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The mitral valve exists in a mechanically demanding environment, with the stress of each 
cardiac cycle deforming and shearing the native fibroblasts and endothelial cells. Cells 
and their extracellular matrix exhibit a dynamic reciprocity in the growth and formation 
of tissue through mechanotransduction and continuously adapt to physical cues in their 
environment through gene, protein, and cytokine expression. Valve disease is the most 
common congenital heart defect with watchful waiting and valve replacement surgery 
the only treatment option. Mitral valve disease (MVD) has been linked to a variety of 
mechano-active genes ranging from extracellular components, mechanotransductive 
elements, and cytoplasmic and nuclear transcription factors. Specialized cell receptors, 
such as adherens junctions, cadherins, integrins, primary cilia, ion channels, caveolae, 
and the glycocalyx, convert mechanical cues into biochemical responses via a complex of 
mechanoresponsive elements, shared signaling modalities, and integrated frameworks. 
Understanding mechanosensing and transduction in mitral valve-specific cells may allow 
us to discover unique signal transduction pathways between cells and their environment, 
leading to cell or tissue specific mechanically targeted therapeutics for MVD.

Keywords: mitral valve, valve disease, mechanotransduction, pathogenesis, biomechanics

iNTRODUCTiON

The mitral valve is a bicuspid valve that facilitates the flow of blood from the left atrium to the left 
ventricle. Mitral valve disease (MVD) affects 2.4% of the population and is a common congeni-
tal heart defect (1, 2). In adults, the most common disorders of the valve are mitral insufficiency  
(i.e., regurgitation), mitral stenosis, myxomatous degeneration, and mitral valve prolapse, with broad 
disease likely to include several of these effects.

The mitral valve leaflets consist of four layers that differ in extracellular matrix (ECM) composi-
tion and mechanical properties. The thickest layer of the valve, the fibrosa, is the main load bearing 
layer. It provides the majority of leaflet tensile strength through a thick layer of dense, aligned collagen 
fibers while a looser collagen network with increased glycosaminoglycan (GAG) and proteogly-
can content provides compressive strength. The mitral valve is mechanically supported through 
the GAG-rich chordae tendinae which attach the mitral leaflets to the papillary muscles along the 
ventricular wall and maintain valve closure during systole. MVD results in altered mechanical and 
structural properties of the valve. Myxomatous mitral valves are characterized by leaflet enlargement, 
annular dilation, thickened and elongated chordae, GAG accumulation, loss of structure, increased 
compliance, and myxoid lesions. Disorganization and remodeling of the ECM and weakening of the 
chordae result in a loss of most of the valve’s mechanical properties and an overall thickened and 
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enlarged leaflet. This in turn prevents the valve from fully closing 
causing symptoms of mitral regurgitation and prolapse.

The mitral valve is a dynamic structure which changes mechani-
cally during the cardiac cycle; the constant flow of blood and 
opening and shutting of the valves exposes the tissue to a complex 
and demanding environment. The valve is subjected to bending, 
deformation, large area changes, shear stress, and heterogene-
ous strains in response to myocardial contraction, transvalvular 
pressure, and hemodynamic flow. The mitral valve exhibits a 
non-linear stress–strain relationship with complex viscoelastic 
and axial coupling behaviors (3, 4). These dynamic and adap-
tive interactions between the myocardial wall and valve leaflets 
ultimately impact the mechanical stress and strain experienced by 
cells through the ECM (5).

Cells and their ECM exhibit dynamic reciprocity, continuous, 
bidirectional interaction between cells and their ECM, in the 
growth and formation of tissue through mechanotransduction, 
the conversion of mechanical signals into biochemical responses 
(6). Cells and their ECM reorganize via a complex of mechanore-
sponsive elements (6) to physically regulate the spatiotemporal 
distribution of biochemical components maintaining homeosta-
sis. MVD has been linked to a variety of mechano-active genes, 
such as extracellular components, mechanotransductive ele-
ments, and transcription factors. Mechanical stimulus in the 
microenvironment provides inductive signals of homeostasis and 
remodeling to the native cells—valve interstitial cells (VICs), and 
endothelial cells (VECs).

Valve endothelial cells reside on the exterior of the valve, 
maintain a non thrombogenic surface layer, and regulate 
immune and inflammatory reactions. The majority of valve 
cells are the VICs, a mesenchymal population that resides in 
all layers of the valve, distinct in their ability to differentiate 
into multiple phenotypes. There are five known phenotypes of 
VICs: embryonic progenitor endothelial/mesenchymal, quies-
cent, activated, progenitor, and osteoblastic VICs which may 
convert from one form to another. Most VICs in the healthy 
adult valve are quiescent with a small population of activated 
VICs to maintain base ECM remodeling. In pathological states, 
there is an increase in activated VICs which regulate repair 
and remodeling, which may lead to fibrosis and calcification. 
Inflammation, biochemical, and mechanical stimuli can induce 
activation of quiescent fibroblasts into myofibroblasts. VICs and 
VECs continuously remodel their environment by secreting and 
degrading ECM, and adapting their gene, protein, and cytokine 
expression to alter phenotype and function. These dynamic 
and adaptive interactions between the myocardial wall, flow-
ing blood, and valve leaflets ultimately impact the mechanical 
stress and strain experienced by cells through the ECM. The 
movement, anisotropic deformation, and complex geometries 
of the mitral valve create a variety of ever changing mechanical 
cues between the cells and their matrix. ECM composition, fiber 
alignment, and compaction regulate cell deformation and thus 
mechanotransductive response. By focusing on broad classes 
of mechanosensing pathways as well as their integration in 
mechanotransduction, this review will explore the biomechani-
cal mechanisms at play in the mitral valve microenvironment 
and mediators of mechanotransduction in this tissue.

MeCHANOBiOLOGY OF MiTRAL 
vALvULOGeNeSiS

During valve development, the embryonic heart transforms 
from a myocardial tube into a complex, four chambered, mature 
structure. Valve cells differentiate from endocardial cells during 
gastrulation and by E9.5 valvulogenesis begins when the heart 
tube loops creating the primitive ventricle and atria. In these early 
embryos position sensing (7, 8) and force transduction instruct 
lineage allocation. Endothelial cells (ECs) of the endocardium 
form valve cushions in a GAG-rich cardiac jelly where, in response 
to growth factors, such as Transforming Growth Factor-β  
(TGF-β), they undergo endothelial to mesenchymal transition 
(EMT). ECs reorganize their actin architecture to permit migra-
tion, adhesion, and morphogenesis in the embryo. Knockout of 
cytoskeletal adaptors in ECs causes disorganized cytoskeletal 
organization, cell morphology, impaired focal adhesion develop-
ment, and actin signaling, inhibiting EMT in embryonic mice (9). 
Atrioventricular endocardial cells adopt a cuboidal morphology 
prior to EMT which seems mediated by cardiac contraction- in 
mutants which lack heart contraction, endocardial cells fail to 
change shape and initiate EMT (10).

During EMT cell–cell contacts are downregulated and processes  
governing cell–matrix adhesions and cytoskeleton reorganization 
are upregulated (11). Cells acquire an invasive phenotype, allow-
ing them to migrate into the cardiac jelly, degrade hyaluronan, 
and deposit collagen, versican, and proteoglycans to form mature 
leaflets. Cushion mesenchymal cells give rise to VICs post-EMT 
which organize their surrounding matrix into a fibrous, rigid 
tissue able to withstand the hemodynamic loading of the beat-
ing heart. Contractile VICs condense the ECM by pulling on 
it, creating cell–matrix alignment in response to mechanical 
cues (12, 13). During valvulogenesis, tension points are created 
which may promote the secretion and alignment of collagen 
fibrils from VICs in a manner similar to that seen during tendon  
development (14).

Mechanotrasnduction of hemodynamic shear and strain are 
crucial to valvulogenesis. In zebrafish embryos knockdown of 
oscillatory flow sensitive gene klf2a results in dysfunctional or 
absent leaflet formation despite no change in retrograde flow 
(15). klf2a is related to signaling through mechano-sensitive ion 
channels, which is discussed later in the Ion Channel section. 
Physical occlusion of the inflow or outflow tract in zebrafish 
embryos results in hearts with an abnormal third chamber, 
looping defects, and impaired valve formation. In the embryo, 
red blood cells themselves generate important shear fluctuations 
different than that of normal hemodynamic shear which may 
mechanically influence ECs (16). Zebrafish with transvalvular 
flow alterations fail to undergo atrioventricular valve maturation 
from two to four leaflets despite no alterations in contractility 
(17). Tissue strain from variations in pressure and cardiac con-
traction also mechanically drive valve formation in a similar fash-
ion to cell–cell and cell–matrix contacts. Mutations that inhibit 
myocardial contractility in the embryo fail to form cushions with 
chemical inhibition of contraction inhibiting endocardial ring 
formation in a dose dependent fashion (18). Cytoskeletal adap-
tors in embryonic ECs mediate actin dynamics, and mutations in 
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them disrupt EMT and valvulogenesis (19). The impact of strain 
alterations are time dependent as altered cardiac preload results 
in morphological defects in zebrafish embryos treated in earlier 
and later developmental stages without impacting groups treated 
at 30–36  h post fertilization (20). Alterations in cell–matrix 
homeostasis later in life may reactivate physical or chemical cues 
of valvulogenesis, particularly EMT, causing aberrant elongation, 
remodeling, and stiffening (21, 22).

ADHeReNS JUNCTiONS AND 
CADHeRiNS

Adherens junctions are located at cell–cell contact points where 
they mediate cell adhesion, force, and signal transduction. Cells 
send out a finger-like lamellipodia to neighboring cells, which are 
stabilized by the acceptor lamellae with actin-myosin contractility. 
This actin finger determines the location and shape of the adher-
ens junction and is co-localized with stress fibers in the neighbor-
ing cells. Adhesions are formed through integrin and cadherin 
interactions in both VECs and VICs at cell–cell and cell–integrin 
junctions, respectively. At adhesions, adhesion receptors interact 
with F-actin and adhesion proteins to regulate signaling, junction 
assembly, and maintenance. While traditionally recognized as 
distinct structures, adherens junctions and focal adhesions are 
intracellularly linked to the actin cytoskeleton, and activate the 
same signaling proteins and actin regulators (23).

Vinculin is a cytoplasmic actin binding protein, enriched at 
both cell–cell and cell–matrix adhesions, which regulates inte-
grin dynamics and adhesion, stimulating polymerization, and 
remodeling through actin binding. Vinculin arranges itself in 
three domains: an integrin signaling layer, actin binding and force 
transducing layer, and actin regulatory layer. Vinculin is in an 
open active form in focal adhesions and a closed, inhibited form 
within the cytoplasm. In this inhibited form, the vinculin head 
domain interacts extensively with its tail in the integrin signaling 
layer and when these head–tail interactions are relieved (24), it 
migrates to the actin binding layer where it recruits proteins to 
regulate focal adhesion dynamics and cell migration (25).

Cadherins are calcium-dependent cell adhesion proteins 
composed of an extracellular region, a transmembrane domain, 
and cytoplasmic region. Cadherins connect the cortical actin 
cytoskeleton of neighboring cells and create zipper-like structures 
to maintain stable intercellular adhesion by regulating cortical 
tension and maintaining mechanical coupling between cells (26). 
In confluent monolayers, VICs with strong cell–cell contacts 
show weak expression of myofibroblastic marker α-smooth 
muscle actin (αSMA), suggesting cell contact inhibits myofi-
broblastic activation (27). In these conditions, cadherin protein 
complexes β-catenin and N-cadherin expression are decreased or 
absent (27). In aortic valve disease and development cell junction 
protein cadherin-11 (Cad-11) has been implicated in a variety of 
mechano-active defects and similar mechanisms may be at play 
in MVD. Cad-11, a known mediator of dystrophic calcification in 
calcific aortic valve disease, is strongly expressed in human calci-
fied aortic leaflets with nodule formation dependent on strong 
cell–cell contacts (28) while cyclic strain upregulates Cad-11 
and αSMA expression (29) in aortic VICs (AVICs). In canines 

with myxomatous valve disease, VE-cadherin was significantly 
decreased (30). Downregulation of VE-cadherin results in 
endothelial migration and EMT in zebrafish valvulogenesis (31) 
so similar expression in canines suggests a pathological prolifera-
tive and migratory endothelial phenotype (30).

Plakophilin-2 links cadherins to intermediate filaments in 
the cytoskeleton. In prolapsed mitral valves, increased Cad-11, 
N-cadherin, and aberrant presence of plakophilin-2 at the adher-
ens junction, promotes latent TGF-β activation and pathological 
ECM remodeling (32). Cad-11 is expressed in chick mitral valves 
during development at the leaflet tips in endocardial cushion 
mesenchymal cells (31) and throughout the leaflets of remodeling 
valves in adults. In hyperlipidemic mice, Cad-11 expression was 
significantly increased in the aortic and mitral valves (33) induc-
ing ECM remodeling and calcific nodule formation (34).

iNTeGRiNS

Integrins regulate and respond to force by connecting the ECM  
to the cytoskeleton. Composed of an α and β subunit which com-
bine to approximately 24 unique heterodimers (35, 36), integrins 
bind to different ECM proteins and interact with cell-surface 
ligands, transmembrane proteins, proteases, and growth factors 
(37). Integrins receive and transmit signals from both sides of 
the plasma membrane (38, 39). Cytoskeletal contractions pull 
on integrin links to the matrix, deforming binding proteins that 
connect actin to focal adhesion proteins and integrin to argi-
nine–glycine–aspartate (RGD) containing proteins, altering gene 
and protein expression (40). RGD is the main integrin binding 
domain in ECM proteins common to the mitral valve: collagens, 
laminin, fibrillin, and fibronectin (41, 42).

Several adhesive peptides control integrin-mediated cell 
adhesion. VICs strongly express the α2 and β1 subunits and 
α5β1 integrin (43, 44) Collagen I mimetic DGEA binds integrin 
α2β1 and promotes adhesion and ECM deposition in VICs (45). 
The α2β1 integrin is necessary in coupling VICs to collagen I, 
propagating VIC contraction into leaflet force generation (46). In 
combination with RGD, peptide VAPG with affinity to laminin 
and elastin, along with DGEA downregulate myofibroblastic 
and osteogenic differentiation in VICs (45). Blocking integrin 
receptor 67LR, with affinities to laminin and elastin, resulted in 
formation of calcific nodules (47) suggesting an anticalcific effect 
in binding. Disruption of VIC binding via the α5β1 integrin or the 
67-kDa laminin receptor had a dramatic calcification-stimulating 
effect. Binding via the α2β1 integrin did not alter calcification or 
VIC phenotype; blocking α5β1 resulted in calcification in AVICs 
(43) and is likely to have similar pathology in mitral valves.

Integrins bind to and activate TGF-β, which modulates cell 
growth, adhesion, migration, and ECM synthesis (48, 49). TGF-
β secretion consists of three proteins: TGF-β, latency-associated 
protein (LAP), and latent TGF-β binding protein (LTBP), an 
ECM-binding protein. Several integrins activate latent TGF-β 
through binding to an RGD integrin binding site on LAP (50). 
Under high stress, TGF- β controls expression of αSMA, stress 
fiber formation, and differentiates quiescent fibroblasts into 
contractile myofibroblasts creating a positive feedback cycle 
(51). Mechanically conditioning ECM releases active TGFβ1 
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FiGURe 1 | Integrated mechanotransduction of cadherins and integrins through the cytoskeleton and small GTPases. A. At cell–cell adhesion points coupled 
cadherins transduce strain and shear force into cytoskeletal remodeling and downstream signaling pathways. B. At cell–extracellular matrix (ECM) adhesions, strain 
is transduced through integrins into cytoskeletal remodeling and downstream signaling pathways. C. RhoA and Rac are mechano-sensitive small GTPases common 
to multiple methods of mechanotransduction in the mitral valve that act opposite and complementary to control cell migration, differentiation, and proliferation. RhoA 
regulates actin cytoskeleton and stress fiber formation while Rac1 regulates cell–cell adhesion, actin polymerization, lamellae protrustion, and cytoskeletal polarity. 
ROCK interacts with integrins and cadherins to mediate RhoA and Rac activity while FilGAP binds to filamin-A to control actin at cytoskeletal interfaces. D. The 
extracellular matrix interacts with the actin network directly through specific ECM components or through integrins and cadherins. See Section “Integrated 
Mechanotransduction” for more information.

4

Pagnozzi and Butcher Mechanotransduction in the Mitral Valve

Frontiers in Cardiovascular Medicine | www.frontiersin.org December 2017 | Volume 4 | Article 83

(52) demonstrating the role of force in fibroblast activation. 
VICs grown on stiff surfaces have strong cell-ECM adhesions, 
contractility, and myofibroblast differentiation (53). Shear flow 
induces TGFβ1 production and myofibroblast differentiation of 
fibroblasts in collagen gels (54). In both embryonic and adult 
VICs, a quiescent phenotype is maintained in unstressed collagen 
hydrogels; however, contractile expression, TGF-β, and matrix 
remodeling are upregulated in response to tension (55).

Latent TGF-β binding proteins interact with fibrillin, a large 
structural protein that polymerizes into extracellular microfibrils 
and contributes to the functional integrity of connective tissue 
(56). Mutations in fibrillin-1 cause Marfan Syndrome (MFS) 
and related disorders from dysregulated TGF-β activity. TGF-β 
cytokines act through various small GTPases such as RhoA and 
Rac1, which are implicated in valve disease and development 
(Figure 1). RhoA is a mechano-sensitive GTPase that acts com-
plementary to Rac to control cell migration, differentiation, and 
proliferation. Filamin-A (FlnA) point mutations in mice, respon-
sible for X-linked myxomatous valve disease (57), deregulate 
the balance between RhoA and Rac1 in favor of RhoA, altering 
downstream trafficking of β1 integrins (58) resulting in a myox-
omatous phenotype by 2 months of age. For more information 
on GTPases, see section on Integrated Mechanotransduction at 
the end. FlnA mutations increase Erk signaling, a non canonical 
TGF-β driven kinase, which is present in mouse models of MFS 
(59). In murine aortic valves with an elastogenic defect, mice had 
latent hemodynamic AV disease from increased Erk1/2 activa-
tion, ECM disorganization, and inflammation (60). Both these 
mutant mice and aged mice display stiffened ECM, fibrosis, cell 
adhesion and fibronectin alterations, increased collagen expres-
sion, and decreased LTBP signaling (60) suggesting a similar 
mechanism may be driving integrin signaling in MVD.

CiLiA

Primary cilia are solitary microtubule structures consisting of 
a basal body and projecting axoneme “antenna.” The axoneme 

senses the external environment and coordinates various 
signaling pathways, such as TGF-β (61) and calcium sinks (62), 
indicating a mechanosensory role (63). Primary cilia defects have 
been linked to various congenital cardiovascular diseases, such as 
heterotaxy and atrioventricular septal defects (64–66). Cilia are 
strongly expressed between stages E11.5 and E17.5 on the outflow 
tract cushions in aortic valvulogenesis, while they are lost in adult 
VICs (67).

Primary cilia restrain ECM expression during development 
and remodeling such that ablation of primary cilia during 
aortic valvulogenesis results in highly penetrant bicuspid valve 
phenotype (67). Primary cilia loss in arterial ECs sensitizes them 
toward BMP mediated osteogenic differentiation (68), inflamma-
tory gene expression, and decreased eNOS activity (69). Exome 
sequencing of chemically mutagenized mice revealed mutations 
in 61 recessive congenital heart disease genes, 34 of them cilia 
related (66); cilia axoneme mutants caused outflow tract and atri-
oventricular septation (70). In polycystic kidney disease (PKD), 
a genetic disorder with TGF-β mediated abnormalities, there is a 
10-fold increase of mitral valve prolapse tied to defective protein 
localization in the primary cilia (71–73). Mitral insufficiency has 
been seen in infantile nephronophthisis (74), structural defects in 
Ellis–van Creveld syndrome (75, 76), severe mitral regurgitation 
and structural defects in Kartagener’s syndrome (77, 78), and 
rheumatic valvular insufficiency in Bardet–Biedl syndrome (79).

iON CHANNeLS

Mechano-sensitive channels (MCs) are a class of membrane 
ion channels that detect and respond to force, converting it into 
electrical or biochemical signals (80, 81). There is increasing 
evidence MCs play a key role in regulating endothelial response 
to shear flow (82–84). Cilia coupled with calcium channels 
(Figure 2) transduce shear stress during zebrafish valvulogenesis; 
endothelial cilia deflect with blood flow correlating to expres-
sion of calcium channel gene polycystin-2 (PKD2), increasing 
endothelial calcium levels, and altering vascular formation (85). 
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FiGURe 2 | Coupled mechanotransduction of cilia and ion channels. A. The basal body is a modified centriole that sits at the bottom of the cilia and provides the 
origin point for new cilia. They provide a symmetric template for the axoneme structure and dictate the position and orientation of the cilia, ensuring correct 
cilia-driven fluid flows and response to flow. B. The axoneme is the most prominent component of cilia consisting of nine microtubules. Its major function is cell 
signaling as the axoneme senses and coordinates mechanical and chemical responses, bending the cilia and altering downstream signaling. Intraflagellar transport 
brings cargo into the cilia along the axoneme with kinesin and out with dynein. C. In response to axoneme bending, stretch or calcium responsive ion channels, 
such as the polycystins (polycystic kidney diseases), open, allowing for calcium- or ATP-dependent signaling to occur inside the ciliary body. D. In response to 
calcium influx through the ion channel, downstream transcription factors (X) are phosphorylated and translocated to interact with the cytoskeleton, nucleus, and 
endoplasmic reticulum.
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Cilia response is mediated by transient receptor channels such as 
Trpv4 and Trpp2 which are expressed during valve development 
(86). mRNA expression of Piezo1, a mechanically activated cation 
channel, has been seen in murine hearts (87) while its loss in ECs 
causes stress fiber and cell orientation (88) deficits in response to 
shear stress, profound vascular defects, and embryonic lethality 
within days of the heart beating (89).

Malfunction of MCs results in broad cardiovascular patho-
logy such as arrthymias (90), hypertension (91), and PKD (92). 
PKD2 is localized to the cilia in vascular ECs. In mouse embryos 
it is required for right-left axis determination with knockouts 
displaying severe cardiac structural defects by E18 (93). PKD2 is 
mutated in PKD and murine mutants lose the ability to generate 
nitric oxide (NO) in response to shear flow which may promote 
high blood pressure (94). PKD2 defects may prolong channel 
activity by preventing calcium from leaving small compart-
ments, such as cilia (95). Prolongation of the QT interval has 
been associated with myxomatous mitral valve related sudden 
cardiac death (96, 97). Mutations in sodium voltage-gated 
channel V account for 5–10% of long QT cases and have been 
comorbid with desmoplakin mutations, a protein responsible for 
mechanical coupling of cardiac myocytes with known overlap 
in channelopathies (97, 98). Oscillatory flow stimulates klf2a 
expression, a key transcription factor in valvulogenesis, and 
knockdown results in dysfunctional or absent leaflet formation 
(15). Oscillatory flow through Trpv4 and Trpp2 (99) modulate 
the endocardial calcium response and control klf2a expression in 
zebrafish, with absence of either resulting in severe valve defects. 
klf2a misexpression during angiogenesis occurs in the absence 
of flow, with downregulation of β1 integrin rescuing overgrowth 
and maintaining endothelial quiescence (100).

CAveOLAe

Caveolae are small plasma membrane invaginations made up 
of Caveolin (Cav) and Cavin proteins, glycosphingolipids, and 
cholesterol. Caveolae respond to mechanical stress by flat-
tening into the membrane, increasing surface area to relieve 
tension, while confining receptors and signaling molecules 
(101, 102). Caveolae participate in a dynamic cycle of flattening 
and reassembly in response to mechanical stress independent 
the actin cytoskeleton. In vascular smooth muscle cells (103), 
cardiomyocytes (104), and aortic ECs, translocation of Cav1 
to non-caveolar membrane domains during flattening is 
required for strain and flow induced Erk expression (105). 
Rho and Rac GTPases (104), Src (106) and MAP kinases (107), 
and calcium (108) expression are also modulated by caveolae 
mechanotransduction.

Genomic analysis in canine myxomatous valve disease 
identified caveolar mediated endocytosis as a canonical pathway 
relevant to MVD (12). This pathway controls EC growth and 
migration through endocytosis of cholesterol-enriched mem-
brane microdomain (CEMM) internalization when integrins are 
uncoupled during cell detachment from the ECM. Integrins target 
Rac to CEMMs where it interacts with downstream effectors to 
induce signaling (109, 110). In caveolin-1 knockdowns, TGF-β, 
fibroblast activation, and collagen gene expression increases in 
human lung fibroblasts (111). In canines with chordal rupture 
induced mitral regurgitation, caveolar invagination decreased 
Erk signaling, regulating hypertrophic remodeling in response 
to volume overload (112). Positive caveolin staining and cave-
olae structures have been seen on aortic VECs (113) and may be 
conserved in mitral valves.
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GLYCOCALYX

The glycocalyx (GC) are abundant proteoglycan complexes 
that cover the surface of ECs and maintain endothelial barrier 
integrity. They are composed of the syndecan, a transmembrane 
core protein, and membrane anchored GAGs (114). GC control 
NO production (115) in vascular ECs by transducing shear stress 
to the cytoskeleton (116, 117) resulting in intracellular signaling 
and NO production (118, 119). Breakdown of the GC results 
in dissolution of tight junctions (120) and production of NO is 
dependent on calcium intake from TRP channels (121).

Syndecans (Sdcs) are members of a proteoglycan family of 
adhesion transmembrane receptors (122, 123). There are four 
mammalian Sdcs that bind to ECM, cell adhesion molecules, and 
growth factors (43). While no Sdcs are expressed in healthy aortic 
or mitral VICs (43), Sdc1 is strongly expressed on the vascular 
EC surface (124) and GCs are broadly expressed on the mitral 
endothelium in hypercholesterolemic rabbits (125). GCs and Sdcs 
are implicated in inflammatory (126, 127) and vascular diseases 
in the context of heart failure (128–130), myocardial dysfunction 
(131), and myocardial infarct (132). Sdc1-null mice with myo-
cardial infarction display enhanced endothelial adhesion, trans 
endothelial migration of inflammatory cells, matrix remodeling, 
and fibrosis (133) as well as attenuated angiotensin II-induced 
dysfunction (134). Oxidized LDL cholesterol degrades GCs and 
enhances adherence of leukocytes to the endothelial surface in 
mouse vascular models (135). Immune involvement provides a 
potential avenue to MVD given the autoimmune role in rheu-
matic valve disease.

NUCLeAR

Many mechanosensing modalities are physically coupled to the 
cytoskeleton filaments which in turn link to nuclear scaffolds, 
chromatin, and nuclear DNA (136–138). Forces applied to the 
cell surface cause structural changes to the nucleus (139, 140). 
As such, the nuclear aspect ratio (NAR) can be used as an index 
of cellular deformation due to the correlating deformation and 
directionality of the nucleus to the cell. In the mitral valve, NAR 
analysis determined VICs in the fibrosa and ventricularis layers 
deform more than the atrialis and spongiosa (141). MVICs also 
display cytoplasmic uncoupling from nuclear deformation under 
hyper-physiological strain levels (142) which may have pheno-
type and ECM remodeling consequences.

Lamins, nuclear intermediate filaments, are dense protein net-
works capable of forming stable structures within the nucleoplasm 
and have a crucial role in DNA/RNA synthesis and transcription 
(137). Dilated cardiomyopathy (143, 144) a laminopathy, causes 
volume overload and functional mitral regurgitation. Lamin A/C 
mutant mouse cells have impaired activation of mechano-sensitive 
transcription factor MRTF-A which causes cardiac myofibro-
blastic differentiation (145, 146) and activates vinculin and actin 
(147). Linker Nucleuskeleton and Cytoskeleton (LINC) proteins 
are key mechanotransductive structures between the cytoskeleton 
and nucleus. They include nesprin which connects LINC to the 
cytoskeleton and SUN which anchors LINC in the nucleus through 
lamin interactions and chromatin binding proteins (148). Nesprin  

is subject to actin-myosin mediated tension in adherent fibro-
blasts, which is reduced in fibroblasts from Hutchinson–Gilford 
progeria patients, a multisystem laminopathy (149). Nesprin also 
interacts with common intracellular signaling pathways such as 
Erk1/2 (67) and β catenin (150). Nesprin knockdown in ECs crip-
ples nuclear deformation and cell orientation during cyclic strain, 
but increases focal adhesions (151). Nesprin knockout cells have 
altered morphology, polarization, and migration (152).

5-HT SeROTONiN

Multi-valve pathology (153) is seen after exposure to serotonergic 
drugs fenfluramine, dexfenfluramine, ergotamine, and methy-
sergide (154) as well as ergot-derived dopamine agonists pergolide 
(155), cabergoline (156), and bromocriptine (157). Fenfluramine 
binds to serotonin or 5-hydroxytryptamine (5-HT) receptors 
5-HT2A, 5-HT2B, and 5-HT2C with porcine aortic and mitral VICs 
expressing 5-HT2A and 5-HT2B receptor transcripts, suggesting 
valve fibrosis (158) after exposure to fenfluramine, ergot drugs, 
and 5-HT is a result of 5-HT2A and 5-HT2B stimulation. In ligand 
screening studies 5-HT2B is the commonly activated serotonin 
receptor of drugs associated with valvular heart disease (159) 
with myxomatous canine valves upregulating 5-HT2B receptor 
mRNA (160) and proteins (161). The 5-HT2B receptor is required 
for heart development (162) regulating differentiation and prolif-
eration of cardiac tissue; 5-HT transporter deficient mice develop 
cardiac fibrosis, and valvulopathy (163).

5-HT2B increases MVIC proliferation and ECM production 
through common mechano-active signaling modalities. 5-HT2B 
receptor activation increases MAPK activity through Erk1/2 
(164, 165) as well as Src family kinases (166), resulting in cell 
proliferation, while addition of 5-HT to canine MVIC cultures 
increases collagen and GAG synthesis through H-proline and 
H-glucosamine incorporation respectively (164). Cross-talk may 
occur between the TGF-β and 5-HT pathways under elevated 
mechanical stresses. During atrioventricular valve development 
in chick embryos, 5-HT induces pathological modeling effects 
through a TGF-β3-dependent mechanism causing tissue stiffen-
ing, contractile gene expression, and collagen expression (167). 
In myxomatous mitral valves, 5-HT2B receptor expression is 
co-localized with αSMA expression (168); neonatal rat cardiac 
fibroblasts treated with 5-HT upregulated αSMA expression 
marking fibroblast differentiation and TGF-β signaling (169). 
AVICs treated with 5-HT show increased TGF-β1 and 5-HT2A 
(170) expression while serotonin transporter (SERT) knockout 
embryonic mice increased expression of TGF-β1, αSMA, and 
5-HT2A in the whole heart (171). At the tissue scale, treating an 
AVIC seeded construct with a 5-HT2B agonist acutely decreases 
tone generation of the cells, tissue alignment, and increases the 
tensile modulus along the primary fiber alignment axis (172). 
Similar mechanisms may be at play in 5-HT-related MVD.

While 5-HT alters the MV microenvironment and global valve 
mechanics, it may also be a direct mechanomodulator as proposed 
in Figure  3 below. In both aortic banded rats and neonatal rat 
cardiomyocytes, mechanical stress enhances 5-HT2B signaling in 
ventricular models of pressure induced cardiomyopathy (173). 
Serotonin induced a positive inotropic response in the papillary 
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FiGURe 3 | Mechanomodulation of mitral valve disease through serotonin. 
Tensile strain upregulates serotonin synthesis through a mechanosensory 
mechanism. Serotonin interacts with the serotonin type 2B receptor and 
serotonin transporter (SERT) in the mitral valve activating Erk1/2 through 
G-protein stimulation. Erk1/2 is phosphorylated in the nucleus where it induces 
TGF-β signaling and transcription of genes mediating myxomatous disease.
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muscles and increased 5-HT2B receptor expression in hypertrophic 
rats with post infarction heart failure which correlated to degree of 
hypertrophy (174). Cyclic stretch upregulates 5-HT2A and 5-HT2B 
receptor expression in porcine aortic valve cusps causing AVIC 
proliferation and ECM remodeling (175). Cell proliferation, colla-
gen synthesis, and tissue stiffness in response to cyclic stretch seem 
to be specifically modulated by the 5-HT2A receptor in the aortic 
valve (176) while unstrained in vitro experiments in MVs implicate 
the 5-HT2B receptor. Static and cyclic strain increase expression of 
myxomatous effector proteins, chondrogenic markers, and mark-
ers of the myofibroblastic phenotype compared to unstrained 
controls in myxomatous canine MVs (177). Interestingly, in both 
strain conditions, expression of serotoninsynthetic enzymes 
increased with higher serotonin levels in the media of cyclically 
strained valves suggesting mitral valves are capable of local 
serotonin synthesis and may be mechanically modulated (177). 
Myofibroblastic phenotype markers, matrix catabolic enzymes, 
cathepsins, matrix metalloproteases, and GAGS increased with 
increasing cyclic strain in cultured sheep MVs with serotonin 
present in the media of cyclically strained valves with concentra-
tion correlating to percent strain; inhibition of serotonin reduced 
these strain mediated protein expression patterns (178).

iNTeGRATeD MeCHANOTRANSDUCTiON

It is likely individual methods of mechanotransduction work 
in concert through common signaling pathways. Multi faceted 
proteins such as small GTPases coupled with an integrated frame-
work, such as the cytoskeleton, implicate a coordinated sensing 
and transduction network of shared, simultaneous components 
as illustrated in Figure 4.

Both RhoA and Rac GTPases mediate endothelial–mesenchy-
mal transition during valvulogenesis (179, 180), while in adult 
VICs RhoA regulates actin cytoskeleton and stress fiber formation 
as Rac regulates cell–cell adhesion, actin polymerization, lamellae 

protrustion, and cytoskeletal polarity (181). Altering the actin net-
work geometry by overexpressing Rac1 GTPase so precursor actin 
bundles are suppressed at free borders, changes adherens junction 
shape, and increases lamellae protrusions (182, 183). RhoA signal-
ing couples cadherin based adhesion with actimyosin contractility 
(184). Rac1 and RhoA interact in a spatiotemporal manner with 
adherens junction proteins to coordinate opening and closing 
of endothelial junctions (185). FilGAP, a Rac GTPase-activating 
Protein, binds FlnA to control actin remodeling (186) and is 
present at focal adhesions but more directly present at cytoskeletal 
interfaces where FlnA and the β integrin cytoplasmic tail interact 
to form a binding pocket for opposing β strands (187, 188). FlnA is 
an actin binding protein widely expressed during valvulogenesis, 
which anchors transmembrane proteins to the cytoskeleton and 
mediates remodeling events in response to stimulus.

In both embryonic and adult VICs, a quiescent phenotype is 
maintained when they are cultured in unstressed collagen hydro-
gels; however, contractile expression, TGF-β, and matrix remod-
eling are upregulated in response to mechanical tension (55, 189). 
During development, this quiescent phenotype transition is gov-
erned by decreasing αSMA following decreased RhoA-GTPase 
expression (11, 190). Cyclic stretch of embryonic valve progenitor 
cells activates RhoA in acute response to the mechanical stimulus 
and is later switched to chronic Rac1 activation through FilGAP 
(191). RhoA mediates myofibroblastic activation during this acute 
signaling while chronic cyclic strain deactivates RhoA, enabling 
Rac1 to compact the matrix. Mutations in FlnA are responsible 
for X-linked myxomatous valve disease (192) by weakening 
FilGAP binding (193) and disrupting GTPase regulation (58) 
which alters cytoskeletal remodeling ability. Rac-1 knockdown in 
embryonic kidney cells abrogated PKD1-mediated signaling sug-
gesting a critical role for small GTPases in PKD, providing insight 
into ciliary and voltage-gated signaling (194). In Bardet–Biedl 
syndrome, RhoA levels are upregulated but treatment of mutant 
cells with RhoA inhibitors restores cilia length and number as 
well as actin cytoskeleton integrity (195). In vascular SMC, 5-HT 
induced mitogenesis relies on Rho-mediated translocation of 
Erk1/2 (196) and induces Smad activation in bovine and human 
pulmonary artery SMCs via RhoA (197). 5-HT potentiates TGF-
β3 expression in cushions which then induces contractile gene 
expression through RhoA (167).

The cytoskeleton provides an integrated framework for com-
munication by physically connecting distant parts of the cell 
(145), rapidly transmitting mechanical information and modu-
lating signal transduction through posttranslational modifica-
tion, remodeling, and reorganization. Mechanical activation of 
Src 50 µm from the point of force application in vascular smooth 
muscle cells takes less than 300  ms through actin stress fibers, 
orders of magnitude faster than reaction-diffusion signaling 
cascades (145, 198). Disrupting actin filaments (199) as well as 
relieving stress fiber prestress (200) impairs rapid long distance 
mechanotransduction. Association with cadherins and integrins 
produces a critical interface through which actin filaments are 
exposed to forces from the ECM. Integrins and cadherins share 
similar mechanotransductive mechanisms in their interactions 
with the actin cytoskeleton, recruitment of common adhesion 
components, and extensive cross-talk (200, 201). Both integrins 
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and cadherins stimulate Rho and Rac GTPases resulting in 
cytoskeleton remodeling in response to adhesion (201, 202).

The actin cytoskeleton provides structural stability to GC in 
ECs under shear stress (203). Depolymerizing actin weakens the 
anchoring strength of core proteins that support the GC such that 
the GC layer is ablated under shear stress; this is potentially due to 
altered mechanotransduction (203). Caveolae associate and align 
with stress fibers (204, 205) through FlnA actin binding domains. 
Knock down of FlnA increases the lateral movement of Cav1 and 
reduces stress fiber alignment of the caveolae (206). Inhibiting 
actin polymerization increases the abundance of caveolar rosettes 
and increases Cav1 (207, 208) clustering while increasing stress 
fiber formation decreases caveolar rosettes (209). Caveolae, spe-
cifically Cav1 interactions (210, 211), regulate RhoA-mediated 
actomyosin contractility (209). Cav1 and RhoA are localized to 
the same membrane invaginations (212), physically interacting 
to induce cytoskeletal reorganization in response to force (104). 
Like FlnA mutations, alterations to the ECM change cytoskeletal 
structure and function which can result in pathological signaling 
and remodeling. Erk activity specifically localizes to regions of 
matrix metallopeptidase 2 expression (213), an ECM degrading 
enzyme, which is significantly increased in clinical patients with 
floppy mitral valves and mitral valve prolapse (214). A variety 
of collagen mutations result in mitral valve prolapse, aortic root 
dilation, and a host of structural defects (215, 216).

The mitral valve exists in a complex environment where 
global mechanical deformation alters cell phenotype and ECM 
remodeling (217) in the microenvironment in a synergistic and 
reciprocating fashion. It is increasingly apparent that multiple 
mechanobiological regulatory modalities exist and are intercon-
nected through shared components. Much like our five senses, 
multiple methods of mechanosensing coexist in the same cell, 
interacting with each other and the environment. In cells with 
a disrupted sense, mechanical stimulus may seem preferentially 
potent in one sense compared to a wild-type cell, causing patho-
logical signaling and remodeling. The interconnected pathways 
and frameworks of mechanotransduction can be thought of as 
a network in search of homeostasis; superior treatments may 
seek to rebalance the network instead of focusing on a solitary 
gene or protein defect. Increasing our understanding of how cells 
interact with their environment through mechanosensing and 
mechanotransduction provides potential therapeutic targets in 
valve disease by altering the environment, cellular perception of 
the environment, or communication with the environment in a 
profound and regenerative manner.
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FiGURe 4 | Methods of mechanosensing in the mitral valve. A. At a global level, the valve is subjected to flexure as the valve opens, shear as the blood flows 
through the valve, flexure as the valve closes, and tension as the valve seals shut to prevent regurgitation. At a microscopic level, mechanotransduction converts 
these extracellular forces into intracellular signaling through multiple cellular apparatuses. B. Mechano-sensitive ion channels convert mechanical force exerted on 
the cell membrane into electrical or biochemical signals. C. The axoneme of primary cilia convert extracellular cues into various signaling pathways as well as 
coupling transduction with voltage-gated channels D. Integrins are the main receptors connecting the cytoskeleton to the extracellular matrix (ECM) and transmit 
mechanical stress across the plasma membrane E. In nuclear deformation physical force is transmitted across the nuclear envelope to the nuclear interior where 
they modulate gene expression from physical deformation of genetic material F. Caveolae flatten into the plasma membrane when stimulated by cell-surface tension, 
relieving tension and physically sequestering proteins, growth hormones, and cytokines G. The glycocalyx transmits fluid shear stress to the cell through core 
proteins which connect to the actin cytoskeleton and cell membrane mediating cell signaling H. Cadherins are cell adhesion proteins that create zipper like structures 
at cell junctions to maintain stable intercellular adhesion and mechanical coupling between cells and the adherens junction to transform mechanical to chemical 
signals as well as interacting with integrins through actin filaments I. Directly or indirectly, the load bearing cytoskeleton is common to the various mechanosensing 
modalities. Often clustering at focal adhesions, the cytoskeleton rapidly transmits ECM stimulus into cellular response through actin filament reorganization.
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