRNA oligonucleotides against mouse MOR23 (80 nM, ON-TARGET plus smart
pool, L-022371-02; Dharmacon, Lafayette, CO, USA) using Lipofectamine 2000 (Life Technologies,
Carlsbad, CA, USA). Target sequences for siRNA against mouse MOR23 were as follows:
CAAUGGGUUAUGAUCGUUA, CUGAAGUGAUAGAGUUCGU, GGUGUAAGUUCAUUUGUAA,
and CCAUAGGGCUGAUAUUUAU. Forty-eight hours after the transfection, the cells were stimulated
for adipogenesis. The MOR23 ON-TARGET plus smart pool was a mixture of four siRNAs.
The knockdown efficiency of siRNA was assessed by semiquantitative RT-PCR.

2.5. Oil Red O Staining

The cells were washed with warm phosphate-buffered saline (Sigma-Aldrich), fixed with
neutral formaldehyde (10%, Sigma-Aldrich) at room temperature for 2–3 h, then rinsed quickly with
isopropanol (60%, Sigma-Aldrich) and allowed to dry. After that, we used Oil Red O (Sigma-Aldrich;
0.5% w/v diluted 3:2 with double-distilled water) to stain the cells and incubated the cells at room
temperature for 2–3 h prior to 3–4 washes with distilled water. Images were then acquired by means of
the Olympus microscope IX71 (Olympus, Center Valley, PA, USA). To release Oil Red O from steatosis
staining, 500 µL of isopropanol was added into each well prior to incubation for 10 min at room
temperature. After being transferred to a 96-well plate, the optical density of the isopropanol solution
at a wavelength of 490 nm was determined by means of a microplate reader (Versa Max).

2.6. Measurement of the Oxygen Consumption Rate

Mitochondrial function was quantified using the Seahorse XF-24 analyzer (Seahorse Bioscience,
Billerica, MA, USA). Measurements were carried out on day 12 after the induction of differentiation.
The sensor cartridge was hydrated with Seahorse XF Calibrant (Seahorse Bioscience) overnight at
37 ◦C in a non-CO2 incubator. The assay medium was prepared in Seahorse XF Base Medium
(Seahorse Bioscience) supplemented with sodium pyruvate (110 mg/L, Sigma-Aldrich), L-Glutamax
(4 mM, Sigma-Aldrich), and D-glucose (4500 mg/L, Sigma-Aldrich) and were adjusted to pH 7.4
using NaOH (0.1 M, Sigma-Aldrich). Cells were incubated at 37 ◦C in a non-CO2 incubator in
assay medium for 1 h prior to measurement. Changes in the oxygen consumption rate were
measured over time in response to the synchronous addition of oligomycin (1 µM), fluoro-carbonyl
cyanide phenylhydrazone (1 µM, FCCP), and rotenone/antimycin A (0.5 µM, XF Cell Mito Stress Kit,
Seahorse Bioscience) at specific time points. H+ leakage was calculated as the difference in the oxygen
consumption rate between the cells after the addition of oligomycin and the cells after the addition of
rotenone/antimycin. Maximal mitochondrial oxygen consumption was computed as the difference
in the oxygen consumption rate between the cells after the addition of FCCP and the cells after the
addition of rotenone/antimycin. All the measurements were normalized to total protein content.
The cells were harvested in lysis buffer and incubated at −20 ◦C for 20 min. After that, the lysates were
centrifuged for 20 min at 13,000× g at 4 ◦C. The protein concentrations were determined according to
the Bradford method (Bio-Rad, Hercules, CA, USA).

2.7. RNA Extraction and PCR

Total RNA was extracted form 3T3-L1 cells using the TRIzol Reagent (Life Technologies).
cDNA synthesis was performed with RNase inhibitor (40 U/µL, Invitrogen, Carlsbad, CA, USA),
reverse transcriptase (200 U/µL, Invitrogen), dithiothreitol (0.1 M, Invitrogen), dNTP (2.5 mM,
Invitrogen), 5× RT buffer diluted to 1× (Invitrogen), and total RNA (1 µg) in a total reaction
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volume of 40 µL at 37 ◦C for 2 h. For semi-quantitative PCR, the amounts of mRNA were measured
by means of the 5× PCR Master Mix (Intron, Seoul, Korea) with GAPDH as an internal control.
Quantitative PCR was next carried out using the CFX Connect™ Real-Time PCR Detection System
(Bio-Rad, Hercules, CA, USA) and iQ SYBR green supermix (Bio-Rad). Primer sequences are presented
in Table 1. The gene expression data were normalized to GAPDH. The results on the optical density
ratio of a target gene to GAPDH are presented as mean ± standard error of mean (SEM) of at least
three independent experiments.

Table 1. Primer sequences.

Type Gene Description Sequences (5′→3′)

Mouse

Mouse olfactory receptor 23 (MOR23) F: CAAGGCACACATTCCCTTGC
R: TTCCCATATCCTTGGCAGGC

Peroxisome proliferator-activated receptor γ2
(PPARγ2)

F: TTCGGAATCAGCTCTGTGGA
R: CCATTGGGTCAGCTCTTGTG

CCAAT/enhancer binding-protein α (C/EBPα) F: TCAGCTTACAACAGGCCAGG
R: ACACAAGGCTAATGGTCCCC

Adipocyte fatty acid binding protein (aP2) F: CATGCGACAAAGGCAGAAAT
R: GTTACAAGGCAAGGAAGGGC

Fatty acid synthase (FAS) F: CAGCCAGGAGAATCGCAGTA
R: CTGCGATGAAGAGCATGGTT

Peroxisome proliferator-activated receptor gamma
coactivator 1-alpha (PGC-1α)

F: TAAATCTGCGGGATGATGGA
R: GTTTCGTTCGACCTGCGTAA

Uncoupling protein 1 (UCP1) F: GGTTTGCACCACACTCCTG
R: ACATGGACATCGCACAGCTT

PR domain containing 16 (PRDM16) F: GGACCTTTTTGACAGCAGCA
R: GGGGGCAAAGCATTTAACTC

Cytochrome c (Cytc) F: ACACTGTGGAAAAGGGAGGC
R: GCACTGGTTAACCCAAGCAA

Cytochrome c oxidase subunit 4 (COX4) F: GGAAAACGTCTGCCGGAAA
R: AAGCATCGCGGGAATCAGG

Cell death activator CIDE-A (Cidea)
F: GGAATCTGCTGAGGTTTATG
R: ATCCCACAGCCTATAACAGA

Glyceraldehyde-3-phosphate dehydrogenase
(GAPDH)

F: GTGATGGCATGGACTGTGGT
R: GGAGCCAAAAGGGTCATCAT

2.8. Protein Extraction and Western Blotting Assay

3T3-L1 cells were harvested in lysis buffer, which containing leupeptin (1 µg/mL, Sigma-Aldrich),
pepstatin A (1 µg/mL, Sigma-Aldrich), Triton X-100 (1%, Sigma-Aldrich), Tris-HCl (100 mM, pH
7.4, Sigma-Aldrich), aprotinin (2 µg/mL, Sigma-Aldrich), phenylmethylsulfonyl fluoride (1 mM,
Sigma-Aldrich), NaCl (50 mM, Sigma-Aldrich), sodium pyrophosphate (50 mM, Sigma-Aldrich),
NaF (50 mM, Sigma-Aldrich), ethylenediaminetetraacetic acid (EDTA, 5 mM, Sigma-Aldrich),
and orthovanadate (100 mM, Sigma-Aldrich). After that, the protein samples were centrifuged
for 20 min at 13,000× g at 4 ◦C. The protein concentrations were determined according to the Bradford
method (Bio-Rad).

For Western blotting analysis, protein was separated by 10% sodium dodecyl sulfate
(Sigma-Aldrich) polyacrylamide (Bio-Rad) gel electrophoresis prior to electrophoretically transferring
to nitrocellulose membranes (Amersham Biosciences, Piscataway, NJ, USA). The membranes were
blocked with bovine serum albumin (5%, Sigma-Aldrich), and then incubated with primary antibodies
overnight at 4 ◦C prior to incubation with the corresponding secondary antibodies. We used the
ECL Chemiluminescent Detection Reagent (GE Healthcare, Buckinghamshire, UK) to detect and
visualize the protein bands. Images were captured with a LuminoGraph system (WSE-6100, ATTO,
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Tokyo, Japan). The results on the optical density ratio of target proteins to either GAPDH or tubulin
are presented as mean ± SEM of at least three independent experiments.

2.9. Statistical Analysis

Student’s t-test was carried out to determine significance of the differences between the
two groups. All statistical analyses were conducted using the GraphPad Prism 7 software (GraphPad,
San Diego, CA, USA), and significance was set at * p < 0.05, ** p < 0.01 and *** p < 0.001.

3. Results

3.1. A Reduction in MOR23 Expression by Specific siRNA Increases Intracellular Lipid Accumulation

To test whether MOR23-mediated signaling pathways are involved in adipogenesis, we knocked
down MOR23 in 3T3-L1 cells, using MOR23-specific siRNA (a pool of four MOR23-specific
oligonucleotides; Figure 1A). The MOR23 knockdown significantly increased intracellular lipid
accumulation in 3T3-L1 cells, as determined by confocal microscopy after staining with Oil Red
O (Figure 1A). These findings were confirmed by colorimetric quantification of the intracellular
triglyceride concentration in 3T3-L1 cells transfected with MOR23 siRNA (Figure 1A). The MOR23
ligand, α-cedrene, significantly deceased the intracellular lipid accumulation in 3T3-L1 cells (Figure 1A).
Nevertheless, we found that the beneficial changes in lipid accumulation elicited by α-cedrene
were completely blocked by the siRNA-mediated knockdown of MOR23 (Figure 1A). The MOR23
knockdown also significantly decreased intracellular cAMP levels in 3T3-L1 cells (Figure 1B).
Treatment of 3T3-L1 cells with α-cedrene increased the intracellular cAMP levels, and this change
elicited by α-cedrene was abrogated by the siRNA-mediated knockdown of MOR23 (Figure 1B).
Next, we evaluated the effect of α-cedrene on the regulation of lipid accumulation in the presence of
SQ22536 (a commercially available inhibitor of adenylyl cyclases; ADCYs), because ADCY3 is a pivotal
downstream molecule of the OR-mediated signaling pathways [18]. Similarly, we found that effects of
α-cedrene on the regulation of lipid accumulation disappeared in the presence of SQ22536 (Figure 1C).

3.2. A Reduction in MOR23 Expression Impaired the cAMP Signaling Pathway and Upregulated the
Expression of Adipogenic Genes

The MOR23 knockdown significantly impaired the cAMP signaling pathway in 3T3-L1 cells,
judging by decreased protein levels of ADCY3, PKA Cα, and phospho-AMPK (Figure 2A). Moreover,
a reduction in MOR23 expression upregulated mRNA expression of adipogenic genes, such as PPARγ,
C/EBPα, aP2, and FAS (Figure 2B). α-Cedrene significantly enhanced the cAMP signaling pathway
in 3T3-L1 cells, as demonstrated by increased protein levels of ADCY3, PKA, and phospho-AMPK
and decreased mRNA expression of adipogenic genes (PPARγ, C/EBPα, aP2, and FAS) (Figure 2A,B).
These α-cedrene–induced changes in protein and mRNA expression profiles were markedly attenuated
in MOR23-depleted cells (Figure 2A,B).

3.3. MOR23 Depletion Decreases Thermogenesis 3T3-L1 cells

To determine whether MOR23 directly alters thermogenesis in adipocytes, we evaluated the
oxygen consumption rate (OCR) as a measure of oxidative phosphorylation in 3T3-L1 cells using the
Seahorse XF-24 analyzer. The MOR23 depletion significantly decreased basal respiration, H+ leakage,
and maximal respiration capacity (Figure 3A,B). α-Cedrene treatment significantly increased basal
respiration, H+ leakage, and maximal respiration capacity of 3T3-L1 cells (Figure 3A,B). The abilities
of α-cedrene to induce oxygen consumption were strongly attenuated in MOR23-depleted cells
(Figure 3A,B), indicating that α-cedrene affects energy expenditure in a MOR23-dependent manner.
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Figure 1. A reduction in mouse olfactory receptor 23 (MOR23) expression by specific siRNA increases 
intracellular lipid accumulation and abrogates the lipid-lowering effect of α-cedrene in 3T3-L1 cells. 
3T3-L1 preadipocytes were transfected with MOR23 siRNA, stimulated to differentiate in culture 2 
days after transfection in the presence of 100 μM α-cedrene or 50:50 (v/v) dimethyl sulfoxide 
(DMSO)/acetonitrile (vehicle). Oil Red O staining and cAMP assay were performed after adipocyte 
induction. (A) Oil red O staining of 3T3-L1 cells transfected with MOR23 siRNA with or without 100 
μM α-cedrene. Representative photomicrographs (×100) are shown in the left panel. Right panel 
shows spectrophotometric quantification of Oil Red O staining. The knockdown efficiency by siRNA 
was monitored by semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR). (B) 
Cyclic adenosine monophosphate (cAMP) level of 3T3-L1 cells transfected with MOR23 siRNA with 
or without 100 μM α-cedrene. (C) Oil red O staining of 3T3-L1 cells exposed to adenylyl cyclase 
(ADCY) inhibitor for 24 h with or without 100 μM α-cedrene. Representative photomicrographs 
(×100) are shown in the left panel. Right panel shows spectrophotometric quantification of Oil Red O 
staining. The full-length gels are presented in Supplementary Figure S1. The values represent the 
means ± SEM, n = 3. Significant differences between groups are indicated by asterisks; * p < 0.05; ** p 
< 0.01; ns, not significant (p > 0.05). 
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3T3-L1 preadipocytes were transfected with MOR23 siRNA, stimulated to differentiate in culture
2 days after transfection in the presence of 100 µM α-cedrene or 50:50 (v/v) dimethyl sulfoxide
(DMSO)/acetonitrile (vehicle). Oil Red O staining and cAMP assay were performed after adipocyte
induction. (A) Oil red O staining of 3T3-L1 cells transfected with MOR23 siRNA with or without 100 µM
α-cedrene. Representative photomicrographs (×100) are shown in the left panel. Right panel shows
spectrophotometric quantification of Oil Red O staining. The knockdown efficiency by siRNA was
monitored by semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR). (B) Cyclic
adenosine monophosphate (cAMP) level of 3T3-L1 cells transfected with MOR23 siRNA with or
without 100 µM α-cedrene. (C) Oil red O staining of 3T3-L1 cells exposed to adenylyl cyclase (ADCY)
inhibitor for 24 h with or without 100 µM α-cedrene. Representative photomicrographs (×100) are
shown in the left panel. Right panel shows spectrophotometric quantification of Oil Red O staining.
The full-length gels are presented in Supplementary Figure S1. The values represent the means ± SEM,
n = 3. Significant differences between groups are indicated by asterisks; * p < 0.05; ** p < 0.01; ns,
not significant (p > 0.05).
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induction using the Seahorse XF-24 analyzer. (A) Oxygen consumption rate were measured in 
differentiated 3T3-L1 adipocytes in basal conditions, or in response to sequential treatment with 1 μM 
oligomycin (to block ATP synthesis), 1 μM FCCP (respiratory chain uncoupler), and 0.5 μM 
rotenone/antimycin A (inhibitor of respiratory chain complex I and complex III, respectively). (B) 
ΔOCR is calculated by subtracting oxygen consumption rate (OCR) measured after 
rotenone/antimycin A addition from basal OCR, from OCR after oligomycin addition, or from OCR 
after FCCP addition. All data are mean ± SEM, n = 3. Significant differences between groups are 
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Figure 2. A reduction in MOR23 expression impairs the cAMP signaling pathway and upregulated the
mRNA expression of adipogenic genes. 3T3-L1 preadipocytes were transfected with MOR23 siRNA,
stimulated to differentiate in culture 2 days after transfection in the presence of 100 µM α-cedrene or
50:50 (v/v) DMSO/acetonitrile (vehicle). Protein and RNA extraction were performed after adipocyte
induction. (A) Western blot analysis of adenylyl cyclase 3 (ADCY3), PKA Cα, and phosphor-AMPK in
3T3-L1 cells transfected with MOR23 siRNA with or without 100 µM α-cedrene. (B) RT-PCR analysis of
the mRNA expression of Peroxisome proliferator-activated receptor γ (PPARγ), C/EBPα, aP2, and FAS
in 3T3-L1 cells transfected with MOR23 siRNA with or without 100 µM α-cedrene. The full-length blots
are presented in Supplementary Figure S2. The values represent the means ± SEM, n = 3. Significant
differences between groups are indicated by asterisks; * p < 0.05; ** p < 0.01; ns, not significant (p > 0.05).
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Figure 3. MOR23 depletion decreases thermogenesis and abolishes the thermogenic effect of
α-cedrene in 3T3-L1 cells. 3T3-L1 preadipocytes were transfected with MOR23 siRNA, stimulated
to differentiate in culture 2 days after transfection in the presence of 100 µM α-cedrene or
50:50 (v/v) DMSO/acetonitrile (vehicle). Oxygen consumption rate measurement was performed
after adipocyte induction using the Seahorse XF-24 analyzer. (A) Oxygen consumption rate were
measured in differentiated 3T3-L1 adipocytes in basal conditions, or in response to sequential
treatment with 1 µM oligomycin (to block ATP synthesis), 1 µM FCCP (respiratory chain uncoupler),
and 0.5 µM rotenone/antimycin A (inhibitor of respiratory chain complex I and complex III,
respectively). (B) ∆OCR is calculated by subtracting oxygen consumption rate (OCR) measured
after rotenone/antimycin A addition from basal OCR, from OCR after oligomycin addition, or from
OCR after FCCP addition. All data are mean ± SEM, n = 3. Significant differences between groups are
indicated by asterisks; * p < 0.05; ** p < 0.01; ns, not significant (p > 0.05).



Nutrients 2018, 10, 1781 8 of 13

3.4. MOR23 Depletion Decreases the Expression of Thermogenic and Mitochondrial Genes

It has been established that phosphorylation of CREB by the cAMP–PKA pathway activates
the expression of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α),
which induces the transcription of downstream thermogenic genes, such as uncoupling protein
1 (UCP1), PR domain containing 16 (PRDM16), and cell death activator CIDE-A (Cidea),
in adipocytes [19,20]. Consistent with the OCR data, the knockdown of MOR23 significantly decreased
the amounts of phospho-CREB and reduced mRNA expression of thermogenic (PGC-1α, PRDM16,
Cidea, and UCP1) and mitochondrial genes, such as cytochrome c (Cytc) and cytochrome c oxidase
subunit 4 (COX4). (Figure 4A,B). In line with these physiological responses, α-cedrene increased
phosphorylation of CREB and upregulated thermogenic (PGC-1α, PRDM16, Cidea, and UCP1) and
mitochondrial (Cytc and COX4) gene expression programs in 3T3-L1 cells (Figure 4A,B). The abilities
of α-cedrene to induce thermogenic and mitochondrial gene expression programs were strongly
attenuated in MOR23-depleted cells (Figure 4A,B).
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Figure 4. MOR23 depletion decreases the expression of thermogenic and mitochondrial genes. 3T3-L1
preadipocytes were transfected with MOR23 siRNA, stimulated to differentiate in culture 2 days
after transfection in the presence of 100 µM α-cedrene or 50:50 (v/v) DMSO/acetonitrile (vehicle).
Protein and RNA extraction were performed after adipocyte induction. (A) Western blot analysis of
phosphor-CREB in 3T3-L1 cells transfected with MOR23 siRNA with or without 100 µM α-cedrene.
(B) RT-PCR analysis of the mRNA levels of peroxisome proliferator-activated receptor gamma coactivator
1-alpha (PGC-1α), cytochrome c (Cytc), cytochrome c oxidase subunit 4 (COX4), PR domain containing
16 (PRDM16), cell death activator CIDE-A (Cidea), and uncoupling protein 1 (UCP1) in 3T3-L1 cells
transfected with MOR23 siRNA with or without 100 µM α-cedrene. The full-length blots are presented
in Supplementary Figure S3. The values represent the means ± SEM, n = 3. Significant differences
between groups are indicated by asterisks; * p < 0.05; ** p < 0.01; ns, not significant (p > 0.05).
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4. Discussion

In olfactory sensory neurons of the olfactory epithelium, a cAMP-dependent pathway mediates
canonical OR signaling. In this pathway, ORs are coupled to Gαolf, a protein homologous to
Gαs, resulting in activation of an adenylyl cyclase and production of cAMP [21,22]. Furthermore,
it was recently reported that in some nonchemosensory cells, such as sperm [23], keratinocytes [24],
and myoblasts [25], activation of ectopically expressed ORs leads to canonical OR signaling events as
well. In the present study, we found that MOR23 deletion in murine 3T3-L1 preadipocytes significantly
decreased intracellular cAMP levels. Moreover, stimulation of 3T3-L1 cells with the MOR23 ligand
α-cedrene significantly increased the intracellular cAMP concentration. By gene silencing and by
means of a specific inhibitor of a key enzyme typically activated by a GPCR, we demonstrated that
the elevation of cAMP levels after α-cedrene treatment is caused by activation of MOR23. Our results
suggest that 3T3-L1 cells have a canonical OR signaling pathway.

Adipogenesis is the differentiation of fibroblast like preadipocytes into mature lipid laden
adipocytes [26]. In the present study, in order to test whether MOR23 has a potential role
in adipogenesis, MOR23 was silenced in 3T3-L1 preadipocytes two days before differentiation.
Silencing of MOR23 significantly promoted differentiation as demonstrated by substantially increased
accumulation of neutral lipids measured by Oil Red O staining (Figure 1A). It is widely accepted that
cAMP signaling pathways are pivotal for the regulation of adipocyte development and function [27–29].
For example, the elevation of intracellular cAMP levels by treatment with an ADCY activator,
forskolin, suppresses adipogenesis as confirmed by both the morphological phenotype (Oil Red
O staining of the lipid drops) and the mRNA expression of key adipogenic transcription factors in
3T3-L1 preadipocytes [30]. cAMP acts mainly through its binding to PKA, which are ubiquitous
intracellular cAMP effectors that regulate multiple processes [31,32]. It is known that binding of
cAMP to the regulatory subunit of PKA unleashes the catalytic subunit so that it can phosphorylate
its protein substrates (that affect lipid metabolism), for instance, AMPK [33,34] and CREB [19,20]
in adipocytes of all colors and origins. Phospho-AMPK inhibits differentiation of preadipocytes by
downregulating PPARγ and C/EBPα, which are the central regulators of adipogenesis and lipid storage
in adipocytes [35–38]. In parallel, phospho-CREB activates the expression of PGC-1α, which induces
the transcription of downstream thermogenic genes, including UCP1, PRDM16, and Cidea [20,39].
In the present study, a loss of MOR23 significantly decreased the protein levels of ADCY3, PKA Cα,
phospho-AMPK, and phospho-CREB in 3T3-L1 cells (Figures 2 and 4). These results indicate that in
3T3-L1 cells, MOR23 may be associated with the regulation of cAMP-and-PKA–mediated signaling
pathways involved in thermogenesis and adipogenesis (Figure 5).

ORs constitute nearly 50% of the ~800 GPCRs in humans, yet ~90% of ORs remain orphan
receptors (unknown ligands) [40]. One study on a number of ORs that have been functionally matched
with their cognate ligands revealed that mammalian ORs vary along a continuum of tuning breadth [41].
That is, some receptors are broadly tuned, responding to a large number of odorants that occupy a large
area of odorant space, whereas others are narrowly tuned, i.e., highly specific for only a small number
of odorants [41]. In a cell-based assay for odorant-induced changes in intracellular cAMP, we observed
that aside from α-cedrene, neither MOR23 nor OR10J5 responded to the odorant phytochemicals that
were found to attenuate lipid accumulation in 3T3-L1 cells (data not shown). Thus, we can hypothesize
that MOR23 is a narrowly tuned receptor, i.e., responding only to a small number of odorants.
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Figure 5. A schematic diagram illustrating the proposed mechanism by which MOR23 responding
to α-cedrene regulates adipogenesis and thermogenesis. MOR23, mouse olfactory receptor 23;
ADCY3, adenylyl cyclase 3; cAMP, cyclic adenosine monophosphate; PKA, protein kinase A;
AMPK, 5′-adenosine monophosphate (AMP)-activated protein kinase; CREB, cAMP-responsive
element-binding protein; C/EBPα, CCAAT/enhancer binding-protein α; PGC-1α, peroxisome
proliferator-activated receptor gamma coactivator 1-alpha; PPARγ2, peroxisome proliferator-activated
receptor γ2; aP2, adipocyte fatty acid binding protein; FAS, fatty acid synthase; PRDM16, PR domain
containing 16; Cidea, cell death activator CIDE-A; UCP1, uncoupling protein 1; Cytc, cytochrome c;
Cox4, cytochrome c oxidase subunit 4.

A specific OR is known to be functionally expressed in a wide range of tissues and cell types
where it performs diverse functions [18]. It is known that MOR23 is functionally expressed in mouse
spermatogenic cells and sperm, and its activation increases intracellular Ca2+ levels and regulates
sperm motility [10]. Moreover, Griffin et al. demonstrated that a knockdown of MOR23 via siRNA in
myoblasts significantly inhibits their migration, cell–cell adhesion, and formation of multinucleated
myotubes [25]. OR10J5, the human ortholog of MOR23, has been demonstrated to be a key regulator
of angiogenesis and to stimulate migration of human umbilical vein endothelial cells by activating
the Ca2+-dependent AKT signal transduction pathway [42]. Recently, we found that OR10J5 is
deeply involved in the regulation of lipid accumulation in human hepatocytes: the siRNA-mediated
knockdown of OR10J5 increases intracellular lipid accumulation along with upregulation of lipogenic
genes and downregulation of genes related to fatty acid oxidation [7]. Therefore, it is intriguing
to consider the possibility that ectopically expressed MOR23 may serve as a sensitive and selective
chemoreceptor that influences many physiological processes in nonolfactory tissues.
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Previous studies of MOR23 function in vivo revealed that in gastrocnemius muscles of mice,
electroporation of a plasmid expressing MOR23 siRNA blunts barium chloride-induced muscle
regeneration and leaves many branched, unfused myofibers, commonly associated with muscle
dystrophy [25]. In addition, stimulation of cAMP production in muscle can attenuate degeneration
or promote regeneration in rodent models of necrotic muscle injury [43] and Duchenne’s muscular
dystrophy [44–46]. cAMP also has a role in controlling adipocyte development and function through
regulating the expressions of genes related to adipogenesis and thermogenesis. Hence, it is reasonable
to speculate that the production of variable cellular effects via the MOR23 signaling in different cell
types or tissues could be explained by the ability of cAMP to produce different effects depending on
the cell type or tissues.

5. Conclusions

We showed here that MOR23 plays a key role in the regulation of adipogenesis and thermogenesis
in 3T3-L1 cells: downregulation of MOR23 by siRNA increased intracellular lipid accumulation and
reduced the oxygen consumption rate; MOR23 activation by its natural ligand α-cedrene significantly
increased the oxygen consumption rate and reduced triglyceride accumulation, and these changes
elicited by α-cedrene were abrogated by the siRNA-mediated knockdown of MOR23. In summary,
our findings indicate that in addition to its participation in olfaction, ectopically expressed MOR23
can be considered a chemosensor playing a critical role in energy and lipid metabolism of 3T3-L1
adipocytes. Many unanswered questions relating to how MOR23 precisely regulates the development
of obesity in vivo would warrant subsequent studies in mice lacking MOR23 in a tissue-specific manner.
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Red boxes indicate the cropping lines used to generate the figures.
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