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Worldwide, around 50 million people have dementia. Alzheimer’s disease (AD) is
the most common type of dementia and one of the major causes of disability and
dependency among the elderly worldwide. Clinically, AD is characterized by impaired
memory accompanied by other deficiencies in the cognitive domain. Neuritic plaques
(NPs) and neurofibrillary tangles (NFTs) are histopathological lesions that define brains
with AD. NFTs consist of abundant intracellular paired helical filaments (PHFs) whose
main constituent is tau protein. Tau undergoes posttranslational changes including
hyperphosphorylation and truncation, both of which favor conformational changes in
the protein. The sequential pathological processing of tau is illustrated with the following
specific markers: pT231, TG3, AT8, AT100, and Alz50. Two proteolysis sites for tau
have been described—truncation at glutamate 391 and at aspartate 421—and which
can be demonstrated by reactivity with the antibodies 423 and TauC-3, respectively. In
this review, we describe the molecular changes in tau protein as pre-NFTs progress to
extracellular NFTs and during which the formation of a minimal nucleus of the filament,
as the PHF core, occurs. We also analyzed the PHF core as the initiator of PHFs and
tau phosphorylation as a protective neuronal mechanism against the assembly of the
PHF core.

Keywords: tau protein, tau pathology, PHF core, truncation, phosphorylation, conformational changes, paired
helical filament, neurofibrillary tangles

INTRODUCTION

The elderly population is increasing globally, and this leads to the increased prevalence of
neurodegenerative diseases typical of this age group. Moderate and severe Alzheimer’s disease
(AD) can be clinically diagnosed with a high degree of certainty. However, at a preclinical or early
stage, symptoms shared with other neurodegenerative diseases make the diagnosis of AD difficult.
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Clinically, AD is characterized by progressive memory loss
and impaired cognitive functions (judgment, behavior,
and language). Neuritic plaques (NPs) (Figure 1A) and
neurofibrillary tangles (NFTs) (Figures 1B–F), which can be
stained by thiazin red (TR) and thioflavin S (TS) (Kelenyi,
1967; Stiller et al., 1970; Mena et al., 1995; Luna-Munoz
et al., 2008; Figure 2), are histopathological lesions in brains
with AD (Perl, 2010). At a macroscopic level, decreases in
brain size (Figures 3A,B), gray matter (Figure 3B, arrows),
and white matter (Figure 3B, small arrows) are observed.
A substantial increase in ventricular volume and significant
atrophy in the brain convolutions and the hippocampus
are also observed (Figure 3B). NFTs are associated with
neuronal death in AD. They consist of abundant intracellular
paired helical filaments (PHFs) whose main constituent is
tau protein. To aggregate into PHFs, tau dissociates from
microtubules, an event favored by specific modifications
(Crowther and Wischik, 1985; Wischik and Crowther,
1986; Wischik et al., 1992). In this review, we discuss

the posttranslational mechanisms of the phosphorylation
and truncation of tau protein that are associated with the
formation of PHFs. We conclude from our review that
pharmacological therapy for AD should not be directed against
phosphorylated tau.

NEURITIC PLAQUES

Neuritic plaques are made up of soluble or insoluble (Figure 1A)
extracellular deposits of amyloid β-peptide (Aβ). NPs are
bordered by filiform structures that are the dystrophic neurites,
which are part of the dendrites and axons of neurons (Guevara
et al., 1998; Espinosa et al., 2001) and glial (Figure 4A;
DaRocha-Souto et al., 2011; Serrano-Pozo et al., 2011) and
microglial cells (Figure 4B; Hayes et al., 2002; Jekabsone
et al., 2006; Lee and Landreth, 2010). Aβ is formed from
the proteolytic processing of a transmembrane protein called
the amyloid precursor protein (APP) (Kapaki et al., 2005).

FIGURE 1 | Histopathological lesions in Alzheimer’s disease (AD) brain. (A) Amyloid plaque stained using the BAM10 antibody (red channel), with associated
dystrophic neurites (arrows), and nuclei stained with To-Pro (blue). (B–F) Evolution of the aggregation of the tau protein recognized by different antibodies directed
against phosphorylated and truncated tau proteins. (B) Pre-neurofibrillary tangle (NFT) characterized by a diffuse granular staining in the neuronal soma (TauC-3,
green channel; 423, red channel, arrows). Perinuclear immunoreactivity is observed. Lipofuscin is autofluorescent in the red channel (asterisk). (C) Small tangles
(bead-like structures, arrows) visualized using two antibodies directed against the phosphorylated tau protein (pT231, green channel; CP13, red channel). (D,E)
NFTs at different stages of aggregation. (D) NFT with a fibrillar structure in the form of a trabecula around the nucleus (arrows). (E) Compact NFT, where the PHFs
have invaded the entire soma and displaced the nucleus from its original position, and visualised using pT231, which recognises a phospho-epitope within the mid
domain (DA9). (F) Extracellular NFTs, the last stage of aggregation of the tau protein. In the neuronal soma, this structure is much looser, lacking a cell membrane
and a nucleus. It consists of the minimum core of the filament (PHF core) and reacts with antibody 423, which recognizes truncation at Glu-391 (green channel) and
phospho-tau S396 (red channel). Images obtained with a Leica SP8 confocal microscope.
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FIGURE 2 | Double fluorescent staining of a case with Alzheimer’s disease.
Amyloid plaque (A) and neurofibrillary tangle (NFT) (B) evidenced by the dye
thioflavin S (TS, green channel) and thiazine red (TR, red channel). Both
markers co-locate, giving a yellow color in the merged channel. TS and TR
demonstrate the fibrillar state with the β-folded conformation of the amyloid
β-peptide (Aβ) and the tau protein assembled into filaments. Scale bar (A)
20 µm, (B) 10 µm. Images obtained with a Leica SP8 confocal microscope.

FIGURE 3 | Coronal section of the brain. (A) Control. (B) Alzheimer’s disease
(AD). Macroscopic morphological changes are observed. In AD, there is a
reduction in the size of the brain associated with neuronal death caused by
neurofibrillary tangles (NFTs). The ventricles (v) and the grooves between the
convolutions widen, and there is a considerable reduction in the thickness of
the gray matter (large arrow) and white matter (small arrow).

APP can be processed in two ways: one physiological or non-
amyloidogenic and the other pathological or amyloidogenic. In
the non-amyloidogenic pathway, APP is cleaved by α-secretase
in its N-terminal ectodomain (sAPPα), leaving the C-terminal
α-CTF fragment anchored in the membrane. Subsequently,
α-CTF is cut by the action of γ-secretase, giving rise to
fragments p3 and AICD (APP intracellular domain). In the
amyloidogenic pathway, β-secretase initiates APP proteolysis by
cutting the ectodomain called sAPPβ (soluble peptide APPβ).
The membrane-anchored fragment or β-CTF is subsequently cut
by γ-secretase, generating Aβ. While Aβ peptides 1-40 and 1-
42 are the main constituents of the NPs, Aβ1-42 is the first to
be deposited and has greater ease of adding and polymerizing
under physiological conditions (Jarrett et al., 1993; Iwatsubo
et al., 1994). Aβ undergoes post-translational modifications such
as oxidation, phosphorylation, glycosylation, pyroglutamination,

isomerization, or racemization. These modifications may favor
Aβ polymerization, toxicity, and inflammatory activity observed
in cases of AD (Polanco et al., 2018).

NEUROFIBRILLARY TANGLES

The presence of NFTs in the hippocampus follows a stereotyped
pattern described in six stages (Braak and Braak, 1991). In
stages I and II, NFTs are observed in the transentorhinal
cortex and the adjacent area of the entorhinal cortex II. They
are considered the preclinical stages in the absence of clinical
symptoms. In stages III and IV, NFTs have invaded mostly the
entorhinal cortex II, subiculum, and CA1. At these stages, the
first clinical symptoms, or memory loss, begin. Stages V and VI
are characterized by a complete invasion of the hippocampus,
layer IV of the entorhinal cortex, and the neocortex. These latter
stages correspond to an advanced phase of AD. This pathological
progression is important in the postmortem diagnosis of AD and
characterization of the stages in its development.

TAU PROTEIN

Tau protein belongs to the family of microtubule-associated
proteins (MAPs) (Goedert et al., 1988; Lee et al., 1988; Himmler,
1989). In humans, tau is encoded by a single-copy gene located
on chromosome 17q21.3 (Neve et al., 1986). This gene has
16 exons, of which exons 2, 3, 4A, 6, 8, 10, and 14 can be
alternatively spliced (Figure 5). This processing generates six
isoforms of tau in the central nervous system (CNS), ranging
from 352 to 441 amino acids in length (Goedert et al., 1989b).
Structurally, the tau molecule is highly elastic, without secondary
structure (Schweers et al., 1994). It presents two domains: an
amino terminal domain named “projection domain,” composed
of an acidic region and a proline-rich region. The carboxy-
terminal domain consists of the “microtubule-binding domain,”
which contains three (3R) or four tandem repeats (4R) of 31
or 32 amino acids and a C-terminal tail. The additional repeat
region is encoded by exon 10. It is the repeat domain of tau
that is vital for its ability to polymerize into filaments, and
it is highly sensitive to phosphorylation (Steiner et al., 1990).
The tau isoforms differ in the presence of N-terminal inserts
(0, 1, or 2) and the number of C-terminal repeats (3R or
4R). During the fetal and early developmental stages, 3R tau
isoforms are predominant, whereas both the 3R and 4R isoforms
can be found in adult brains (Goedert et al., 1989a; Andreadis
et al., 1992). The 4R isoform is about 40-fold more efficient
at binding microtubules than the 3R isoform. Thus, the 3R
tau would allow greater cytoskeletal plasticity in the growing
immature neurons of the fetal brain (Lindwall and Cole, 1984;
Bramblett et al., 1993). It has been shown that the 4R/3R ratio in
normal and AD brains are 1:1 and approximately 2:1, respectively
(Goedert et al., 1989a). Alternative splicing of exon 10, which
impacts on the expression of the 3R and 4R isoforms, could
be related to the pathogenesis of tauopathies (Liu and Gong,
2008; Zhou et al., 2008). It has been demonstrated that the
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FIGURE 4 | Immunofluorescence of amyloid plaques. (A) Amyloid β-peptide (Aβ) deposit recognized by thiazine red (TR, red color), which is bordered by glial cells
(GFAP, blue color) and by dystrophic neurites, recognized by the antibody that reacts with phosphorylated tau protein (TG-3, green color). (B) Amyloid plaque is
recognized by the TR dye (red color). At the periphery, microglial cells are recognized by the Iba-1 antibody (green color) and the cell nuclei with To-Pro (blue color).
Images obtained with a Leica SP8 confocal microscope.

FIGURE 5 | Isoforms of the tau protein. The tau protein gene is located on the long arm of chromosome 17, which generates six isoforms by alternative processing.
The longest isoform in the CNS is 441 amino acids and the shortest is 352 amino acids. The length depends on the presence/absence of inserts in the amino
terminal portion and the presence of three or four repeated domains.
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presence of these isoforms differs according to the type of tau
deposit and corresponds to the morphological structure of NFTs
(Ginsberg et al., 2006). For example, AD is characterized by 95%
PHFs and 5% straight filaments (SFs), whereas in Pick’s disease
the filaments are predominantly SFs. Tau-positive neurons,
which exhibit diffuse cytoplasmic tau without apparent fibrillary
structures (pre-tangle neurons), appear to be 3R-negative/4R-
positive. Intracellular NFTs with typical fibrillary structures
contain equal amounts of 3R and 4R isoforms. Structures that
are 3R-positive/4R-negative would correspond to extracellular
ghost tangles. 3R tau-positive lesions are abundant in the areas
in which tau deposition begins early and increase with disease
progression (Ginsberg et al., 2006). In contrast, 4R tau-positive
lesions appear in the regions in which tau deposition starts
later. In this sense, an orchestrated regulation would change the
tau isoform as the AD progresses (Jakes et al., 1991; Uchihara
et al., 2012; Uchihara, 2014; Uematsu et al., 2018). It remains
to be clarified how the synthesis of the different isoforms is
regulated and exactly how the 3R and 4R tau isoforms affect the
progression of AD.

POSTTRANSLATIONAL MODIFICATIONS
INVOLVED IN THE GENESIS OF PHFs

Tau protein undergoes a number of posttranslational
modifications: phosphorylation, truncation, acetylation,
methylation, glycosylation, nitration, glycation, and
SUMOylation. The hyperphosphorylation and truncation of tau
have been extensively studied in relation to the genesis of PHFs.

Tau Hyperphosphorylation
The concentration of phosphorylated tau is increased by two
to threefold in AD compared with healthy controls (Blennow
et al., 1995; Vigo-Pelfrey et al., 1995). Tau protein has 85
feasible phosphorylation sites: 45 serine, 35 threonine, and five
tyrosine residues. Of these, 30 sites appear to be abnormally
phosphorylated (Figure 6). Phosphorylation causes tau to
lose affinity for β-tubulin, microtubule depolymerization, and
pathological aggregation (Noble et al., 2013; Ercan-Herbst et al.,
2019). Phosphorylation of the serine residues 235, 262, 293,
324, and 356 favors detachment of tau from tubulin (Drewes
et al., 1995; Liu et al., 2007). The main kinases involved in
this process are the glycogen synthase kinase 3 beta (GSK-3β),
cell division protein kinase 5 (CDK5), AMP-activated protein
kinase (AMPK), protein kinase A (Guillemin et al., 2005), and
FYN (Mandelkow et al., 1992; Morishima-Kawashima and Kosik,
1996; Andorfer and Davies, 2000; Lee et al., 2004; Thornton
et al., 2011; Mairet-Coello et al., 2013). The participation of
these enzymes in neurodegeneration, however, remains to be
established (Noble et al., 2013).

Tau Truncation
Tau can undergo proteolysis by various enzymes in vitro:
caspase-6, which cleaves tau between amino acids 13–14 and
402–403; caspase-3 (25–26 and 421–422); calpain (44–45, 230–
231, and 242–243); ADAM10 (152–153); thrombin (155–156);
and chymotrypsin (197–198) (Amadoro et al., 2020). For the
identification of the truncation of tau at aspartate 421, Gamblin
et al. (2003a) developed the monoclonal antibody TauC-3. Its
characterization on AD brain tissue showed it to have a high

FIGURE 6 | Scheme of the stages of molecular tau processing. (A) Intact tau molecule shown. (B) On intact tau protein occurs the first phosphorylation in Thr231.
This phosphorylation is decisive for the first conformational change evidenced by the TG-3 antibody (C). (D) The amino acids 202 and 205 (AT8) are phosphorylated,
which favors the phosphorylation in amino acids 212 and 214 (AT100). It generates the second pathological conformational change in tau (E). The set of these two
regional conformational changes favors the folding of the N-portion, causing the regional conformational change recognized by the Alz-50 antibody (epitopes 2–10
and 312–322) (F). (G) In pre-neurofibrillary tangles (NFTs), there is a high activity of caspase-3, which acts once the tau protein is phosphorylated in pT231.
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affinity for NFTs and dystrophic neurites (Guillozet-Bongaarts
et al., 2005). Meanwhile, Rissman et al. (2004) recognized the
same truncation using a polyclonal antibody, which showed
reactivity in neurons lacking developed fibrillar structures. In
contrast, the minimal nucleus, or PHF core, of the protease-
resistant filaments (Wischik et al., 1985) is recognized by the
monoclonal antibody 423. This PHF core consists of a fragment
of the tau protein with 92–95 amino acids, ending at glutamate
391 (Glu-391). It is made up of three and a half tau domains,
phase-shifted with respect to the tandem repeat domains, and
is characterized by truncation at Glu-391 and, being highly
insoluble, highly resistant to degradation by either formic acid
or pronase (Novak et al., 1989; Wischik et al., 1992). Isolation
and subsequent characterization of the PHF core showed it to
have a C-shaped sub-domain repeating within a helical structure
(Wischik et al., 1985, 1988a,b, 1992; Wischik and Crowther, 1986;
Mena et al., 1996). Recently, the molecular structure of these
C-shaped sub-domains of the PHF core has been established by
cryo-electron microscopy (Fitzpatrick et al., 2017). It has been
observed in vitro that the PHF-core tau is able to form PHFs
(Al-Hilaly et al., 2017) and that its overexpression is capable of
inducing cell death by apoptosis in COS cell cultures (Fasulo
et al., 1998). In AD brains, the PHF core co-locates with intact
tau and phosphorylated tau, from pre-NFTs to extracellular
NFTs (Flores-Rodriguez et al., 2015). This structure is found
in the different stages of the pathological processing of tau
(intact, phosphorylated, and tau with conformational changes).
It has been suggested that the PHF core favors the capture
of intact phosphorylated tau molecules, preventing the neuron
from perceiving the truncation in Glu-391 and its apoptosis
(Fasulo et al., 1998, 2005).

CONFORMATIONAL CHANGES OF THE
TAU PROTEIN

Regional Conformational Changes
Posttranslational pathological processing of the tau protein
includes regional conformational changes dependent on
phosphorylation (Jicha et al., 1997b; Zheng-Fischhofer et al.,
1998) and structural changes (Carmel et al., 1996; Jicha et al.,
1997a, 1999) dependent on these regional conformational
changes (Luna-Munoz et al., 2005, 2007). Some regional
conformational changes are characterized by phosphorylated
amino acid residues. One of these conformational changes results
from phosphorylation at position threonine 231 (Thr-231) and
serine 235 (Ser-235), recognized by the TG-3 antibody (Wolozin
et al., 1986; Figure 6). Meanwhile, the AT100 antibody also
recognizes a regional conformational change dependent on
the phosphorylation of amino acid residues 202 and 205 and,
additionally, 212 and 214. Previous studies, using recombinant
tau, determined that the phosphorylation of residues 202
and 205 (recognized by the AT8 antibody) occurs before the
phosphorylation of amino acids 212 and 214. In contrast, if
amino acids 212 and 214 are phosphorylated first, no regional
conformational change occurs, and AT100 shows no reactivity
(Zheng-Fischhofer et al., 1998). It has been observed that

the epitopes recognized by the TG-3 (phospho-tau 231–235)
antibody are very stable during the evolution of the NFT, similar
to pT396 (phospho-tau at amino acid 396), because they are
closer to the contiguous portion of the PHF core.

Structural Conformational Changes
There is a structural conformational change of tau that depends
on an intact amino terminal (amino acids 2–10), and the third
repeat (312–342). This conformation can be seen using Alz50,
an antibody that has been associated with the initial stage of the
pathological processing of tau (Jicha et al., 1997a).

SEQUENCE OF MOLECULAR EVENTS
DURING THE AGGREGATION OF TAU
PROTEIN IN PHF FORMATION

Pathological aggregation of the tau protein follows a series of
structural steps ranging from the formation of a pre-NFT to the
formation of an extracellular NFT (Figures 1B–F, 7). The pre-
NFT, characterized by a diffuse granular form in the cytoplasm
(Figure 1B), results in a perinuclear staining recognized by
some phosphorylated epitopes in the amino terminus and by
an intact tau protein. This aggregation has no affinity for
the TR dye as it is an assembly marker. The next stage is
characterized by the presence of small dense aggregates of tau
or small tangles (Figure 1C), which are related to the TR dye.
These small packages converge and form a trabecula in the
neuronal soma (Figure 1D). This structure fills the neuronal
body, forming an intracellular NFT, which displaces the cell
nucleus from its original central position toward the periphery
(Figure 1E). Finally, these filaments are exposed as extracellular
NFTs, which is only detected using the TR dye and the antibody
423 (truncation in Glu-391). This stage is characterized by a
loose fibrillar structure in which the cell membrane and the
nucleus have been lost (Figure 1F; Mena et al., 1991; Galvan
et al., 2001; Luna-Munoz et al., 2007). At a molecular level, late
events can be seen in NFTs, such as a structural conformational
change or truncation in Asp-421 and Glu-391. Truncation at
Asp-421 occurs after the conformational change recognized by
the antibody Alz-50 (when the tau protein is perfectly assembled
in the filament) and culminates with the presence of truncation
at Glu-391 (Garcia-Sierra et al., 2003; Guillozet-Bongaarts et al.,
2005; Basurto-Islas et al., 2008). However, this model does not
take into account of phosphorylation state. The molecular events
associated with tau phosphorylation follow a well-defined order
(Figure 6). However, it is difficult to follow the phosphorylation
of tau in the NFTs since, in these structures, the tau protein
is found simultaneously in different states of expression and
aggregation. Thus, the earliest events are studied in the pre-
NFTs (Figure 6A). It has been suggested that the first step is
the phosphorylation of the tau protein at Thr-231 (Figure 6B),
followed by the phosphorylation of Ser-235, which leads to the
first regional conformational change, detectable using the TG-
3 antibody (Figure 6C). Subsequently, amino acid residues 202
and 205 become phosphorylated (epitopes recognized by the
AT8 antibody) (Figure 6D). This modification involves a second
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phase of phosphorylation at amino acids 212–214 and a second
regional conformational change identified by the AT100 antibody
(Figure 6E). These changes lead to a structural conformational
change recognized by the Alz50 antibody (Figure 6F; Luna-
Munoz et al., 2007), which requires an intact N-terminus
(Carmel et al., 1996; Jicha et al., 1999). The truncation at Asp-
421 is observed immediately after phosphorylation at Thr-231
(Luna-Munoz et al., 2007; Figure 6G). This suggests that the
presence of the truncated tau protein at Asp-421 favors filament
polymerization (Gamblin et al., 2003a,b; Yin and Kuret, 2006).

TEMPLATE TAU PROTEIN IN PHF

We have been investigating the relationship between the different
species of phosphorylated and truncated tau protein and the
mechanism whereby tau assembles into insoluble and stable
PHFs over a period of several years. We have been analyzing
pre-tangle cells (Figure 1B, arrow), in which the first steps of non-
fibrillary aggregation of the tau protein arise in AD. On the basis

of our morphomolecular analysis, we propose the following steps
in PHF assembly (Figure 7).

(1) The presence of a PHF core (297–391) is a highly toxic
truncated tau species.

(2) A specific cascade of phosphorylation on the N-terminus of
the tau protein (Figure 6).

(3) Truncation of the C-terminus by caspase-3.
(4) Aggregation and oligomerization of all species of tau.
(5) Assembly of tau protein in PHFs.

The first event that occurs in the formation of PHFs, and
with it the NFTs, would be represented by the appearance (via
an unknown origin) of subunits of the PHF core (Figure 7,
step 1). The toxicity of the truncated tau (92–95 amino acids)
is associated with the high affinity of the intact tau and the
phosphorylated tau to this small fragment (Figure 7, step 2),
which would trigger an immediate neuroprotective mechanism.

FIGURE 7 | Model for the assembly and processing of tau proteins in paired helical filaments (PHFs). Neurons that have not yet been affected express the intact tau
protein associated mainly with microtubules in axons. Braak stages I–IV are the early stages prior to fibrillary inclusions. Stages I and II represent the presence of a
PHF core (circa 95-amino acid residue fragment). Stage III is characterized by the cytoplasmic aggregation of the tau molecules, favored by the nuclear fragments of
tau. PHFs begin their formation with intact and tau molecules phosphorylated in the N-terminus. This stage corresponds to the presence of the granular tau protein
in the neuronal cytoplasm seen by confocal microscopy. The PHF core is masked by intact and phosphorylated tau molecules. In stage IV, the truncation between
the amino acids Asp-421/Ser-422 appears. This truncation is observed from the granular stages. In stage V, intracellular PHFs and fibrils are initiated,
phosphorylated in both their N- and C-terminal portions, which are recognized with antibody 423 (Glu-391 truncation). The fibrillar nature is confirmed by the affinity
of the thiazine red (TR) dye in stage VI. The N-terminal portions are removed. As the neurofibrillary tangle (NFT) becomes extracellular, the structures are highly
insoluble and are exclusively immunoreactive with antibody 423, with only occasional epitopes of pS396 available.
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This would be reflected by the hyperphosphorylation of the tau
molecule in a failed attempt to hide the PHF core and avoid
the kidnapping of the molecules of intact tau. Unfortunately,
in AD, the protective mechanism that might be involved
in phosphorylated tau protein would only favor that there
are more molecules available for its sequestration and the
formation of PHF, which represents, finally, a polymer made
up of fragments of tau in an intracellular NFT (Figure 7,
steps 3 and 4). In extracellular NFTs, all phosphorylation is
lost as a result of proteolysis, during which the PHF core
becomes exposed (Figure 7, steps 5 and 6). There are findings
suggesting that phosphorylation of the tau protein may have
a protective role and be non-toxic (Castellani et al., 2008;
Congdon and Duff, 2008; Luna-Munoz et al., 2013; Flores-
Rodriguez et al., 2015). This implies that NFTs serve as a
protective structure.

FUTURE STUDY OF TAU PROTEIN

The complete functions of the tau protein remain to be
elucidated. Tau is a stabilizing microtubule-associated protein.
In the nucleus, this protein protects the DNA in situations
of cellular stress; in the nucleolus, it favors the nucleolar
function (Sjoberg et al., 2006), the process of mitosis (Flores-
Rodriguez et al., 2019) and meiosis (Inoue et al., 2014). Tau
has been previously observed in non-neuronal organs such
as the heart, skeletal muscle, lung, or skin and in different
states of non-pathological phosphorylation (Gu et al., 1996;
Zhou et al., 2020). This suggests that tau phosphorylation may
be involved in functions yet to be established. Therapeutic
approaches to prevent tau phosphorylation could cause
problems in these organs. Truncation at Glu-391 appears
to be a good differential marker between AD and other
neurodegenerative pathologies.

CONCLUSION

The aggregation and polymerization of the tau protein has
been suggested to be a response to pathological events that
occur early in neurons and the brain. Tau phosphorylation and
NFT formation seem to act as a protective event against the
minimal nucleus of the filament (PHF core), which functions as
a prion and is highly toxic. Taking into account that NFTs are
closely correlated with the cognitive deterioration of patients, it
is vitally important to look for other proteins that can define
the early onset of AD. Whereas the development of drugs
directed against the phosphorylation of the tau protein may
involve certain risks, targeting the aggregation of tau proteins
with compounds that fail to affect the normal association of
tau with microtubules offers another therapeutic target (Wischik
et al., 2014; Wilcock et al., 2018). Continued donation of
tissue for research will be of utmost importance since it will
allow a better understanding of these pathological events and,

ultimately, bring hope of discovering effective methods to both
diagnose and cure AD.
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