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Transcriptional reprogramming contributes to the progression and recurrence of cancer.
However, the poorly elucidated mechanisms of transcriptional reprogramming in tumors
make the development of effective drugs difficult, and gene expression signature is helpful
for connecting genetic information and pharmacologic treatment. So far, there are two
gene-expression signature-based high-throughput drug discovery approaches: L1000,
which measures the mRNA transcript abundance of 978 “landmark” genes, and high-
throughput sequencing-based high-throughput screening (HTS2); they are suitable for
anticancer drug discovery by targeting transcriptional reprogramming. L1000 uses
ligation-mediated amplification and hybridization to Luminex beads and highlights gene
expression changes by detecting bead colors and fluorescence intensity of phycoerythrin
signal. HTS2 takes advantage of RNA-mediated oligonucleotide annealing, selection, and
ligation, high throughput sequencing, to quantify gene expression changes by directly
measuring gene sequences. This article summarizes technological principles and
applications of L1000 and HTS2, and discusses their advantages and limitations in
anticancer drug discovery.

Keywords: transcriptional reprogramming, anticancer drug discovery, high-throughput screening, L1000, HTS2
INTRODUCTION

Transcriptional reprogramming is a cause of cancer progression and recurrence. Gurdon first
confirmed that differentiated somatic cells were plastic in nature and are reprogrammable into other
cell fates (1). A cancer cell may present multiple phenotypes by reprogramming and changing its
identity, inducing heterogeneity among tumor cells (2). Tumor heterogeneity is the major cause of
drug resistance in cancer. The cancer stem cell (CSC) model and the clonal evolution model can be
used to explain tumor heterogeneity. It was proposed that CSCs are derived from genetically and
epigenetically altered stem cells or progenitor cells and possess self-renewal potential to sustain
tumor mass, immune escape and drug resistance (3, 4). The clonal evolution model results from the
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inherent genomic instability of cancer cells, leading to genetic
and epigenetic changes (4). The epigenetic changes, such as DNA
methylation and histone acetylation, are vital for cancer progress
(5). It is clear that transcriptional reprogramming involves
almost all of these regulations.

Transcriptional reprogramming drives the diversification
of tumor cells and causes tumor deterioration, such as
hyperproliferation, invasion, metastasis, immune evasion, and
drug resistance, and eventually causes cancer progression and
recurrence. Hence, transcriptional reprogramming has emerged
as a promising drug target for cancer therapy.

The detailed regulation mechanisms of transcriptional
reprogramming are still poorly understood, and this makes
effective drug discovery against this process difficult. Genomic
instability (6), transcriptional factors (7–9), DNA methylation of
tumor suppressor genes (10), unbalanced histone modifications
(11, 12), aberrant Wnt signal pathway (13), PI3K signaling (14),
TGF-b, and Erk/MAPK signaling (15) have been reported as
some reasons for cell reprogramming and malignant
transformation. Wang et al. established a principle for cell
type-specific transcriptional reprogramming: Cell type-specific
factors coupled with general transcriptional factors, which form
a new cell-specific enhancer network, that other regulated factors
can activate, and this may promote tumor cell progression (16).
However, these discoveries explain only a limited part of
transcriptional reprogramming. Thus, further elucidation of
the transcriptional reprogramming mechanisms in normal and
cancer cells may help develop cancer therapy strategies.

The gene expression signature might be a suitable readout for
high-throughput drug discovery targeting transcriptional
reprogramming. The expression changes of a group of
interesting genes occur as a result of transcriptional
reprogramming. This review, summarizes two published gene-
expression signature-based high-throughput drug discovery
strategies targeting transcriptional reprogramming: L1000 and
high-throughput sequencing-based high-throughput screening
(HTS2), introducing their technological principle and discussing
their applications in drug discovery.
L1000 AS A LUMINEX BEAD-
BASED HIGH-THROUGHPUT
SCREENING STRATEGY

L1000 is used to generate the next generation Connectivity Map
(CMap) with higher throughput (17). CMap, which connects
small molecules, genes, and diseases through gene signature, was
first piloted in 2006 (18). By treating MCF7, PC3, HL60, and
SKMEL5 cells with 164 distinct compounds and analyzing mRNA
expression using Affymetrix microarrays (18), 564 datasets were
generated. The small-scale datasets of pilot CMap limit its use as a
powerful resource. Therefore, a low-cost approach, L1000, was
proposed to produce large-scale gene signatures through a reduced
representation of transcriptome (17).

The procedure of L1000 technology includes the following
steps (17): cells treated with distinct perturbations in 384-well
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plates are lysed, and their mRNAs are captured on oligo-dT-
coated plates after which it is reverse-transcribed to cDNA. The
oligonucleotide probe comprises locus-specific sequences, 24-
mer unique barcode sequences, and universal primer sequence
sites. Then, the oligonucleotide probes are annealed to cDNA,
and the juxtaposed upstream and downstream probe pairs are
ligated; the upstream probe consists of a unique barcode
sequence. After the above process, the ligations are used as a
template and subjected to PCR amplification; using the universal
5′ biotinylated T7 primer and T3 primer pairs, the final
amplicons are gene-specific, barcoded, and biotinylated. After
that, each barcode of the amplification product hybridizes to
polystyrene microsphere (bead with fluorescence color) by
complementary pairing, and the bead is stained with
Streptavidin R-phycoerythrin conjugate. Because beads are
available in a maximum of 500 colors, two transcripts are
hybridized with the same bead color. Finally, the hybridized
beads coupling to barcodes are detected and analyzed using
Luminex FlexMap 3D flow cytometer. The colors of beads
indicate gene identity, whereas the fluorescence intensity of the
phycoerythrin signal refers to gene abundance (Figure 1).

The Application of L1000 in Cancer
Drug Discovery
L1000 was used in discovering synergistic anti-glioblastoma
drugs. Glioblastoma is a type of fatal brain cancer, containing
highly heterogeneous cell populations. These cell populations
have various of gene signatures; therefore, both radiation and
chemotherapy for glioblastoma often induce inherent or
acquired resistance (20). To overcome resistance, combination
therapies are considered. Therefore, glioblastoma patient-specific
genes, analyzed using TCGA database and L1000 transcriptional
profiling data, were used to predict drugs that produce a
synergistic combination against glioblastoma. Because of this,
the combinations of GSK-1070916 with JQ1, alisertib with JQ1,
gemcitabine with mitoxantrone, and gemcitabine with imatinib
were predicted and verified to be synergistic in inhibiting
glioblastoma (21).

L1000 was applied in finding a drug against renal cell
carcinoma (RCC). DDX3X is involved in RNA metabolism
(22–24). DDX3X is epigenetically downregulated in RCC (25).
According to transcriptomic analysis, lower levels of DDX3X
promote gene expression in the SPINK1-metallothionein
pathway, leading to tumor growth, metastasis, and poorer
prognosis of RCC patients (25, 26). Based on the DDX3X gene
signature and L1000 datasets, digoxin was identified to reverse
the gene signature generated by low DDX3X, thus inhibiting cell
proliferation and metastasis (25).

Some FDA-approved drugs could be repurposed using gene-
expression signature and L1000 datasets. HMGA2 encodes a
chromatin protein that promotes tumor progression and poor
treatment (27–30). To discover a specific inhibitor that targets
HMGA2, the combination of L1000 platform and GEO database
were analyzed. According to the analysis, the approved
antifungal drug ciclopirox is a novel potential inhibitor that
targets HMGA2, and the molecular docking results further
showed that ciclopirox directly interacts with the AT-hook
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motif of HMGA2. The functional assays also showed that
ciclopirox represses colorectal cancer cell growth by inducing
cell cycle arrest and apoptosis (31).

L1000 was applied to discover drugs against quiescent
spheroids. Cells residing within the center of solid tumors lack
nutrients and oxygen, and most of these cells are transcriptionally
reprogrammable, quiescent, and negative to antiproliferation
therapy (32). Senkowski et al. used L1000 technology to
generate gene-expression signatures from monolayer cultures
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and tumor cell spheroids treated with 22 drugs. Spheroids were
cultured in fresh culture medium or media that were similar to
hypoxic tumor parenchyma. According to the analysis of L1000
expression profiles, the mevalonate pathway is upregulated as a
result of oxidative phosphorylation (OXPHOS) inhibition in
quiescent cells. Thus, this study indicated that the application of
OXPHOS inhibitors (such as salinomycin, nitazoxanide and
antimycin A) and mevalonate pathway inhibitors (such as
simvastatin) synergistically inhibits quiescent spheroids (32).
FIGURE 1 | The diagram of L1000 technology (19).
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Pros and Cons of L1000
L1000 establishment of the causality among drug, gene, and
disease provides the mechanism of action of compounds or gene
perturbations, and possesses the ability to predict the function or
possible side effects of compounds systemically (17). L1000 can
detect the expression of as many as 1,000 genes simultaneously.
DNA oligos for about 1,000 genes are designed and amplified,
the biotin-labeled amplicons are then hybridized to Luminex
beads. The beads’ colors and the fluorescence signals attached to
beads are detected. Based on hybridization, L1000 is capable of
expanding the signal of non-abundant transcripts and measuring
their expression (17).

L1000 is inexpensive, rapid, and flexible when used to profile
gene expression on a large scale (19, 33). L1000 uses ligation-
mediated amplification to measure gene expressions, which uses
40nt gene-specific sequences for transcriptome detection other
than full-length transcriptome sequencing. Therefore, compared
to RNA-seq technology, the reduced representation of
transcriptome makes L1000 a cost-effective method for gene
expression profiling. Furthermore, several datasets generated by
L1000 have been published. Due to the above advantages, it has
generated 1,319,138 profiles from 42,080 perturbations on nine
cell types and covered 473,647 signatures (17). These datasets are
open to the public and should be helpful for researchers seeking
to discover drugs against cancer and other human diseases.

However, there are also limitations for L1000. First, only 1,000
genes can be detected. Only 500 bead colors are commercially
available, and thus, a maximum of 500 genes (one gene/one color)
can be generally identified. Although L1000 allows the detection of
two transcripts by a single bead color, which doubles the gene
number of identified genes, still the number of genes detected
cannot be more than 1,000 (17). Besides, L1000 assay uses
polystyrene beads. Although polystyrene beads are the first
generation of beads for Luminex assays, their accuracy and
precision are reduced, accompanied by leaking and clogging
during the protocol of washing in the plates (34).

The protocol of L1000 is complicated. Before beginning
L1000 assay, 1000 pairs of gene-specific sequences and 1,000
barcode sequences need to be designed, and Luminex beads need
to be joined with 500 barcodes. After preparation for work, the
cells are lysed into mRNA, and the mRNA needs to be attached
to the oligo-dT plate. After that, mRNA is reverse-transcribed
into cDNA. The cDNA servers as a template to combine the
specific gene sequences labeled with barcodes, and the upstream
and downstream specific gene sequences were ligated using the
Frontiers in Oncology | www.frontiersin.org 4
T4 ligase. Then, the ligations are used as a transcriptional
template for amplification using universal primers combined
with biotin. Then, the amplicons are hybridized into beads and
then phycoerythrin-labeled streptavidin. Finally, the bead’s color
(gene identity) and the phycoerythrin signal (gene abundance)
are detected. The technical characteristics of L1000 are
summarized in Table 1.
HTS2: HIGH-THROUGHPUT SEQUENCING-
BASED HIGH-THROUGHPUT SCREENING

Another high-throughput approach to discover drugs by
targeting transcriptional reprogramming is HTS2 (35). The
procedure of HTS2 is as follows (Figure 2): cells are treated
with various perturbations in 384-well plates. Then, cells are
lysed, and the mRNA in the lysate is bound to biotin-labeled
oligo-dT, joined with streptavidin-coated magnetic beads. After
that, upstream oligos (consisting of 5′ universal primer site and
20nt gene-specific sequences) and downstream oligos
(containing another 20nt gene-specific sequences adjacent to
upstream and 3′ universal primer site) are annealed to mRNA
template and ligated with T4 ligase. The ligated products with
40nt gene-specific sequences are used as templates and subjected
to PCR amplification. The PCR primers contain a barcode site,
which identifies samples; different genes from the same sample
share the same barcode. Finally, the amplicons, including
barcode and 40nt ligated oligo regions, are sequenced using
next-generation sequencing technology (35).

The Application of HTS2 in Cancer
Drug Discovery by Targeting
Transcriptional Reprogramming
HTS2 technology is suitable for pathway-centric discovery of
anticancer drugs. Androgen receptor (AR) overexpression may
lead to androgen resistance and the development of incurable
prostate cancer (36). HTS2 was applied to identify drugs that
block the expression of signature genes regulated by AR in
prostate cancer cells, which indicates that this candidate drug
may inhibit the AR pathway. According to this study, cardiac
glycosides block the expression of AR target genes and inhibits
the proliferation of androgen-sensitive and androgen-resistant
prostate cancer cells by causing AR destabilization (35).

HTS2 facilitates the discovery of anti-metastasis drugs. Tumor
metastasis is the movement of tumor cells from a primary site to
TABLE 1 | Comparation between L1000 and HTS2.

Technology L1000 HTS2

Detection method Luminex beads High throughput sequencing
Gene detection Indirect Direct
Throughput High High
Detectable gene number ≤1000 Unlimited
Degree of automation Low High
Technological Upgrade Potential Low High
Number of published datasets Large Small
October 2021 |
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FIGURE 2 | The diagram of HTS2 (35).
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distant organs that they progressively colonize (8). Tumor
metastasis is the cause of death for 90% of cancer patients, and
no currently available therapies target this multi-step process.

Metastasis may be regulated by transcriptional reprogramming.
It was reported that the transcription factor FOXA1 is upregulated
and drives the transcriptional reprogramming to promote
pancreatic ductal adenocarcinoma cell metastasis (8). Teng et al.
discovered that liver metastatic colorectal cancer (CRC) cells
acquire higher expression of liver-specific genes than primary
colorectal tumor cells. This transcriptional reprogramming is
driven by liver-specific FOXA2 and HNF1A, which can bind to
reshaped enhancers of liver metastatic CRC cells, and promote
CRC liver metastasis (9).

Gene-expression signatures are used to characterize cancer
metastasis (37–39). To effectively discover drugs against breast
cancer lung metastasis (BCLM), HTS2 technology and BCLM-
associated gene signature were combined and analyzed. It was
found that ponatinib represses the expression of BCLM signature
genes through the inhibition of JUN transcription and
degradation of the c-Jun protein, ultimately inhibiting
BCLM (40).

HTS2 can also be used to explore the mechanisms of action of
anticancer herbs. Combined with network pharmacology, HTS2

was used to unveil the biological basis of medicine with complex
ingredients, such as traditional Chinese medicine (TCM) in cancer
therapy (41, 42) as well as other diseases (43). Zheng et al. utilized
HTS2 to measure the function of 166 compounds derived from
TCM on 420 antitumor or immune-related genes. The results
from gene signature showed that compounds from health-
strengthening herbs increase immune effects in tumor immune
microenvironment and tumor prevention (41). Guizhi Fuling
Decoction (GFD) is a classic TCM prescription used in treating
gynecological tumors with an unclear mechanism. Dai et al.
applied HTS2 technology along with systemic pharmacology to
clarify the mechanisms of GFD in treating breast cancer; this
revealed that GFD represses breast cancer through the inhibition
of PI3K and MAPK signaling pathways (42).

HTS2 contributes to the discovery of combination
immunotherapy agents against triple-negative breast cancer
(TNBC). Low objective response rates (ORRs) of solid tumors
create immune checkpoint blockade therapy failure in some
aggressive cancers (44–46). ORRs are associated with tumor
immunological phenotype (TIP) that leads to the extent of
immune cell infiltration (47). Hot tumor is feasibly infiltrated by
immune cells, which are regulated by tumor genes, including T
helper1 (TH1)-type chemokines. Conversely, cold tumors are those
that are not infiltrated by immune cells or are immune-ignorant
(48). Due to epigenetic alteration and transcriptional
reprogramming, hot tumor may be converted to cold tumor,
leading to tumor immunosuppression (49). Small molecules can
also epigenetically convert cold tumors to hot tumors by altering
the gene expression of TH1 chemokines (50). To increase the ORRs
of checkpoint blockade immunotherapy, combination targets or
compounds are desirable. Wang et al. first determined the
difference in TIP gene signature between cold and hot tumors.
Combined with this gene signature, HTS2 technology was applied
Frontiers in Oncology | www.frontiersin.org 6
for the identification of immunotherapy combination agents in
TNBC. The results showed that aurora kinase inhibitors reprogram
the expression of TIP gene signature and thus promote effective T-
cell infiltration into the tumor microenvironment, significantly
improving anti-programmed cell death 1 (PD-1) efficacy in
preclinical models (51).

Pros and Cons of HTS2

First, HTS2 can detect unlimited genes. It was reported that the
expression of >3,000 genes was directly examined in one reaction
by HTS2 (52). In principle, all human genes (~22,000 genes) can
be detected by HTS2 in one reaction, since it takes advantage of
the powerful high-throughput sequencing technologies. More
importantly, these high-throughput sequencing technologies
should be developed and improved quickly, to increase the
detection capability of HTS2 in the future.

Second, HTS2 directly detects gene expression. HTS2 detects
gene signatures using high-throughput sequencing technology,
detecting and quantifying gene expression by reading out their
sequence directly. Due to this, the possibility of misreading
should be rare. Third, the experimental scheme of HTS2 is
fully amenable to direct transcript analysis in cell lysate and
automation, which are two critical parameters for high-
throughput applications. The annealing step of HTS2 is fully
compatible in cell lysis containing detergent and high salt. After
it is captured by streptavidin-coated magnetic beads, all
subsequent washing and ligation steps are conducted on the
solid phase. Furthermore, this HTS2 strategy can be fully
implemented on an automated robot (35).

However, there are also some challenges forHTS2 strategy. First,
even thoughHTS2 could detect the expression of unlimited genes in
principle, the number of detected genes reported so far is no more
than 4,000. It would be much better if full transcriptome could be
examined in one reaction using HTS2 in the future. Alternatively,
there are only fewpiecesof literature,which applied this technology,
that have been were published so far; more studies need to be
published to demonstrate the broad utility of the HTS2 technology
in both basic and translational research. The technical
characteristics of HTS2 are shown in Table 1.
CONCLUSIONS

Transcriptional reprogramming is involved in cancer initiation,
progression, and metastasis; thus, it is a potential target for
anticancer drug development. L1000 and HTS2 are gene-
expression signature-based high-throughput approaches, suitable
for drug discoveries targeting transcriptional reprogramming.
Notably, all these two technologies are based on bulk RNA.
Recently, the gene expression changes in single cells are making
significant impact on the understanding of almost all the processes
of life. Meanwhile, single cell RNA sequencing was also reported
facilitating drug discovery (53–55). So far, these technologies of
single cell RNA sequencing are limited by high cost or low
multiplex for the application in the high throughput drug
discovery. However, the measurement of gene expression
October 2021 | Volume 11 | Article 762023
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changes in single cells represents another potential high-
throughput approach for the drug discovery to target
transcriptional reprogramming. Both of them show advantages
as well as limitations. Undoubtedly, these two technologies offer
powerful and effective platforms for large-scale genetics and
chemical genetics studies, and anticancer drug discovery.
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