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Abstract: Despite decades of efforts to reduce sodium intake, excess dietary sodium remains com-
monplace, and contributes to increased cardiovascular morbidity and mortality independent of its
effects on blood pressure. An increasing amount of research suggests that high-sodium diets lead to
reduced nitric oxide-mediated endothelial function, even in the absence of a change in blood pressure.
As endothelial dysfunction is an early step in the progression of cardiovascular diseases, the endothe-
lium presents a target for interventions aimed at reducing the impact of excess dietary sodium. In this
review, we briefly define endothelial function and present the literature demonstrating that excess
dietary sodium results in impaired endothelial function. We then discuss the mechanisms through
which sodium impairs the endothelium, including increased reactive oxygen species, decreased
intrinsic antioxidant defenses, endothelial cell stiffening, and damage to the endothelial glycocalyx.
Finally, we present selected research findings suggesting that aerobic exercise or increased intake of
dietary potassium may counteract the deleterious vascular effects of a high-sodium diet.

Keywords: dietary sodium; high salt; nitric oxide; endothelium oxidative stress; glycocalyx; potas-
sium; aerobic exercise

1. Introduction

Over 90% of adults in the United States consume high-salt diets, with an average daily
sodium intake of 3600 mg, which far exceeds the 2300 mg/day as recommended in the
Dietary Guidelines for Americans [1,2]. Globally, excess dietary sodium is a contributing
factor to 1.65 million deaths annually, with 40% of these deaths occurring before the age of
70 [3]. As such, the consequences of high-sodium diets remain an important topic of study.

The deleterious effects of excess dietary sodium are commonly attributed to the effect
of sodium on blood pressure (BP). Importantly, a positive linear association between BP
and 24-h urinary sodium excretion, the gold standard marker of sodium intake, has been
noted in numerous epidemiological studies [4,5]. Likewise, sodium restriction results in
reduced BP in individuals with elevated BP [6,7]. However, among young adults, the
magnitude of change in systolic and diastolic BP associated with changes in dietary sodium
consumption is a rather modest 1.9 and 0.4 mmHg per 2300 mg/day change in sodium,
respectively, after adjustment for BMI and alcohol consumption [5]. In fact, the majority
of normotensive individuals are considered salt-resistant in that they do not experience a
marked change in BP with large changes in sodium intake [8], especially those under the
age of 45 [9].

Yet, even in the absence of elevated BP, high dietary sodium is associated with negative
impacts on cardiovascular health. Increased sodium intake is related to increased risk
of acute coronary events and cardiovascular mortality independent of BP [10]. Likewise,
overweight individuals in the highest quartile of sodium intake have an increased risk of
congestive heart failure compared to those in the lowest quartile, even after controlling for
demographics, alcohol consumption, smoking, physical activity, and BP [11]. Additionally,
greater sodium intake is related to greater left ventricular mass in both normotensive
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and hypertensive individuals [12,13], and left ventricular hypertrophy is reversed with
sodium reduction [14]. Notably, endothelial dysfunction often precedes the development
of cardiovascular disease (CVD) [15–17] and thus may be an early marker of the deleterious
effects of excessive dietary sodium consumption.

As outlined in Figure 1, this review presents the current evidence for BP-independent
effects of high dietary sodium consumption on endothelial function in humans, and summa-
rizes the literature examining the potential mechanisms responsible for this phenomenon.
Additionally, recent reports suggest that the vascular consequences of excess sodium may
be mitigated by physical activity or increased dietary potassium consumption. As such,
we will provide a brief review of how these behaviors may address specific mechanisms of
dietary sodium-induced endothelial dysfunction.
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Figure 1. Excess dietary sodium negatively (−) influences nitric oxide (NO)-mediated endothelial
function via increases in oxidative stress, an increase in endothelial cell (EC) stiffness, and damage
to the endothelial glycocalyx (eGC). Each of these factors results in decreased bioavailability of
NO derived from endothelial nitric oxide synthase (eNOS). Evidence suggests that aerobic exercise
and/or increased intake of dietary potassium positively (+) influence these factors and thus may be
effective strategies to counteract the impact of excess dietary sodium.

2. Assessment of Endothelial Function

The endothelium is the monolayer of cells lining the lumen of the vasculature through-
out the body. Beyond a simple barrier between the blood and the vascular wall, a healthy
endothelium serves to prevent thrombosis and coagulation and control vascular tone [18].
In response to chemical or mechanical stimuli, the endothelium produces vasodilating
or vasoconstricting substances that act on the adjacent vascular smooth muscle (VSM)
cells [18] (Figure 2). One such substance is endothelium-derived nitric oxide (NO), which
is frequently studied due to its anti-atherogenic effects, in addition to NO being a key
mediator of vascular tone via its potent vasodilating effects [19].
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Figure 2. In response to various physiological and pharmacological stimuli, such as shear stress and
acetylcholine (ACh), the endothelium produces nitric oxide (NO) via endothelial nitric oxide synthase
(eNOS) that diffuses into the vascular smooth muscle cells, where it activates soluble guanylate cyclase
(sGC), which then converts guanosine triphosphate (GTP) into cyclic guanosine monophosphate
(cGMP), ultimately leading to vasodilation. Excess dietary sodium increases superoxide (O2

−) via
activation of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, while also inhibiting
cytosolic superoxide dismutase (SOD-1) and mitochondrial SOD (SOD-2). NO readily reacts with
O2

−, thus rendering it unable to diffuse into the VSM. The resulting peroxynitrite (ONOO−) oxidizes
tetrahydrobiopterin (BH4), which leads to uncoupling of eNOS, leading to further reductions in NO
and increases in O2

− (not shown).

In response to binding of agonists (e.g., acetylcholine or ACh) to endothelium re-
ceptors or an increase in shear stress on the endothelium, nitric oxide (NO) is produced
when endothelial nitric oxide synthase (eNOS) catalyzes the conversion of oxygen and
L-arginine into L-citrulline and NO (Figure 2) [19,20]. The gaseous NO then diffuses
into the VSM, initiating an intracellular cascade and causing the removal of cytosolic
calcium and/or cellular hyperpolarization, thus producing the relaxation of the VSM and
the dilation of the vessel [19,20]. This response can be assessed in vitro in cultured cells
and isolated vessels or in vivo in animals and humans. Intra-arterial infusions of ACh
or methacholine (MCh) are utilized to test resistance artery endothelial function, and can
be used in combination with an NOS inhibitor, such as L-NG-Nitro arginine methyl ester
(L-NAME) and NG-Monomethyl-L-arginine (L-NMMA), to quantify the NO component of
the dilation. Ultrasonic assessment of flow-mediated dilation (FMD) of a major conduit
artery (i.e., brachial artery) has become commonplace due to its non-invasive nature and
the availability of sophisticated analysis software. During the assessment of FMD, the
artery in question is imaged via ultrasound before and after a 5-min period of circulatory
arrest via a cuff applied to the limb distal to imaging and inflated to a suprasystolic pressure.
The increases in blood flow that occur following cuff release increase shear stress on the
arterial endothelium, resulting in dilation that is largely NO-mediated [21]. Importantly,
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impaired endothelium-dependent dilation of the peripheral vasculature is associated with
increased risk of future cardiovascular events, and this relation exists whether endothelial
function is assessed via FMD [22] or ACh infusion [23,24].

While the studies utilizing FMD demonstrate the effects of excess sodium on the
macro-vascular endothelium, the cutaneous circulation can be used as a model of the mi-
crovasculature in humans [25]. For instance, a high-sodium diet reduces the NO-mediated
increase in skin blood flow in response to local heating in young, salt-resistant normoten-
sive individuals [26]. In agreement with this finding, a high-sodium diet blunts the
cutaneous blood flow response to ACh delivered via intradermal infusion [27] or ion-
tophoresis [28,29]. Likewise, cutaneous post-occlusive reactive hyperemia is blunted in the
absence of a change in BP following excess sodium consumption [28,30]; however, cuta-
neous reactive hyperemia appears to be mediated by endothelial release of prostaglandins
rather than NO [30,31], and is beyond the scope of this review.

3. Dietary Sodium and Impaired Endothelial Function in Humans

A deleterious vascular effect of high dietary sodium in the absence of a change in
BP was first noted in the Dahl salt-resistant rat model in 1987 [32]. Subsequent studies,
however, suggested that this effect might not occur in humans, as no effect of a short-term
high-sodium diet was observed on endothelium-dependent forearm blood flow responses
in a small group of young men [33] or middle-aged hypertensives [34,35]. In contrast,
Tzemos and colleagues studied young, normotensive adults and found that a five-day
high-sodium diet impaired forearm dilation to intra-arterial ACh infusions [36]. When
on the high-sodium diet, subjects demonstrated less of an attenuation in ACh-induced
dilation by L-NMMA, suggesting that high-sodium diets specifically inhibit NO-mediated
dilation [36]. Notably, systolic BP increased on the high-sodium diet, suggesting that a
significant proportion of the subjects were salt-sensitive [36], leaving the possibility that
the change in BP was responsible for the impairment of endothelial function.

Later studies attempted to eliminate the potential confounding effects of BP. Jablonski
et al. observed an improvement in both ACh-induced forearm blood flow and brachial
artery FMD after statistically controlling for changes in BP following a four-week reduction
in dietary sodium (~1500 vs. 3600 mg/day) amongst middle-aged and older adults with
elevated BP [7]. Similarly, DuPont and colleagues observed a significantly blunted brachial
artery FMD in young, normotensive, salt-resistant subjects on a high-sodium diet compared
to a low-sodium condition [37]. In a subset of subjects, nitroglycerin induced similar
dilation of the brachial artery across both diets, providing evidence that the impairment
occurred at the endothelium [37] and not the VSM cells. High dietary sodium-induced
reductions in FMD have been found in multiple [30,38] but not all [27] studies. There
is some evidence that the impact of a high-sodium diet on FMD is greater in men than
women [39]. Though these studies typically administer the excess sodium for five to eight
days, one research team has demonstrated that FMD is attenuated acutely after a single
high-sodium meal [40], highlighting the rapid effect of excess sodium on the vasculature,
though this is not a universal finding [41,42]. Table 1 summarizes the details of relevant
studies on the endothelial effects of high-sodium diets in humans.
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Table 1. Summary table of studies that have investigated the effects of dietary sodium on endothelial function.

Sodium Intervention

Study Subject
Characteristics

LS
Content

HS
Content Duration Endothelial

Assessment Relevant Findings

Alba
et al.,
2020
[27]

65 ± 7 yr
n = 5 M/6 W

Pre-Hypertensive
Salt Resistant BP

1500 mg/day 5500 mg/day Eight days
Conduit artery: FMD

Microvascular:
Cutaneous ACh microdialysis

HS impaired ACh-induced cutaneous
dilation during a low dairy diet
compared to a high dairy diet.

ACh-induced vasodialtion was restored
with infusion of ascorbic acid, apocynin,
and Tempol. There was no effect of HS

on FMD.

Baric
et al.,
2019
[29]

21 ± 2 yr
n= 23M/25W
Normotensive

Salt Resistant BP

<1380 mg/day
~5800 mg/day

(4610 mg added to
normal diet)

Seven days Microvascular:
Cutaneous ACh iontophoresis

HS blunted ACh-induced cutaneous
dilation.

Baric
et al.,
2020
[28]

20 ± 2 yr
n = 25 M/26 W
Normotensive

Salt Resistant BP

<1380 mg/day
~5800 mg/day

(4610 mg added to
normal diet)

Seven Days Microvascular:
Cutaneous ACh iontophoresis

ACh-induced dilation was reduced by
HS compared to LS in the control group,
but this decrement did not occur in the

group that also supplemented with
vitamin C and E.

Blanch
et al.,
2015
[43]

37 ± 15 yr
n = 21 M/18 W
Normotensive

138 mg 1495 mg Single Meal Conduit Artery: FMD
FMD was reduced following the HS +
low potassium meal, but not after the

HS + high-potassium condition.

Cavka
et al.,
2016
[30]

28 ± 7 yr
n = 12 W

Normotensive
N/A

~4300 mg/day
(2364 mg added to

normal diet)
Seven days

Conduit Artery:
FMD

Microvascular:
Ex-vivo Gluteal Fat Arteriole ACh

and FMD

HS diet reduced brachial artery FMD
from baseline. ACh- and flow-induced

dilation of gluteal fat arterioles was
maintained during HS diet.

Dickinson et al.,
2011
[40]

37 ± 18 yr
n = 6 M/10 W
Normotensive

115 mg 1495 mg Single Meal Conduit Artery: FMD

FMD decreased for at least 120 min
after both LS and HS meals. The

reduction in FMD in the first hour after
the meal was augmented with HS.

Reactive hyperemia index was
unchanged following either meal.
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Table 1. Cont.

Sodium Intervention

Study Subject
Characteristics

LS
Content

HS
Content Duration Endothelial

Assessment Relevant Findings

DuPont
et al.,
2013
[37]

33 ± 7 yr
n = 9 M/5 W

Normotensive
Salt Resistant BP

460 mg/day ~7500 mg/day Seven days Conduit artery:
FMD

Brachial artery FMD was significantly
reduced following HS.

Greaney
et al.,
2012
[26]

31 ± 7 yr
n = 5 M/7 W

Normotensive
Salt Resistant BP

460 mg/day ~7500 mg/day Seven days Microvascular:
Cutaneous local heating

Local heating-induced cutaneous
dilation was reduced following HS.

Local ascorbic acid treatment
augmented dilation in the HS condition.

Higashi
et al.,
2001
[35]

52 ± 16 yr
n = 17 M/12 W
Hypertensive

Salt-sensitive and
Salt Resistant BP

1150 mg/day 7820
mg/day Seven days Microvascular:

Forearm blood flow w/ACh

ACh-induced dilation was not
unaffected by dietary sodium in

participants with both salt-sensitive and
salt resistant BP.

Jablonski
et al.,
2013
[7]

62 ± 7 yr
n = 11 M/6 W

Prehypertensive or
Stage 1 hypertension

~1300 mg/day ~3100 mg/day
(habitual intake) Four weeks

Conduit Artery:
FMD

Microvascular:
Forearm blood flow w/ACh

Compared to normal sodium intake
(HS), LS improved both FMD and

forearm blood flow responses to ACh.
FMD was improved in HS with

ascorbic acid and BH4 treatment.
Ascorbic acid also restored the
microvascular response to ACh.

Sodium-induced changes in BP were
accounted for statistically.

Lennon-
Edwards

et al.,
2014
[39]

30 ± 8 yr
n = 16 M/14 W
Normotensive,
Salt Resistant

460 mg/day ~7500 mg/day Seven days Conduit Artery: FMD
FMD was decreased by HS in both men

and women, but the decrement was
greater in men.

Migdal
et al.,
2020
[41]

25 ± 5 yr,
n = 17 M/20 W
Normotensive

138 mg 1495 mg Single Meal Conduit Artery:
FMD

FMD, assessed 50 min postprandial,
was unchanged after either meal.
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Table 1. Cont.

Sodium Intervention

Study Subject
Characteristics

LS
Content

HS
Content Duration Endothelial

Assessment Relevant Findings

Miyoshi
et al.,
1997
[34]

46 ± 12 yr
n = 15 M

Hypertensive
Salt-sensitive and
Salt Resistant BP

1970 mg/day 7880 mg/day Seven days Microvascular:
Forearm blood flow w/ACh

ACh-induced dilation was blunted in
subjects with salt-sensitive BP versus
salt resistant subjects. There was no
effect of HS on ACh responses in the

salt resistant group, but an increase in
ACh-induced dilation occurred in the

salt-sensitive group during HS.

Ramick
et al.,
2019
[44]

34 ± 11 yr
n = 18 M/11 F
Normotensive

Salt Resistant BP

460 mg/day 6900 mg/day Seven days Microvascular:
Cutaneous local heating

Local heating-induced dilation was
impaired in the HS condition compared

to LS. Local infusion of ascorbic acid,
tempol, and apocynin restored

microvasculature function during HS.

Smiljanec et al.,
2020
[38]

27 ± 6 yr
n = 16 M/17 W
Normotensive

Salt Resistant BP

1150 mg/day 6900 mg/day Seven days Conduit Artery: FMD

When HS was accompanied by
moderate intake of potassium, FMD

was reduced relative to the LS
condition. High-potassium intake

abolished the effects of HS on FMD.

Smiljanec et al.,
2020
[42]

24 ± 6 yr
n = 20 M/21 W
Normotensive

N/A 1445 mg Single Meal Conduit Artery: FMD

FMD was unchanged from baseline at
60 and 120 min post-meal in both the
oral antioxidant cocktail and placebo

conditions.

Stein
et al.,
1995
[33]

34 ± 7 yr
n = 7 M

Normotensive
Salt Resistant BP

230 mg/day 5750 mg/day Five days Microvascular:
Forearm blood flow w/MCh

MCh-induced dilation was similar in
HS and LS.

Tzemos,
et al.,
2008
[36]

25 ± 8 yr
n = 16 M

Normotensive
<920 mg/day ~5500 mg/day (4620

mg added to LS) Five days Microvascular:
Forearm blood flow w/ACh

Forearm blood flow responses to ACh
were blunted in the HS condition

relative to LS. Notably, systolic BP was
increased in HS, suggesting that some

subjects had salt-sensitive BP.

Subject age is presented as mean ± standard deviation (SD) (calculated from published n and standard error where necessary). ACh: acetylcholine, BP: blood pressure, FMD: flow-mediated dilation, HS: high
sodium intervention, LS: low sodium intervention, M: men, MCh: methacholine, W: women.
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4. Mechanisms Contributing to Dietary Sodium-Induced Impairment in
Endothelial Function
4.1. Oxidative Stress

Excess oxidative stress is the most well-studied mechanistic explanation for dietary
sodium-induced endothelial dysfunction. Oxidative stress occurs due to an imbalance
between endogenous antioxidant activity and production of reactive oxygen species (ROS),
particularly superoxide (O2

−), which results in impaired endothelial function by decreasing
NO bioavailability [45]. NO readily reacts with O2

− to produce the free radical peroxynitrite
(ONOO−). O2

− and ONOO− can then oxidize the eNOS cofactor tetrahydrobiopterin (BH4),
resulting in the uncoupling of eNOS and generation of O2

− rather than NO [46,47]. Lenda
and colleagues provided early evidence of ROS involvement in high-sodium-induced
endothelial dysfunction with the observation that dilation of skeletal muscle arterioles in
rats fed a high-sodium diet was restored in the presence of the O2

− scavenger superoxide
dismutase (SOD) [48]. Zhu and colleagues later demonstrated that aortas of normotensive
rats fed a high-sodium diet for three days produced less NO and more O2

− when stimulated
by MCh, whereas Tempol, a SOD mimetic, decreased O2

− production and increased
NO [49].

Human studies support a role for oxidative stress in dietary sodium-induced impair-
ments in endothelial function, as outlined in Figure 2. In middle-aged adults with elevated
BP who habitually consume a high-sodium diet, ACh-induced forearm blood flow and
brachial artery FMD were each augmented following ascorbic acid infusion [7]. Likewise,
Greaney et al. demonstrated that local infusion of ascorbic acid restored the NO-mediated
increase in skin blood flow to local heating in normotensive, salt-resistant individuals
consuming excess sodium [26]. Oral supplementation with the antioxidant vitamins C
and E during a high-sodium diet (5500 mg/day) similarly restored the skin blood flow
response to cutaneous ACh iontophoresis while also preventing an increase in markers of
oxidative stress in the plasma and urine [28].

Within endothelial cells, nicotinamide adenine dinucleotide phosphate (NADPH) oxi-
dase, xanthine oxidase, uncoupled eNOS, and mitochondria can produce O2

−. The origin
of O2

− induced by excess dietary sodium has been investigated by multiple laboratories
and/or may vary by species and/or the vascular bed studied. For instance, significantly
greater mRNA expression of NADPH oxidase subunits has been reported in the renal cortex
of rats fed high-sodium for one week [50]. Likewise, NADPH oxidase and xanthine oxidase
activity were increased in the skeletal muscle arterioles of rats fed high-sodium chow, how-
ever, inhibition of these enzymes did not restore endothelium-dependent relaxation [51].
Since O2

− scavenging restores dilation in the skeletal muscle microvasculature [48], the
authors speculated that uncoupled eNOS secondary to ONOO− oxidation of BH4 is the
source of O2

− [51]. Similarly, O2
− production in the skeletal muscle arterioles of high

sodium fed mice was decreased in the presence of both Tempol and L-NMMA [52]. The
follow-up study by Nurkiewicz et al. confirmed that mice fed high-sodium were BH4
deficient relative to mice on a normal sodium diet, and that this difference and the resulting
attenuation in NO-mediated dilation were restored by the addition of L-arginine to the
drinking water [53]. Together, these findings suggest that uncoupled eNOS, due to a
deficiency of BH4 or L-Arginine, is a source of sodium-induced increases in O2

−.
Zhu and colleagues found that apocynin, an inhibitor of NADPH oxidase, restored

dilation in mesenteric arteries of rats fed high-sodium [54]. Additionally, inhibition of
eNOS did not decrease O2

− production in the high-sodium rats, suggesting that uncoupled
eNOS was not the source of O2

− in the mesenteric artery [54]. Likewise, Guers et al.
reported that dietary sodium markedly increased NAPDH oxidase expression in rat femoral
arteries [55]. Two recent reports demonstrated that apocynin mitigates sodium-associated
reductions in cutaneous microvascular dilation to local heating [44] and ACh infusion [27],
suggesting that excess dietary sodium increases NADPH oxidase activity in normotensive,
salt-resistant humans. Whether this occurs in other vascular beds in humans has not
been determined.
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In addition to increased production of O2
−, it appears that high-sodium diets may

decrease endogenous antioxidant defenses. During inhibition of the cytosolic isoform of
SOD, copper-zinc SOD (CuZn SOD or SOD-1), the skeletal muscle microcirculation of rats
on a normal sodium diet showed a greater increase in O2

− than the microcirculation in
rats fed a high-sodium diet, suggesting attenuated activity of SOD-1 in the high-sodium
condition [56]. Notably, in this study, both groups of rats displayed similar SOD expres-
sion and similar responses to catalase inhibition, suggesting that activity of SOD-1 was
decreased in the high-sodium condition. Likewise, sodium decreased SOD-1 expression
in the femoral arteries of high-sodium fed versus normal chow fed rats [55]. Rats con-
suming a high-sodium diet also exhibited decreased expression of SOD-1 [57,58] and the
mitochondrial isoform, manganese SOD (MnSOD or SOD-2) [57], in the middle cerebral
artery; however, this effect may be vascular bed dependent, as the same laboratory did
not observe an effect of sodium consumption on either isoform of SOD in the mesenteric
arteries [59]. To date, whether vascular expression or activity of SOD are decreased due to
dietary sodium has not been directly tested in humans; however, such an effect may partly
explain the Tempol-induced increases in NO-mediated cutaneous microvascular function
in participants on a high-sodium diet [27,44].

4.2. Endothelial Cell Stiffening

In addition to oxidative stress, there is evidence that high dietary sodium intake
may decrease NO release via a change in the mechanical properties of endothelial cells.
Using cultured endothelial cells, Oberleithner and colleagues report that an increase in
the sodium content of the bath, within the physiological range for humans, results in
stiffening of endothelial cells, as measured by atomic force microscopy, and attenuated NO
release [60]. This only occurred when cells were treated with physiological concentrations
of aldosterone, and the stiffening was prevented by amiloride, indicating that opening of
epithelial sodium channels (ENaC) induces sodium entry and subsequent cell swelling.
Importantly, changes in endothelial cell deformability precede changes in shear-induced
NO release, whereas inhibition of NO does not stiffen the cell, suggesting that sodium-
induced endothelial stiffening is likely not due to loss of NO bioavailability [61].

Finally, intriguing recent evidence suggests that sodium-induced damage of the
endothelial glycocalyx (eGC) may initiate endothelial cell stiffening and subsequent en-
dothelial dysfunction, as illustrated in Figure 3. The eGC is a 0.5 to 4.5 µm thick mesh-like
layer of proteoglycans, glycoproteins, and glycosaminoglycans (i.e., heparin sulfate and
hyaluronic acid) on the luminal surface of endothelial cells that serves as a protective barrier
between the endothelium and red blood cells, and plays an important role in mechano-
transduction of shear stress [62]. Deterioration of the eGC occurs with conditions that
increase the risk of CVD, including aging [63], untreated hypertension [64], diabetes [65,66],
and obesity [67], and may be a consequence of oxidative stress [68]. In the context of dietary
sodium, the negatively charged eGC binds the positively charged sodium ions, thus buffer-
ing increases in plasma sodium levels and providing the initial endothelial cell barrier to
sodium [69]. However, when endothelial cells are exposed to 150 mmol of sodium rather
than 130 mmol ex vivo, the height of their eGC is reduced in a manner consistent with
heparinase-induced degradation [69]. As a result, sodium has increased access to ENaC,
and intracellular sodium increases rapidly, leading to augmented endothelial stiffness [70].
The sodium-induced decrease in eGC also increases monocyte adhesion and induces local
inflammation [71], thus initiating further endothelial dysfunction.
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5. Potential Countermeasures Against High Dietary Sodium-Induced
Endothelial Dysfunction

Population-wide sodium reduction is proposed as the best means to mitigate the
consequences of high-sodium consumption for both salt-resistant and salt-sensitive in-
dividuals [72]. For instance, by instituting policies aimed at decreasing sodium intake,
Finland has reduced sodium consumption by ~40% since 1980, which contributed to an
80% reduction in the middle-aged death rate from strokes and coronary artery disease,
despite increases in smoking and obesity [73]. Similarly, the sodium reduction plan insti-
tuted by the United Kingdom has decreased sodium intake by 15%, and is estimated to
have prevented 9000 deaths per year [72]. However, as the sodium intake in the United
States has been stable since the middle of the twentieth century [74] and a large portion
of the population has no interest in reducing their sodium consumption [75], it is crucial
that scientists identify non-sodium centered lifestyle changes that may help to counteract
the consequences of excess sodium intake. Aerobic exercise and/or increased dietary
potassium intake may diminish the vascular effects of excess sodium. If so, these behaviors
could be targets for public health interventions, especially in populations that tend to resist
sodium reduction.

5.1. Aerobic Exercise

Physical activity, or aerobic exercise in particular, is associated with reduced cardio-
vascular morbidity [76] and mortality [77] in adults. However, only approximately 60% of
this reduction can be attributed to the effect of exercise on traditional CVD risk factors [78],
suggesting non-traditional risk factors, such as endothelial function, may account for some
of the remaining benefits of exercise [79]. Indeed, exercise appears to improve vascular
function beyond vessels supplying the working muscles [80–83], though some controversy
on this topic still exists [84]. Thus, regular physical activity may protect the vasculature
from the effects of a high-sodium diet. Rebholz and colleagues report that the prevalence of
salt sensitivity of BP is lowest among those in the highest quartile of physical activity [85].
While this study did not address vascular function directly, it suggests that habitual physi-
cal activity level mitigates the effects of sodium in humans; however, there is a paucity of
research on this topic.

Our group recently published a report on the effects of voluntary wheel running
on endothelial function in Sprague Dawley rats fed either a high or low-sodium diet
for six weeks [55]. Consistent with previous reports, the high-sodium diet attenuated
ACh-induced endothelium-dependent relaxation of the femoral artery, despite no group
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difference in BP. However, the effect of sodium on ACh-mediated relaxation was abolished
in the rats who had access to a running wheel. Much of the systemic benefit of exercise on
endothelial function is thought to be due to the effect of increased shear and circumferential
stress on NO production (reviewed in [86]). In agreement with this hypothesis, Guers et al.
showed that physical activity reversed high-sodium diet induced decreases in the ratio of
phosphorylated eNOS relative to total eNOS expression. Additionally, voluntary wheel
running abolished the high-sodium diet-associated increases in the expression of NADPH
oxidase subunits and the decrease in expression of SOD-1. These findings support the
hypothesis that regular aerobic exercise may protect against the adverse vascular effects of
excess sodium consumption.

While the study by Guers et al. was not designed to determine the mechanism
responsible for the beneficial effects of exercise, we can speculate on a few potential
possibilities. Exercise elicits a marked increase in angiotensin II (Ang II) [87]. Ang II is a
potent vasoconstrictor, and high concentrations are known to activate NADPH oxidase
generation of O2

− [88]. Yet, increased sodium intake significantly suppresses plasma
Ang II levels. Interestingly, when Ang II is chronically infused in animals fed high-
sodium diets to restore physiological levels, endothelium-dependent relaxation is
restored [57,58,89,90], O2

− production is decreased [89], and the sodium-induced decrease
in SOD is abolished [57,58]. Together, this suggests that exercise may exert its vascular
benefits via increases in circulating Ang II. However, this explanation is unlikely, as the
half-life of Ang II in the blood is approximately 30 s [91], whereas the positive effect of
subpressor doses of Ang II in animals occurs with chronic infusions.

Another possible mechanism for the endothelium-protective effects of exercise in
high salt fed rats is the activation of nuclear factor erythroid 2-related factor 2 (NRF2).
NRF2 is a transcription factor activated by exercise-induced ROS that, in turn, regulates
expression of antioxidants and other cyto-protective genes [92–94]. Recently, Priestly
and colleagues demonstrated that the herbal supplement Protandim, previously shown to
activate NRF2 [95] and upregulate endogenous antioxidant enzymes [96], corrected sodium-
induced reductions in ACh-mediated relaxation in both rat cerebral and mesenteric arteries,
as well as in hamster cheek pouch arterioles [97]. Importantly, these animals exhibited
increased SOD and decreased mitochondrial ROS, yet there was no effect in the NRF2(−/−)

knockout rats, signifying that Protandim worked specifically on NRF2 [97]. Further work
is needed to determine if NRF2 activation via exercise is beneficial to rats and humans
consuming a high-sodium diet.

Aerobic exercise may also protect the endothelium from excessive sodium intake by
maintaining the eGC. While not studied in the context of sodium consumption, exposure to
fluid shear stress in cultured endothelial cells results in a thicker eGC [98], consistent with
a beneficial effect of increased blood flow, like that seen in exercise. Indeed, 20 weeks of
moderate intensity aerobic training decreases markers of eGC shedding in young men [99].
Likewise, a four-week high-intensity interval training program resulted in increased eGC
thickness in the sublingual microvasculature of healthy young adults and an increase in
circulating microRNAs associated with eGC thickness [100]. Theoretically, such protection
could prevent dietary sodium-induced eGC damage and subsequent endothelial dysfunc-
tion. A recent modelling study suggests that greater blood flow, like that occurring during
exercise, reduces the number of sodium ions that bind to the eGC, thus allowing the eGC
to maintain its sodium buffering capacity and mitigate the effect of sodium on endothelial
function [101]. As yet, however, the potential for aerobic exercise to protect the eGC from
high-sodium diets has not been experimentally tested in humans.

5.2. Dietary Potassium Intake

Increased dietary intake of potassium is associated with reduced risk of cardiovas-
cular morbidity and mortality [102]. Some of the beneficial effects of potassium may
come from its positive influence on endothelial function. For example, the blunted
ACh-induced dilation in stroke-prone spontaneously hypertensive rats is completely pre-
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vented by eight weeks of a high-potassium diet, despite no effect on BP [103]. Similarly,
2500 mg/day of potassium supplementation in hypertensive humans who typically con-
sumed ~3000 mg/day increased brachial artery FMD without a clinically significant reduc-
tion in BP [104]. This effect also occurred when increased potassium (5690 vs. 3110 mg/day)
was consumed via food sources [105], although this benefit to endothelial function was
not observed with a more moderate increase in dietary potassium (780–1560 mg/day) in
individuals who typically consume ~2300 mg/day [106].

Raij and colleagues demonstrated that the addition of 3.6% potassium citrate to a
high-sodium diet (8% sodium chloride) mitigated sodium-induced endothelial dysfunction
in Dahl salt-sensitive rats, independent of any effect on BP, providing support for the
use of potassium to combat the vascular consequences of excess dietary sodium [107].
Sundhir and colleagues also observed a protective effect of potassium supplementa-
tion (2.1% potassium chloride or 2.1% potassium bicarbonate) against the vascular insult
of sodium in Dahl rats; however, these findings appeared to be related to a direct effect of
potassium on systolic BP [108]. Notably, in young, salt-resistant humans, a high-potassium
diet (4700 mg/day) abolished the reduction in brachial artery FMD caused by a seven-day
high-sodium diet with moderate potassium intake (2500 mg/day), despite no change
in either laboratory-measured or 24-hr ambulatory BP [38]. Furthermore, added dietary
potassium counteracts an acute sodium insult without changing BP, as the postprandial re-
duction in FMD following a single high-sodium meal containing only 117 mg of potassium
was completely abolished when the high-sodium meal contained 1482 mg of potassium [43].
Taken together, these findings suggest that increased consumption of potassium may be a
relatively simple means to protect the vascular endothelium from a high-sodium diet.

The mechanisms through which high-potassium diets may confer vascular protection
against excess dietary sodium have not been fully elucidated, but it appears potassium
plays a role in modulating oxidative stress. For instance, McCabe et al. demonstrated that
cultured endothelial cells and monocytes produced less ROS as the potassium content of
the culture media increased [109]. Likewise, rabbits fed a low-potassium diet exhibited
increased O2

− production and decreased endothelium-dependent dilation [110]. Further-
more, high-potassium feeding in Dahl salt-sensitive rats abolished high sodium induced
increases in vascular O2

− and NADPH oxidase mRNA expression [111]. In addition to its
effects on oxidative stress, potassium appears to regulate the deformability of endothelial
cells, thus influencing how they respond to shear stress. Oberleithner and colleagues
demonstrated that an increase in extracellular potassium concentration softens endothelial
cells and increases NO release in response to shear stress [112]; however, more research is
needed to determine the precise mechanisms behind this effect.

6. Conclusions

Consumption of excess dietary sodium increases the risk for CVD-related morbidity
and mortality. While the processes through which dietary sodium promotes CVD are likely
multifactorial, mounting evidences suggests that endothelial dysfunction may be an early
contributor to this risk, as it is regularly observed as a consequence of high-sodium diets.
Importantly, sodium impairs endothelial functioning in healthy individuals who do not
have salt-sensitive BP, in addition to those for whom sodium increases BP. Extensive work
in cell culture and animal models has been performed to examine the mechanisms through
which dietary sodium harms the endothelium. This preclinical evidence suggests roles
for increased oxidative stress and damage to the endothelial glycocalyx. Translation of
these mechanistic studies to humans is ongoing, and will inform public health and clinical
strategies to mitigate the effects of dietary sodium.

Ideally, all adults should meet the current recommendation of 2300 mg or less of
sodium per day to decrease risk of CVD. However, excess sodium consumption remains
ubiquitous, despite decades of attempts at reducing sodium intake. As such, additional
approaches to lessen the impact of dietary sodium consumption must be explored. Aerobic
exercise and increased dietary potassium consumption, for example, each directly benefit
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the vascular endothelium, and may protect it in the face of a high-sodium diet. More
research is needed to determine if these non-sodium focused interventions are effective at
mitigating the deleterious effects of dietary sodium on the vasculature, and whether these
effects translate into a decrease in the burden of CVD.
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