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Abstract
Excitatory synaptic connections in the adult neocortex consist of multiple synaptic contacts, almost exclusively formed on
dendritic spines. Changes of spine volume, a correlate of synaptic strength, can be tracked in vivo for weeks. Here, we
present a combined model of structural and spike-timing–dependent plasticity that explains the multicontact configuration
of synapses in adult neocortical networks under steady-state and lesion-induced conditions. Our plasticity rule with
Hebbian and anti-Hebbian terms stabilizes both the postsynaptic firing rate and correlations between the pre- and
postsynaptic activity at an active synaptic contact. Contacts appear spontaneously at a low rate and disappear if their
strength approaches zero. Many presynaptic neurons compete to make strong synaptic connections onto a postsynaptic
neuron, whereas the synaptic contacts of a given presynaptic neuron co-operate via postsynaptic firing. We find that co-
operation of multiple synaptic contacts is crucial for stable, long-term synaptic memories. In simulations of a simplified
network model of barrel cortex, our plasticity rule reproduces whisker-trimming–induced rewiring of thalamocortical and
recurrent synaptic connectivity on realistic time scales.
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Introduction
Most excitatory synapses to pyramidal cells of the mammalian
neocortex project onto dendritic spines (Yuste 2011), visible as
small protrusions that vary in size and shape and are subject to
ongoing plasticity (Trachtenberg et al. 2002; Yasumatsu et al.
2008; Holtmaat and Svoboda 2009; Loewenstein et al. 2011). The
volume of a spine is highly correlated with synaptic current
amplitude, a measure of synaptic weight (Matsuzaki et al.
2001), and changes of spines have been linked to learning
(Stepanyants et al. 2002; Hayashi-Takagi et al. 2015). Although
all dendritic spines show considerable volatility and may be
eliminated (Loewenstein et al. 2015), some spines are maintained

over longer periods of time than others (Holtmaat et al. 2005;
Yang et al. 2009) and may contribute to long-term memories
(Grutzendler et al. 2002).

There have been 3 puzzling observations that we would like
to address in the present study. First, time-lapse imaging of
spines on time scales of seconds, hours, and days to weeks has
shown that small spines are removed and new spines formed
(Matsuzaki et al. 2004; Holtmaat et al. 2005, 2006; Yasumatsu
et al. 2008; Holtmaat and Svoboda 2009; Zito et al. 2009; Kwon
and Sabatini 2011), consistent with functional connectivity
measurements in slices (Le Be and Markram 2006; Wiegert and
Oertner 2013). However, despite ongoing spine turnover, the
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distribution of synaptic weights as measured with indicators
for postsynaptic density molecules (Minerbi et al. 2009) or with
electrophysiological methods (Le Be and Markram 2006) is long-
term stable. In view of this result, we would like to pose a first
question: “Can a synaptic and structural plasticity rule induce
long-term stability of important features of wiring patterns and
synaptic weight distributions in the presence of spine turn-
over?” In contrast to models of synaptic memory consolidation,
which invoke synaptic processes of “single” contacts on differ-
ent time scales to explain long-term stability (Fusi et al. 2005;
Clopath et al. 2008; Roxin and Fusi 2013; Zenke et al. 2015;
Benna and Fusi 2016), we focus on a structural plasticity model
with “multiple” potential contacts that can become active or
inactive.

Second, cortical spines show remarkable dynamics after
partial lesioning of input pathways (Trachtenberg et al. 2002;
Holtmaat et al. 2006; Keck et al. 2008; Rose et al. 2016). In partic-
ular, after trimming of whiskers, the fraction of newly formed
spines in somatosensory cortex that become persistent increases
compared with control (Holtmaat et al. 2006). This leads us to
pose a second question: “Can a combined model of synaptic and
structural plasticity account for rewiring after input lesion?” The
reconfiguration of synapses and receptive fields has been a topic
of study in synaptic plasticity models with continuous weight
dynamics (e.g., Bienenstock et al. 1982) and, separately, of struc-
tural synapse formation models (Butz and Ooyen 2013; Vlachos
et al. 2013). However, in a “combined synaptic and structural”
multicontact plasticity model, the time scale of rewiring of synap-
tic contacts and its interplay with homeostatic increases of syn-
aptic weights (Toyoizumi et al. 2014) has so far not been
considered.

Third, synapses between pyramidal neurons in the somato-
sensory cortex of the rat are sparse and the distribution of the
number of putative anatomical synaptic contacts for pairs of
pre- and postsynaptic neurons has a characteristic “bimodal”
shape (Markram, Lübke, Frotscher, Roth et al. 1997a, 2015; Fares
and Stepanyants 2009): Even if two neurons are close neigh-
bors, the most likely outcome of paired recordings is that there
is no synaptic contact; however, those neuron pairs that form
synapses are likely to establish 4 or more contacts (Markram,
Lübke, Frotscher, Roth et al. 1997a). The combination of both
observations results in a distribution of putative synaptic con-
tacts with a dominant peak for zero contacts, a trough for 1–2
contacts and a second peak around 4–8 contacts (Fares and
Stepanyants 2009). This bimodal distribution (called distribu-
tion of “actual” contact multiplicity in the following) has to be
compared with the number of “potential” synaptic contacts
between a pair of neurons that has been estimated from the
number of axon-dendritic appositions (near-touch points) in
reconstructed cortical microcircuits (Fares and Stepanyants
2009). If near-touch points are defined whenever the distance
between reconstructed dendritic and axonal branches is less
than 2 μm (Fares and Stepanyants 2009) or 2.5 μm (Reimann
et al. 2015), then the distribution of potential contact multiplic-
ity between neighboring neurons in the same layer is always
broadly distributed extending to 10 or more contacts (Fares and
Stepanyants 2009; Markram et al. 2015; Reimann et al. 2015)
and the probability of finding not a single near-touch point
between close neighbors is nearly zero (Reimann et al. 2015).
The difference between the distribution of actual and potential
synaptic contact multiplicity implies that contacts driven by
the same presynaptic neuron must “co-operate” (Fares and
Stepanyants 2009), potentially via correlation detection in
spike-timing–dependent plasticity (STDP) (Helias et al. 2008;

Deger et al. 2012). At the same time, synaptic plasticity rules
that are useful for receptive field development and assembly
formation must show “competition” between synapses from
different presynaptic neurons, so that some connections grow
at the expense of others (Bienenstock et al. 1982; Oja 1982;
Miller and MacKay 1994; Kempter et al. 1999; Song et al. 2000;
van Rossum et al. 2000; Shouval et al. 2002; Helias et al. 2008;
Morrison et al. 2008; Clopath et al. 2010; Zenke et al. 2015). This
observation leads us to pose two further questions: “Can multi-
contact synaptic and structural plasticity combining both co-
operation and competition arise from a single mathematical
rule?” In particular, “why does successful co-operation not lead
to connections with a number of contacts equal to the potential
maximum?” Competitive synaptic plasticity models developed
for single-contact connections (Bienenstock et al. 1982; Kempter
et al. 1999; Song et al. 2000; van Rossum et al. 2000; Helias et al.
2008; Bourjaily and Miller 2011; Miner and Triesch 2016) will
drive, in a multicontact scenario, the number of active synap-
tic contacts to the maximum value, at least for those presyn-
aptic neurons with the largest correlations (Fauth et al. 2015a).
In contrast to earlier work with abstract Markovian state-
transition models (Deger et al. 2012; Fauth et al. 2015a) or
explicit algorithmic learning rules (Fares and Stepanyants
2009; Reimann et al. 2015), we propose an STDP-based learning
rule for the multicontact scenario that leads to the emergence
of “co-operativity” between contacts of one, but competition
between contacts of multiple, presynaptic neurons with a
bimodal distribution of actual synaptic contact multiplicity
that peaks at values smaller than the number of potential
contacts.

Our model introduces a novel combination of Hebbian and
anti-Hebbian terms with several attractive features: synaptic
and structural plasticity 1) stabilizes firing rates, 2) keeps net-
work activity stable, 3) limits the correlation between pre- and
postsynaptic neuron at single synaptic contact points, 4) limits
weight growth without explicit upper bounds, 5) leads to co-
operation of contacts of the same presynaptic neuron, 6) leads
to a competition between different presynaptic neurons, and 7)
enables us to study the network effects of structural plasticity.
We thus demonstrate that a local spike-timing–dependent
learning rule is sufficient to explain the bimodal distribution of
contact numbers with a peak around 4–8 contacts. Furthermore,
we demonstrate that multiple contacts are not only interesting
from the perspective of information transmission (Laughlin
et al. 1998; Fares and Stepanyants 2009) but also increase long-
term stability of synaptic connections.

Materials and Methods
Synaptic Contacts

In the experiments of Figures 1–5, we model the plasticity of the
synaptic connections from N presynaptic neurons onto a single
postsynaptic neuron (Fig. 1a). A presynaptic neuron j may be con-
nected to the postsynaptic neuron by several synaptic contacts k,
up to a maximum of nj potential synaptic contacts. Note that the
number nj of potential contacts is different for different neurons j
and drawn in our model from a unimodal probability distribution

( )P n (Fig. 2a, blue line) taken from Fares and Stepanyants (2009).
These authors estimated the distribution of potential contacts
from reconstructed cortical microcircuits of rat barrel cortex.
Potential contacts between 2 nearby (somatic distance less than

μ50 m) layer 5 pyramidal neurons were defined as “near-touch”
points where axons and dendrites pass at a distance of less than
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μ2 m (Fares and Stepanyants 2009). In the reconstructed microcir-
cuits, a small fraction of neuron pairs would have more than 10
and up to 20 potential contacts (Fares and Stepanyants 2009). For
computational reasons, we limited nj to a maximum of 10. To do
so, we truncated the distribution in Fares and Stepanyants (2009)
at =n 10 and renormalized the distribution ( )P n thereafter to
∑ ( ) == P n 1n 1

10 . In the model, we randomly assigned ( ) ⋅P n N pre-
synaptic neurons to each potential contact number n in order to
exactly reproduce the distribution ( )P n , except for Figure 4 (sin-
gle-contact case) and Figure 6 (recurrent network). The number nj

of potential contacts of neuron j is then kept fixed thereafter. Our
results in Figure 3a indicate that the model is insensitive to the
truncation of the distribution at =n 10j because nearly none of
the presynaptic neurons developed =n 10 actual contacts after
100 days of simulated time. We therefore conclude that a maxi-
mum value of potential contacts of =n 20j (Fares and Stepanyants
2009) (instead of our maximum of 10) would give equivalent
results, albeit at increased computational cost.

The mean of the probability distribution ( )P n of the number
of potential contacts (Fig. 2a, blue line) is 4.633. In the simula-
tions of Figures 1–3 and 5, we use =N 1000 presynaptic neu-
rons. Application of the initialization procedure for potential

contacts described above therefore leads in our multicontact
model with =N 1000 presynaptic neurons to a total of 4633
potential synaptic contacts. In the single-contact model of
Figure 4, we set =n 1j for all connections ≤ ≤j N1 . To maintain
the total number of potential synaptic contacts in the system
with single-contact connections identical to that of the multi-
contact system, we increase the number of presynaptic neu-
rons to =N 4633, keeping all other parameters the same.

The synaptic contact k with ≤ ≤k n1 j of a presynaptic neu-
ron j onto the postsynaptic one is described by a unit-less
weight wj k, , which can change as a function of time. The total
weight = ∑ =w wj k

n
j k1 ,

j of the connection from a presynaptic neu-
ron j is given by the sum of the weights wj k, over all its contacts

≤ ≤k n1 .j The contact weight wj k, in our model describes how
much the contact k contributes to firing the postsynaptic cell
and can be viewed as representing the dendritic spine volume,
which is in turn strongly correlated with the AMPA receptor
content in the postsynaptic density (Matsuzaki et al. 2001,
Holtmaat and Svoboda 2009). Note that in Figures 1–5, we have
only a single postsynaptic neuron (except for the simulations
of the recurrent network in Fig. 6), so that we do not need an
index for the postsynaptic neuron.

Figure 1. Model overview and analysis. (a) A synaptic connection between a presynaptic neuron j and the postsynaptic neuron consists of multiple contacts with

weights wj k, , summing to the total weight = ∑w wj k j k, . Connections of similar total weight can be composed of a single large contact (connection from neuron n) or
several smaller contacts (connection from neuron j). (b) Individual contact weights take continuous, positive values and change in time according to STDP. Small

weights correspond to thin dendritic spines (with a small volume), and large weights correspond to large (mushroom-shaped) spines. Contacts with positive weight

are actual contacts ( >w 0j k, ). If they transition to ≤w 0j k, , they are pruned (weights fixed at =w 0j k, ) and become potential (but inactive) contacts. These are trans-

formed into actual contacts by setting wj k, to a positive value wc at random times, with a rate λ = 0.019/dayc (creation). (c) Components of the plasticity model (top to

bottom): presynaptic spike train Sj; transmitted spike train Sj k, at the contact (black, random synaptic failures occur, indicated by black boxes), and its filtered trace

rj k, (green); postsynaptic spike train Spost (black) and its filtered trace rpost (red); product (correlation) term ⋅r rj k, post composed of pre- and postsynaptic trace (blue);

low-pass–filtered trace Cj k, of the product term ⋅r rj k, post . (d) Expected weight change ⟨ ⟩wd
dt j k, (positive in red; negative in blue) of a synaptic contact as a function of its

weight wj k, and the total weight wj, assuming constant postsynaptic rate. Black curves mark combinations of wj k, and wj that have zero expected change (wj k, null-

cline). Straight lines mark synapses where all m (small numbers) contacts have the same weight. Intersections of curves and lines mark stable fixed points ( )⁎ ⁎w m w/ ,
of the dynamics for m actual contacts. (d1) Expected trajectory after a single contact in a synaptic connection with =m 5 contacts is perturbed by Δw . The trajectory

(pink) starts at ( + + )⁎ Δ ⁎ Δw w w w/5 , and evolves back toward the fixed point (circle). (d2) Five contacts each take a value ⁎w /5 consistent with the previous fixed point,

when a new contact is created. The trajectory of the new contact (pink) starts at ( + )⁎w w w,c c and evolves toward the new fixed point for 6 contacts (circle), as do the

other contacts (green). (d3) A new contact is created in a connection with no actual contacts. The new contact starts at ( )w w,c c (white cross), approaches =w 0j k, ,

and is removed (pink).
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For the set-up of the recurrent network (Fig. 6), see the sec-
tion “Recurrent Network Model.”

Presynaptic Spike Trains and Transmission Failures

The activity of the =N 1000 presynaptic neurons ≤ ≤j N1 in
our model (or =N 4633 for the single-contact network in Fig. 4)
is described by the spike trains δ( )= ∑ ( − )S t t tj m j

m , where
{ …}t t, ,j j

1 2 are the spike times of neuron j. Except for the recur-
rent network of Figure 6, the presynaptic spike trains in all sim-
ulations are generated by independent Poisson processes with a
constant firing rate of ν = 5Hzpre . This value is relatively high
compared with the spontaneous firing rate in vivo (Kerr et al.
2005) and was chosen such that the synaptic activity would also
represent some episodes of stimulation, such as active whisking
(Crochet and Petersen 2006). In Supplementary Material S2.5, we
show that a version of our computational model with slightly
modified parameters yields qualitatively identical results at a
presynaptic rate of 0.5Hz when compared with the model with
standard parameters at a presynaptic rate of 5Hz.

Due to random transmission failures (Zador 1998), not all
presynaptic spikes, however, are transmitted at each of the
synaptic contacts that connect neuron j with the postsynaptic

neuron. More precisely, the spike train transmitted at the con-
tact k is given by

∑ δ( ) = ( − ) ( ) ( )S t t t z t . 1j k
m

j
m

j k j
m

, ,

The spike train ( )S tj k, differs from the presynaptic spike train
( )S tj through multiplication with independent Bernoulli random

variables ( ) ∈ { }z t 0,1j k j
m

, that describe the stochastic failures of
synaptic transmission of the spike fired at time tj

m. In our model,
synaptic failures occur randomly and independently with a
probability of =p 0.5f , so ( )z tj k j

m
, is 1 (successful transmission)

with probability − =p1 0.5f , except for Figure 4f where pf is sys-
tematically varied.

Postsynaptic Spike Train

The Postsynaptic Neuron Emits a Spike Train

∑ δ( ) = ( − ) ( )S t t t , 2
m

m
post post

where { …}t t, ,post
1

post
2 are the spike times. For the simulation of

the recurrent network in Figure 6, the postsynaptic spike train
was generated by a leaky integrate-and-fire neuron model.

Figure 2. Dynamics of synaptic contacts in the steady state. (a) Reference distributions (data extracted from previous publications) of the number of potential (blue)

(Fares and Stepanyants 2009) and putative anatomically functional (red, actual) (Markram, Lübke, Frotscher, Roth et al. 1997a) synaptic contacts for pairs of neurons

in the adult somatosensory cortex (recurrent connections of nearby layer 5 pyramidal neurons, truncated to ≤n 10j and renormalized). The steady-state distribution

generated by our model is shown in green (data pooled over 150 days of simulation); the distribution of potential contacts in the model is matched to the blue line. (b)

The synaptic connection from presynaptic neuron =j 7 is formed by several contact weights wj k, (colored lines). New contacts (filled circles) are created with weight

wc given by the lower dashed line. Long-term stable contacts fluctuate around the upper dashed line, which is the fixed point of ⁎w /5 predicted by theory (see

Materials and Methods). Inset shows zoom at the time of creation and pruning of 2 transient synaptic contacts. (c) Firing rate Rpost of postsynaptic neuron (black),

total synaptic input = ∑ ∑w wj k j k, summed over all presynaptic neurons and contacts (red, unit-less), and average number of actual contacts per synaptic connection

(green) over time, each sampled in intervals of 6 h. (d) Relative changes of synaptic contact efficacy Δwj k, within 1 day, dots for all contacts and 150 days of simulated

time (sampled in intervals of 2 days). The horizontal line of dots at ordinate value −1 is due to contacts that were removed within 1 day. (e) Weight dependence of

changes: Mean μ and standard deviation (STD) σ of the change of contact weight Δwj k, within 1 day, as a function of the contact weight wj k, . Both μ and σ were esti-

mated from the data shown in (d), grouped into wj k, -intervals as indicated (solid lines). Error bars denote the standard error of the mean (SEM). For very small and

very large contact weights, σ increases significantly (⁎ indicates <p 0.1 in Welsh’s 2-sided t-test). (f) Total synaptic connection weight = ∑w wj k j k, (left axis, red) and

contact weight wj k, (right axis, blue) as a function of the number of actual contacts ( >w 0j k, ), averaged across all synaptic connections. Error bars denote the STD.
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However, in the remainder of the study, we use a linear
Poisson neuron model (Kempter et al. 1999) so as to simplify
the mathematical analysis of our synaptic and structural plas-
ticity model. The probability of the linear Poisson neuron to fire
a spike in a very short time step dt is λ ( )t dt where λ ( )t is the
instantaneous firing rate. In the absence of synaptic input from
the presynaptic neurons, the postsynaptic neuron fires with a
baseline firing rate λ λ( ) = =t 1/s0 (i.e., a homogeneous Poisson
process). We further assume that synaptic inputs cause tran-
sient increases of the firing rate, which decay on the time scale
τ of the membrane potential. We thus model the dynamics of
the postsynaptic neuron’s instantaneous firing rate λ ( )t (also
called “stochastic intensity”) as

∑ ∑τ λ λ λ( ) = −( ( )− )+ ( ) ( − ) ( )
= =

t t w t S t d , 3d
dt

j

N

k

n

j k j k0
1 1

, ,

j

where the second term sums all inputs across all nj synaptic
contacts over all N presynaptic neurons and =d 1ms denotes
the synaptic transmission delay.

Model of Synaptic Contact Plasticity

Synaptic contacts in our model follow a variant of STDP (see
Fig. 1b), which we imagine to be realized by the biophysics of
dendritic spines in combination with that of the presynaptic

terminal. Each contact is described by its efficacy (weight) wj k, ,
which is the (unit-less) amplitude of the excitatory postsynap-
tic potential (EPSP) that the contact k evokes upon arrival of an
action potential at the presynaptic terminal and in the absence
of synaptic failure.

The synaptic weight evolves according to a local Hebbian learn-
ing rule defined by a differential equation = [ ]F w ; S S,

dw

dt j k j k post, ,
j k, ,

which depends only on the momentary value of the synaptic
weight wj k, as well as on the recent history of pre- and postsyn-
aptic spike trains. This history is summarized in our model by
local “synaptic traces” of pre- and postsynaptic activity as well
as pre–post correlations (Morrison et al. 2008). Specifically, we
introduce variables ( )r tj k, and ( )r tpost to describe low-pass filters
of the pre- and postsynaptic spike trains ( )S tj k, and ( )S tpost ,
defined by the differential equations:

τ ( ) = − ( ) + ( ) ( )d
dt

r t r t S t 4j k j k j k, , ,

τ ( ) = − ( ) + ( ) ( )d
dt

r t r t S t , 5post post post

with a time constant τ = 20 ms, typical for the duration an
EPSP. The trace left by presynaptic spike arrival at contact k
can, for example, be interpreted as the amount of glutamate
bound to the postsynaptic receptor. Similarly, the trace left by a
postsynaptic spike can be interpreted as the voltage time

Figure 3. Statistics of synaptic contacts in the steady state. (a) Histogram of the number of actual contacts ( >w 0j k, ) of a connection, across all connections j. (b)
Histogram of contact weights wj k, , across all connections j and contacts k. The distribution at day 0 (measurements start after reaching a stable configuration to

mimic the age of rats in experiments; see Simulation of the Plasticity Model in Materials and Methods) is not significantly different from day 100 (2-sample

Kolmogorov–Smirnov test (2sKS), P-value 0.910). (c) Fraction of synaptic contacts that survive for 8 days, as a function of the number of actual contacts in the connec-

tion, for newly created contacts (gray bars) and existing contacts of weak or strong weight wj k, (colors, see legend) in units of −10 3. Survival fractions are estimated

separately per day and then averaged over days. Estimates from less than 5 samples are discarded; error bars denote SEM. (d) Fraction of surviving actual synaptic

contacts that were present at time =t 0 (black: model) in comparison with published experimental dendritic spine survival data in mouse (Hlt ‘05 S1: somatosensory

cortex L5B, age 6 months (exponential decay fit) (Holtmaat et al. 2005); Hlt ‘05 VC: visual cortex L5B, age 3–6 months (exponential decay fit) (Holtmaat et al. 2005);

Yang ‘09 S1: somatosensory cortex L5, age 4–5 months (data estimated from Yang et al. (2009)); Lws ‘15 AC: auditory cortex (Loewenstein et al. 2015)). (e) Histogram of

the total weights wj of the connections present at =t 0 (black) and of the surviving connections at day 150 (green). Inset: Histogram of the number of contacts of the

connections. The removed connections have small total weight and number of contacts; strong connections with many contacts are rarely removed. Note that new

contacts created in the meantime are not considered in this analysis. (f) Lifetime of entire synaptic connections (dots) during the course of the simulation, as a func-

tion of the total connection weight.
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course of the back-propagating action potential or the induced
calcium transient.

As an estimate of the correlations of pre- and postsynaptic
firing on a slower time scale, each synaptic contact computes
also a correlation trace Cj k, and a slow trace of the postsynaptic
activity Rpost. These slow traces are defined by the differential
equations

τ ( ) = − ( )+ ( ) ⋅ ( ) ( )d
dt

C t C t r t r t , 6j k j k j kslow , , , post

τ ( ) = − ( ) + ( ) ( )d
dt

R t R t S t , 7slow post post post

with a time constant of τ = 1 minslow .
Many synaptic plasticity rules in the literature can be formulated

as a differential equation = [ ( ) ( ) ( ) ( )]F w ;r t r t C t R t, , ,
dw

dt j k j k post j k post, , ,
j k,

with the momentary values of one or several “traces” on the
right-hand side (Morrison et al. 2008). For example, if we sup-
press the index k and focus on classical single-contact plasticity
rules, then a learning rule = ( )a C t

dw

dt j2
corrj with a positive constant

a2
corr leads to a Hebbian spike-based learning rule with a symmet-
ric STDP window for long-term potentiation (Gerstner and Kistler
2002). Weight changes in such a rule will increase to infinity,
unless a (soft or hard) bound on the weight is introduced. This is
classically achieved by turning the positive constant a2

corr into a
weight-dependent parameter ( )a wj2

corr . Alternatively, a slightly
modified rule α= ( ) −a C t w

dw

dt j j2
corrj limits growth of synapses by a

weight-dependent decay. Inclusion of additional local traces with
different time constants leads to various self-normalizing and
asymmetric STDP models (Gerstner et al. 1996; Kempter et al.
1999, Song et al. 2000; van Rossum et al. 2000; Gerstner and Kistler

2002; Morrison et al. 2008). For example, a rate normalization can
be introduced by a weight decay term α− ( ( ) − )w R t Rj post target

n ,
where Rtarget is the target rate of the postsynaptic neuron and the
weight enters with power of n = 1 (van Rossum et al. 2000) or n =
2 (Tetzlaff et al. 2012). A version of rate normalization that is par-
ticularly stable in recurrent networks is a decay term proportional
to − ( )a R t4

post
post
4 with a (potentially weight-dependent) parameter

a4
post (Zenke et al. 2015), whereas a more traditional slow “homeo-

static” control of firing rates is not sufficient to control synaptic
plasticity in recurrent networks (Zenke et al. 2013). Calcium-
dependent plasticity models (Shouval et al. 2002) lead to specific
instantiations of correlation traces (Helias et al. 2008), and so do
voltage-based plasticity models (Clopath et al. 2010).

Standard synaptic plasticity models with soft-bounds are
intrinsically stable but induce only a weak competition between
synapses (Morrison et al. 2007; Billings and van Rossum 2009)
and have reduced memory retention capabilities, compared
with synaptic memory models with hard bounds (Billings and
van Rossum 2009), in which strong competition causes a subset
of weights to reach the upper bound (Miller and MacKay 1994;
Kempter et al. 1999; Song et al. 2000). The observation of a
bimodal distribution of synaptic contact numbers suggests
strong competition. On the other hand, in the experimental
data, even the strongest connections with 4–8 synaptic contacts
(Markram, Lübke, Frotscher, Roth et al. 1997a) do most likely not
reach the maximum number of potential synaptic contacts as
estimated by Fares and Stepanyants (2009).

In order to guarantee competition between synapses from
different presynaptic neurons, we use the strong rate normal-
ization of Zenke et al. (2015) together with Hebbian plasticity
without soft or hard bounds. At the same time, in order to

Figure 4. Single-contact synaptic connections are less stable. (a–e) Simulation of the plasticity model with only one potential contact per connection ( =n 1j for all j). (a)
Example synaptic connection number =j 1392, blue line corresponds to contact weight wj,1 over time, as in Figure 2b. (b) Histogram of contact weights wj,1, across all

connections j. A steady state is maintained for 100 days, just as in the case of multiple potential contacts (cf. Fig. 3b). (c) Fraction of surviving actual synaptic contacts

(solid line) that were present at time =t 0 in comparison to the multicontact model (dashed line) of Figure 3d. (d) Histogram of the weights =w wj j,1 of the connec-

tions present at =t 0 (black) and of the surviving connections at day 100 (green). Connections of small and large weights are removed unspecifically. (e) Lifetime of

synaptic connections during the course of the simulation, as a function of the connection weight; compare Figure 3f. (f) Theoretical signal-to-noise ratio (SNR) of the

postsynaptic potential (PSP) (see Eq. (13)) in response to a presynaptic spike, in connections with multiple actual contacts and stochastic synaptic failures (probability

pf ). Dashed line indicates the number of actual contacts for which a SNR of 80% of the maximum is achieved, if 10 contacts are considered to be the maximum.
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limit the maximal amount of correlation between pre- and
postsynaptic neuron, we introduce a novel anti-Hebbian term
that is proportional to the square of the correlation traces.
This term, which limits weight growth if large correlations
between pre- and postsynaptic neurons have been observed
in the recent past, is loosely inspired by priming experiments
of plasticity induction (Huang et al. 1992) and similar in spirit
to an earlier model (El Boustani et al. 2012), albeit with a dif-
ferent mathematical formulation. Specifically, we study the
plasticity model

α( ) = ( ) − ( ) − ( ) − ( ) ( )w t a C t a C t a R t w t , 8d
dt j k j k j k j k, 2

corr
, 4

corr
,

2
4
post

post
4

,

with the parameters = ⋅ −a 1.94569 10 s2
corr 6 , = ⋅ −a 7.50642 10 s4

corr 8 3,
= ⋅ −a 2.01605 10 s4

post 8 3, and α = ⋅ − −2 10 s6 1 (see Calibration of the
System Dynamics below for details on parameter values).
Weights evolve without an explicit upper bound, except for the
experiment in Figure 7b, where we introduced an upper bound
at twice the value of the equilibrium weight. However, we
implement a lower absorbing boundary at zero, using the fol-
lowing procedure: If the evolution of the contact weight accord-
ing to Equation (8) crosses (or hits) zero, the contact weight is
removed. The contact now has the status of a potential, but
inactive, contact (see Fig. 1b). Preferential removal of small
weights is consistent with functional connectivity measure-
ments in somatosensory (Le Be and Markram 2006) and hippo-
campal (Wiegner and Oertner 2013) slices.

Figure 5. Rewiring in response to input lesion. (a) Schematic of the simulated lesion experiment. A substantial fraction of the presynaptic neurons that have actual syn-

aptic contacts ( >w 0j k, ) onto the postsynaptic cell are ablated (set to very low firing rate of 0.1/s; each connected neuron is ablated with probability =p 0.5lesion ; uncon-

nected neurons are unaffected) at =t 0 (vertical dashes in b–c). (b-c) Firing rate Rpost of postsynaptic neuron (black), total synaptic input = ∑w wj k j k, , summed over all

presynaptic neurons and contacts (red, unit-less) and average number of contacts per synaptic connection (green) over time. (cf. Fig. 2c). After the lesion, the average

number of contacts (green) quickly drops by about 50% (b) and gradually recovers toward the steady state afterward (c). (d-e) Histograms of contact weights wj k, (top)

and of the number of actual contacts (bottom), across all connections and contacts, before and after the lesion. Half of the actual synaptic contacts are removed within

30 min after the lesion (d, bottom, green), while the remaining half of the contacts potentiates (d, top, green). Within 99 days, the distributions gradually recover (e).

(f) Example synaptic connection from presynaptic neuron with index =j 18, each colored line corresponds to a contact weight wj k, over time, as in Figure 2b. (g) Fraction

of newly created persistent contacts (which survive for at least 8 days as defined in Holtmaat et al. (2006), control case (blue, cf. Fig. 3c) versus lesion model (red). Two

lesion models are shown (red bars), marked with their respective value of plesion. For comparison, data from mouse whisker-trimming experiments (Holtmaat et al. 2006)

are shown (open bars, error bars denote STD over observed cells). A smaller lesion with =p 0.2lesion is in better agreement with the experimental data.
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Each potential, but inactive, contact may be re-activated again
at random times tc according to a Poisson process with rate
λ = .019/dayc , which defines the rate of spontaneous spine form-
ation (see Supplementary Material S4). In such an event, referred
to as spine creation, the weight is set to ( )w t wj k, c c. Further details
on the choice of wc are described below. As suggested by previous
models (Helias et al. 2008) and experiments (Le Be and Markram
2006), in our model, newly created spines first pass through a
“period of grace” of duration τ = 15mingp , during which the
weight is fixed to wc. After the period of grace has passed (for

τ≥ +t tc gp), the weight dynamics again follow Equation (8). In the

event of synaptic spine creation (at tc), the internal state variables
( )r tj k, c , ( )r tpost c , ( )C tj k, c , and ( )R tpost c of the contact are each initial-

ized to zero. The period of grace serves as a protected time inter-
val for these variables to equilibrate to the current system state,
that is, to obtain a good estimate of the present pre- and postsyn-
aptic spike rates and correlations.

Expected Evolution of Synaptic Weights

We derive the expected dynamics of the weight of a single syn-
aptic contact under the plasticity model defined by Equations

Figure 6. Structural plasticity in a thalamocortical network. (a) Schematic of the model. Thalamic neurons (tha) convey sensory input from whiskers (whi) to the

recurrent cortical network. Each tha population (squares) projects to 1 of 3 cortical “barrels” (circles) of excitatory (exc) neurons. Cortical inhibitory (inh) neurons con-

nect randomly to all barrels. Synapses with dotted arrows are modeled by the structural plasticity model, all other synapses (solid arrows) are static. Inh synapses

have a constant weight and no synaptic failures. Tha neurons increase their firing rate transiently if the corresponding whisker is flicked, which happens randomly

with rate 1/s. After 10 days of simulation, whisker 3 is trimmed (“lesion”), modeled as a progressive loss of firing of “tha 3” neurons (white cross). (b) Spike raster plot

around time of lesion (dashed vertical line), colors as in a. If a whisker is flicked (whi, triangles), the corresponding tha and exc populations respond. (c) Relative

changes of average connection weights ⟨Δ ⟩ ⟨ ⟩w w/ij ij between populations (here wij stands for the total weight of the connection from neuron j to neuron i). Changes

before (top), around time of lesion (center), and long after (bottom). Strong changes during the first 3 days post-lesion (center) are followed by a slow restructuring

process of “exc 3” over the following 47 days (bottom). (d) top: Exc synaptic connection weights (gray scale, wij) just before lesion (left) and 50 days after lesion (right).

The comparison of the connection weight matrix before and after lesion shows that loss of tha input to “exc 3” caused selective rewiring. “Exc 3” neurons ( –401 600)

have been clustered in both graphs according to the inputs they receive at simulation end (assignments are indicated by shading). (d) bottom: Average spike response

of “exc 2” (black) and “exc 3” (blue) neurons in response to whisker 2 flicks, just before trimming of whisker 3 (left) and at simulation end (right) (averaged over 60min
of recording). Red and yellow colors denote subgroups of “exc 3” identified by clustering. Dashed lines: mean firing rate in recording episode. Before rewiring, “exc 3”

neurons (blue) respond only weakly to flicks of whisker 2 (left); after rewiring (right) a subgroup (red) responds strongly.
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(1)–(8). To do so, we take the average, denoted as ⟨⋅⟩, of
Equation (8) over realizations of the spike trains (S) and synap-
tic transmission failures (z). We obtain

α⟨ ( ) ≈ ⟨ ( )⟩ − ⟨ ( )⟩ − ⟨ ⟩ −

( )

w t a C t a C t a R w ,

9

d
dt j k j k j k j k, 2

corr
, 4

corr
,

2
4
post

post
4

,

which is approximate because squaring and averaging of the
terms Cj k, and Rpost have been interchanged. The approximation
is expected to be good if the fluctuations of Cj k, are small com-
pared with its running average ⟨ ( )⟩C tj k, . The terms in Equation
(9) can be evaluated as (see Supplementary Material S1 for the
derivation)

∑ ∑λ λ ν⟨ = = = + ( − ) ( )R S p w1 , 10
j

N

k

n

j kpost post 0 pre f ,

j

⎡⎣ ⎤⎦
λ ν⟨ ⟩ = = = ( − ) ⋅

( + ( − ) ∑ ) + ⟨ ⟩ ( )τ
τ−

C r r r p

e p w p w R

1

1 . 11

j k j k j k

d
j k l

n
j l

, , post , pre f

1
2

/
f , f , post

j

    

Equation (10) establishes that the postsynaptic rate is deter-
mined by the sum of all synaptic weights.

We note that, according to Equation (11), for small transmis-
sion failure probability →p 0f , the dynamics of the contact wj k,

(Eq. (9)) is dominated by the total weight = ∑w wj l j l, . This means
that different contacts arising from the same presynaptic neu-
ron interact with each other. For large →p 1f , the evolution of
wj k, is independent of wj; so increasing the failure probability pf

gradually decouples the dynamics of the contacts.

Co-operation and Competition

Equations (9)–(11) enable us to illustrate the process of co-
operation and competition, closely linked to the stabilization of
the postsynaptic rate and correlations. The postsynaptic rate
does not depend on the weight of any specific synaptic contact,
but only on the total input, summed over all weights and con-
tacts; see Equation (10). By contrast, Equation (11) depends not
only on the total input via the rate Rpost but in addition also on
the individual weight wj k, and the total weight = ∑w wj k j k,

arising from the same presynaptic neuron. To study competi-
tion, let us consider a uniform state and suppose that all corre-
lations =C cj k, , and all momentary weights =w wj k, for all j k,
are small but positive. With α ≪ 1 in Equation (9), the dominant
evolution is therefore an increase of all weights, driven by the
term a c2

corr . However, as the weights increase, the firing rate
does so as well and therefore the term ⟨ ⟩Rpost

4 eventually stops
further growth. This is the essential step of firing rate stabiliza-
tion (for a mathematical demonstration, see Supplementary
Material S2.1).

For the same firing rate ⟨ ⟩Rpost , some weights will grow fur-
ther at the expense of others, inducing competition via the
instability of the uniform state, just as in other models (Oja
1982). The instability is caused by a positive feedback loop
between ⟨ ( ) ⟩dw t dt/j k, on the left-hand side of Equation (9) and
wj k, on the right-hand side of Equation (11). Going beyond stan-
dard plasticity models, Equation (11) shows that correlations
Cj k, driving the contact weight wj k, increase not only propor-
tionally to this specific contact but also increase with the
weight of other contacts ∑ wl j l, from the “same” presynaptic
neuron. The positive dependence gives rise to co-operation
between contacts arising from the same neuron. The optimal
amount of correlation, and hence co-operation, however, is
limited by the term − ⟨ ⟩a Cj k4

corr
,

2 in Equation (9). The interplay
of Equations (9)–(11) therefore stabilizes the firing rate, or
total input ∑ ∑ wj k j k, , as well as the amount of correlations in
actual contacts (see Supplementary Material S2.2 for a math-
ematical argument).

Calibration of the System Dynamics

Since the firing rate stabilizes (Supplementary Material S2.1)
and because we assume pre- and postsynaptic neurons to be of
the same type, we have chosen the parameters of the plasticity
rule such that the stable firing rate of the postsynaptic neuron
is on average ν ν⟨ ⟩ ≈ ≈Rpost post pre. Our simulations show that
this value is tightly maintained; for example, after a lesion,
synaptic plasticity re-adjusts the synaptic weights so that the
postsynaptic rate νpre converges back to the value it had before
the lesion (Fig. 5c). This implies that the sum of weights
∑ ∑ wj k j k, is normalized (Kempter et al. 1999; Song et al. 2000),

Figure 7. Rewiring can be predicted from initial responses/effect of bounded weights. (a) Spike rate in response to whisker 2 flicks for each neuron of “exc 3,” before

lesion (black dots) and 50 days post (colored squares), for the thalamocortical network simulation shown in Figure 6. Neurons are ordered according to their prelesion

response (black). Rates are estimated by counting spikes in a time window of 25ms after each whisker flick. The 100 “exc 3” neurons that initially respond strongest

to “whi 2” are more likely to increase their response to this whisker through structural plasticity (dashed horizontal lines with error bars show mean response 50

days post ± SEM) and more likely to participate in the cluster that is most strongly innervated by this whisker (red; colors correspond to the cluster assignments of

the neurons in Fig. 6d, right). (b) Rewiring in response to input lesion (as in Fig. 5) with an upper bound of the contact weight so that contact weights cannot grow

stronger than twice the fixed point value ( ≤ ⋅ −w 6.4 10j k,
3). In this case, postsynaptic rate and total weight initially decrease in response to the lesion and recover on a

time scale of about 10 h as new contacts are formed. Simulation data are averaged over consecutive time windows of 1 h. (c) For comparison, the data of the lesion

simulation without upper bound of Figure 5b,c are replotted as in (b). Here, the remaining contacts quickly (within less than 1 h) compensate for the loss of input by

strongly increasing their weights, so that the postsynaptic rate shows no visible change.
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see Equation (10). Indeed, previous theoretical work (Zenke
et al. 2015) has shown that terms like −Rpost

4 in our learning rule
lead to a normalization of the total weight. Regarding the cali-
bration of other parameters of the plasticity rule, see the next
section as well as Supplementary Material S4.

Model Analysis

Since the firing rate of the postsynaptic neuron stabilizes
(Supplementary Material S2.1), the actual degrees of freedom of
the multiconnection multicontact system reside in the configu-
ration of contact weights wj k, under the constraint that the total
input weight ∑ ∑ wj k j k, (which determines the firing rate via
Eq. (10)) is fixed. For example, in a first configuration, all contact
weights wj k, from all presynaptic neurons may have the same
value while in a second configuration some weights could be
relatively strong and others zero. In the following, we use the
expected dynamics and show that there exist several potential
configurations of contact weights that yield stationary solu-
tions to the model equations.

Inserting Equations (10) and (11) into Equation (9) yields a
closed, nonlinear dynamical system of ordinary differential
equations in ( )w tj k, , with ≤ ≤k n1 j and ≤ ≤j N1 . To under-
stand these dynamics, we proceed in two steps.

i. We focus on a solution where some presynaptic neurons j
have no active contacts ( =w 0j k, for ≤ ≤j n1 j) while other
presynaptic neurons n have exactly >m 0 active synaptic
contacts, each with the same weight =wn k

w
m,

n act. for
≤ ≤k m1 (and = w0 n k, for < ≤m k nn). To be specific, we

assume that there are <N N0 neurons with m active con-
tacts each where N0 is, so far, unknown. By definition, each of
the N0 neurons with active contacts has a total connection
strength of = =w m w wn n k n act, , . To construct this solution, we
choose m, rewrite Equations (9)–(11) in terms of wn act, and
search for a fixed point = ⁎w wn act, (see Eq. (S18), Supplementary
Material). Note that the value of ⁎w will depend on m. Possible
combinations ⁎w m, correspond to the crossing points between
the curve and the straight dot-dashed lines in Figure 1d. Given
our choice of m and our calculated value ⁎w , the postsynaptic
firing rate is λ ν= + ( − ) ⁎R p N w1 .post 0 pre f 0 Because of the fir-
ing rate stabilization at ν=Rpost pre, we can finally extract
the parameter N0. Therefore, we have shown that combina-
tions of parameters ⁎N w m, ,0 exist that give rise to stationary
solutions of the model equations. Each of these parameter
combinations characterizes one configuration of synapses –

but for each of these configurations, there are many combi-
nations of choosing N0 active neurons out of a total of N. We
cannot exclude that there are also other stationary states
outside the class of configurations considered here.

ii. To analyze stability against weight perturbations within a
group of m contacts, we also study the expected change of

the weight of a “single” contact
d w

dt

j k, in one specific synap-

tic connection of total weight wj (which may change as well)
assuming the total firing rate Rpost to remain constant. The
expected dynamics (Eq. (9)) allow us to predict 2D trajectories
of ( )w w,j k j, (Fig. 1d and Supplementary Material S2.4).
Parameter calibration was done such that a synaptic connec-
tion consisting of 3 or more contacts is stable in expectation
but a connection with only 1 or 2 contacts is not (see also
Supplementary Material S2.3 and Supplementary Fig. S4). A
phase plane analysis of the dynamics of two contacts
(Supplementary Fig. S4B) further confirms that, in

expectation, all connections of only 2 contacts are eventually
removed because of the absence of stable fixed points.
However, because of a region on the phase plane where the
dynamics are slow, a connection with 2 contacts has a life-
time that is sufficiently long such that occasionally a third
contact may be added. Still, due to the low creation rate, we
expect this event to be rare.

Overall, our analysis shows that for the chosen combination of
parameters, there are several stable fixed points of weight con-
figurations. If we read off the value of wj k, from Figure 1d, we
find that for m = 3 contacts, we would have =N 1400 active pre-
synaptic connections, whereas with m = 5, we have about 100,
and with m = 10 about 80 presynaptic connections. Overall, we
expect a mix of several of these solutions. In Supplementary
Material S2.6, we give arguments why a solution with m = 10 is
less likely to occur than a solution with m = 5. Qualitatively, the
analysis shows that, whatever the mix of different m-values,
about 10% of the 1000 synaptic connections are active (consis-
tent with Markram, Lübke, Frotscher, Roth et al. (1997a) and
Fares and Stepanyants (2009)). These theoretical considerations
suggest that the system is indeed calibrated to have a steady
state that is qualitatively consistent with the experimental con-
tact number distributions, in the sense that stable connections
have at least 3 synaptic contacts.

Although all simulations have been performed with the same
set of parameters, there is in fact a family of parameters that all
lead to solutions with the following properties: connections with
5 or more contact points are stable fixed points, whereas those
with 1 or 2-contact points are not (Supplementary Material S2.5
and Supplementary Fig. S6). Thus, the main qualitative properties
of the model are independent of the specific choice of para-
meters. Moreover, while all the simulations have been performed
with presynaptic and postsynaptic firing rates of 5Hz, model
parameters can be adjusted to firing rates of 0.5Hz, such that we
have stationary solutions with the following properties: 3 or
more contact points are stable fixed points, whereas 1 or 2-
contact points are not (Supplementary Material S2.5 and
Supplementary Fig. S5). Thus, at low firing rates, our synaptic
and structural plasticity model with appropriate parameters is
expected to show the same qualitative behavior as the version at
5Hz shown in the Results section.

SNR of Synaptic Responses

To better understand the effects of multiple synaptic contacts
in the presence of stochastic transmission, let us analyze the
postsynaptic response. To this aim, we force the presynaptic
neuron j to emit an additional spike at time tpre. For conve-
nience, we neglect the synaptic transmission delay here
( →d 0), which has no effect on the following reasoning.
Assuming constant weights on the short time scale of synaptic
signaling τ , and by averaging Equation (S5) (see Supplementary
Material) over all other presynaptic spikes and their synaptic
transmission, we obtain the transient postsynaptic response:

ν θ( | ) = + ( − ) ∑ ( ) ( )τ
τ−( − )

=L t t t t e w z t , 12j
t t

k
n

j k j kpre post
1

pre
/

1 , , pre
jpre

where we also inserted ν⟨ ⟩ ≈Rpost post . Here θ ( )s denotes the
Heaviside step function, which is 1 for >s 0 and vanishes else-
where. Note that ( | )L t tj pre is still a stochastic quantity due to
stochastic synaptic transmission ( )z tj k, pre at the contacts k. We
may obtain the mean spike-triggered response by averaging
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over the remaining stochasticity of the transmission variable
zj k, :

ν
τ

θ⟨ ( | )⟩ = + ( − ) ( − )τ−( − )L t t t t e p w
1

1 .j
t t

jpre post pre
/

f
pre

Thus, the average response only depends on the total syn-
aptic weight wj and not on the configuration of contact weights
wj k, . Similarly, the variance of the response can be derived as

∑θ[ ( | )] = ( − ) ( − )
τ

τ− ( − )

=

L t t p p t t e w1 .j
t t

k

n

j kpre f f
1

pre
2 /

1
,

2
j

2
prevar

Here, we see that the contact configuration wj k, determines
the variance of the postsynaptic response. To further under-
stand these properties, consider a synaptic weight wj that is
made of m contacts of weight =w w m/j k j, while all the remain-
ing −nj m weights are zero. Then, the sum of squared weights
term in [ ( )]L tjvar becomes ∑ == w w m/k

n
j k j1 ,
2 2j . For this case, we

evaluate the SNR of the synaptic response as

= = ⋅ ( )
ν( | ) −

[ ( | )]
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m . 13j
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j

pre post

pre
f

f
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Therefore, in the presence of synaptic transmission failures,
multiple synaptic contacts increase the SNR of synaptic trans-
mission, proportional to the square root of the number of con-
tacts. Previously, a related result has been found numerically
for the mutual information of synaptic inputs and neural out-
puts via multiple contacts (Zador 1998).

Simulation of the Plasticity Model

All simulations were performed using the Neural Simulation
Tool (NEST) (Eppler et al. 2015); for further details, see
Supplementary Material S3.

Recurrent Network Model

The recurrent thalamocortical network model presented in
Figure 6 consists of =N 3B “barrel columns” of =N 200E excit-
atory (labeled “exc”) neurons each, and =N 200I inhibitory
(labeled “inh”) neurons that connect without preference to all
the barrels (random connections, see details below). All cortical
neurons are modeled as leaky integrate-and-fire (LIF) neurons
with alpha-function–shaped postsynaptic currents (’iaf_psc_al-
pha’ neuron model in NEST simulator). The parameters of the
LIF neurons are membrane time constant τ = 20.6msLIF , reset
and resting potential −70mV, action potential threshold
−55mV, synaptic time constant 2ms, and refractory period
2ms. There are ⋅ + =N N N 800B E I cortical neurons in total. All
synaptic delays are 1ms.

Each barrel of excitatory neurons is further innervated by
thalamic inputs that convey information from the whiskers.
There are =N 100T thalamically driven input neurons (labeled
“tha”) per barrel. All ⋅ =N N 300B T input neurons are modeled as
excitatory linear Poisson neurons according to Equation (3),
with a baseline firing rate of λ = 4.5/s0 . Each group of thalami-
cally driven neurons modulates its firing rate in response to
flicks of the corresponding whiskers (whi). The sequence of
whisker flicks is stochastic and described by Poisson processes
with rate ν = 1/swhi each. Each neuron in group “tha n”
responds to each flick of the corresponding whisker number n.
In response to a whisker flick, thalamically driven neurons of
the receiving population increase their firing rate λ ( )t

transiently by τ =w / 25/swhi , and subsequently their rate decays
back to λ0 with time constant τ (cf. Eq. (3)).

The structural plasticity model of Equation (8) describes all
excitatory-to-excitatory connections, both thalamocortical and
intracortical, and is continuously active (except for the first
hour of simulation); autapses are excluded. All connections
(both from “tha” neurons to cortical excitatory neurons and
between cortical excitatory neurons) have a distribution of
potential synaptic contacts, but initially the network is con-
nected with “active” contacts in a whisker-specific manner as
depicted in Figure 6a, see also below. Because the recurrent net-
work contains many postsynaptic neurons, we need two indi-
ces to name a synaptic connection. A contact weight here is
denoted by wij k, instead of wj k, above, where i denotes the post-
synaptic and j denotes the presynaptic neuron, and k the con-
tact. Accordingly, the plasticity rule Equation (8) here reads

α( ) = ( ) − ( ) − ( ) − ( ) ( )w t a C t a C t a R t w t , 14d
dt ij k ij k ij k i ij k, 2

corr
, 4

corr
,

2
4
post 4

,

and the total weight of a synaptic connection is ( ) = ∑ ( )=w t w tij k
n

ij k1 ,
ij ,

where nij is the number of potential contacts for the connection
from j to i. For simplicity, all nij are drawn from the probability
distribution ( )P nij (Fig. 2a, blue line), irrespective of which group
the neurons i and j belong to.

Because the postsynaptic neurons here are LIF neurons, syn-
aptic efficacies wij k, have to be expressed in units of the PSP (in
contrast, above wj k, is a unit-less quantity). To match the
impulse response function of the LIF neurons receiving an
input spike with the fixed-point weight ⁎w (see Model Analysis)
to the response of the linear Poisson neurons used above, we
scale the synaptic weights as γ= ⋅w wij k ij k, , , with γ = 62.82 mV ,
leading to a typical EPSP amplitude of γ =⁎w 1.01 mV. Substituting
wij k, into Equation (14) implies that, to maintain the same plas-
ticity dynamics as above, the parameters of the learning rule
have to be rescaled according to γ↦a a2

corr
2
corr, γ↦a a4

corr
4
corr,

γ↦a a4
post

4
post, and γ↦w w0 0. We further inject additional

Poisson excitatory and inhibitory input spikes to all LIF neurons,
with synaptic weights γ ⁎w (excitation) and γ− ⁎w4 (inhibition).
Excitatory neurons receive input at rates 1519.2/s (excitation)
and 328.3/s (inhibition), and inhibitory neurons receive 1391.0/s
(excitation) and 351.2/s (inhibition). The scaling factor γ and the
Poisson process input rates were numerically optimized to
match the dynamics of the LIF neuron model to that of the lin-
ear Poisson neuron model used above. All other parameters take
the same values as before. Note that, in order to enable a com-
parison with the single-neuron case, the network parameters
here are chosen such that, under the assumption of uncorre-
lated Poisson spike train input to each neuron, synapses in the
full network would operate approximately at the fixed point ⁎w
of the plasticity dynamics (see Model Analysis above), derived
for the single-neuron case.

Apart from its ( [ + ])( [ − ]) ≈ ⋅N N N N N 1 5.4 10B T E B E
5 plastic

excitatory connections, our network also has static synapses.
These we set as follows. We choose a connection probability of

=p 1/3conn . Each excitatory neuron receives p Nconn I synapses
from randomly chosen inh neurons with a fixed weight of

γ−( − ) ⁎p gw1 f , with =g 2.5. Each inhibitory neuron also receives
this number of inhibitory synapses, and p Nconn E excitatory syn-
apses from randomly chosen excitatory neurons from each of
the NB cortical barrels, with a fixed weight of γ( − ) ⁎p w1 f (these
synapses have no transmission failures; therefore, the weight
is scaled down by the expected transmission rate ( − )p1 f of the
plastic, stochastic ones).
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We initialize the plastic synapses at the theoretically
derived fixed point ⁎w , with an expected total of 100 active
input connections with 5 active contacts each. So, for each
excitatory-to-excitatory and each thalamocortical connection,
we set γ( ) = ⁎w w q0ij ij if neuron i and neuron j belong to the
same barrel, where qij is a Bernoulli random number that is
1 with probability pconn and 0 else (in this way, we get
( + ) =N N p 100T E conn incoming connections per excitatory neu-
ron in expectation). If i and j are part of different barrels, we
set ( ) =w 0 0ij . If there are 5 or more potential contacts ( ≥n 5ij )
in connection i j, , we set ( ) = ( )w w0 0 /5ij k ij, for ≤ ≤k1 5 and

( ) =w 0 0ij k, for ≥k 5. If there are less contacts ( <n 5ij ) but
( ) >w 0 0ij , we set ( ) =w 0 0ij and look for a connection ′ ′i j, that

connects the same 2 groups, has ( ) =′ ′w 0 0i j and ( ≥′ ′n 5i j ), and
we set γ( ) =′ ′ ⁎w w0i j for this connection instead.

In Figure 6d, neurons of barrel column named “exc 3” are
ordered according to labels obtained by clustering. We used
feature agglomeration based on Ward’s hierarchical clustering
(Pedregosa et al. 2011) to assign 1 of 3 cluster labels to the vec-
tor { …}w w, ,i i1 2 of connection weights (at simulation end) from
any excitatory neuron onto each neuron i in the group “exc 3”.

Results
Stable Bimodal Distribution of Synaptic Contacts

We devised a plasticity model linking STDP of dendritic spines
with structural plasticity of synaptic contact formation and
removal (Fig. 1a,b, see Materials and Methods for details). In
this model, each pair of neurons is connected by several
“potential synaptic contacts.” The number of potential contacts
in the model was broadly distributed as reported previously
(Fares and Stepanyants 2009) so that each pair of neurons had
a least 1 potential contact and at most 10 (Fig. 2a, blue line). In
our model, individual contact weights are subject to STDP
mediated by local traces of the pre- and postsynaptic spiking
activity (Fig. 1c). If a contact weight decreases to zero, it is
removed and the contact is labeled as an “inactive,” but poten-
tial, contact. An inactive contact in the model can become
spontaneously active at a constant rate of λ =0.019/dayc .

Correlations between the traces left by successfully trans-
mitted presynaptic spikes and postsynaptic spikes lead, in our
model, to a symmetric STDP window for potentiation, the
spike-based equivalent of standard Hebbian learning (Hebb
1949; Gerstner and Kistler 2002), but more elaborate models of
plasticity (Bienenstock et al. 1982; Song et al. 2000; van Rossum
et al. 2000; Shouval et al. 2002; Pfister and Gerstner 2006;
Morrison et al. 2008; Clopath et al. 2010) could be implemented
in the same modeling framework (see Materials and Methods
and Discussion). We combined Hebbian potentiation with het-
erosynaptic plasticity that downregulates all synapses during
episodes of large postsynaptic firing rates (Chen and Nedivi
2013; Chistiakova et al. 2015; Zenke et al. 2015). Mathematical
analysis of our model shows that the combination of Hebbian
potentiation with heterosynaptic plasticity leads to a stabiliza-
tion of postsynaptic firing rates (Supplementary Material, S2.1).
Furthermore, we postulate in our model a decrease of Hebbian
potentiation for large correlations, which could manifest itself
as a novel form of “anti-Hebbian” synaptic depression when
correlations between pre- and postsynaptic firing become very
strong (see Materials and Methods for model equations).

When a simulated postsynaptic neuron is stimulated with
stochastic spike arrivals at many synapses, our model of synap-
tic plasticity causes a few presynaptic neurons to develop

connections with 5–8 active contacts (Fig. 2a), whereas many
other presynaptic neurons have zero active contacts. Our mathe-
matical analysis (see Model Analysis in Materials and Methods)
shows that synaptic configurations with zero contacts and those
with 3 or more contacts are stable, whereas those with 1 or 2
contacts are not. For example, if one of the contact weights of
a presynaptic neuron with 5 contacts is perturbed, the weight
returns back to its stable value ⁎w /5 (Fig. 1d1), which we can pre-
dict analytically (Supplementary Material S2.3). If a new contact
weight is spontaneously created in a connection with 5 contacts,
the new connection with 6 contacts will become stable (Fig. 1d2).
However, if a new contact weight is spontaneously created in a
potential connection without existing contacts, the new connection
with 1 contact is not stable and decays (Fig. 1d3). The stability of
multicontact connections does not require an upper bound of
the contact weight; indeed, our mathematical analysis (and sim-
ulations) were done without bounding the weight, in contrast to
many standard STDP model (Kempter et al. 1999; Song et al.
2000; Morrison et al. 2007); see the “Discussion” for the effect of
bounded weights.

We found that the model with the novel correlation-driven
synaptic depression term leads, for a broad regime of parameter
values, to a bimodal distribution of synapses (see Supplementary
Material S2.3 and S2.5 for mathematical arguments). We empha-
size that stability of multiple contacts is possible, even if the
number of actual contacts (e.g., 5) is well below the maximal
number of potential contacts (e.g., 10) for a given presynaptic
neuron (Supplementary Material S2.3 and S2.6). The stability of
weights in multicontact synapses disappears, if the novel anti-
Hebbian correlation-driven synaptic depression is removed (see
Eq. S25 in Supplementary Material with →a 04

corr ), indicating the
importance of this term. Overall, our mathematical analysis (see
Model Analysis in Materials and Methods and Supplementary
Material S2) predicts a bimodal distribution of actual synaptic
contact numbers in the following sense: most pairs of pre- and
postsynaptic neurons have no active connection at all while the
remaining pairs of neurons exhibit 3 or more active contacts.
Thus, the distribution of actual contact numbers has a trough at 1
or 2 contacts, consistent with experiments in layer 5 pyramidal
neurons (Markram, Lübke, Frotscher, Roth et al. 1997a), whereas
the distribution of potential contact numbers is unimodal with a
broad peak at n = 2 contacts.

The bimodal distribution of contact numbers predicted by
our mathematical analysis has been confirmed in simulations
of 1000 presynaptic neurons projecting onto a single postsyn-
aptic neuron (Fig. 2a). Each presynaptic neuron had a fixed, but
neuron-specific, number of potential synaptic contacts (Fig. 2a,
blue line) with a distribution estimated from neuron recon-
structions (Fares and Stepanyants 2009). The synaptic plasticity
rule was driven by stochastic spike arrivals at 5 Hz and led to a
bimodal distribution of the number of actual contacts (Fig. 2a,
red line) qualitatively consistent with experiments (Markram,
Lübke, Frotscher, Roth et al. 1997a). In the following, we keep
these parameter values for the plasticity rule fixed and explore
its properties in additional simulations.

STDP-Mediated Co-operation Stabilizes Contact
Weights

During the simulation of 1000 presynaptic neurons firing sto-
chastically at 5/s (independent Poisson processes) and project-
ing onto the same postsynaptic neuron, the synaptic contact
weights fluctuate, after an initial transient, around a steady
state (Fig. 2b), which can be predicted by our mathematical
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analysis (Fig. 2b, dashed line). Occasionally, new contacts are
formed, which mature or are quickly removed (Fig. 2b, inset).
The firing rate of the postsynaptic neuron as well as the total
synaptic weight and the average number of contacts are stabi-
lized by the plasticity rule (Fig. 2c and Model Analysis in
Materials and Methods and Supplementary Material S2.1). The
average number of actual contacts ⟨ ⟩Ncontacts , corresponding to
the spine density, is stationary in the model (Fig. 2c) consistent
with experiments (Trachtenberg et al. 2002; Holtmaat et al.
2005; Holtmaat and Svoboda 2009; Loewenstein et al. 2015),
while individual contacts are created and pruned (Fig. 2b).

Within 1 day (1d), the relative change of typical contact weights
wj k, (i.e., contact k from a presynaptic neuron j to the postsynaptic
neuron) ranges from −100% to 500%, but fluctuations of Δw w/j k j k, ,

decrease with increasing contact weight (Fig. 2d), consistent with
long-term time-lapse imaging data of dendritic spine volume
in vitro (Yasumatsu et al. 2008). We quantify the statistics of con-
tact weight changes Δ ( ) = ( ) − ( − )w t w t w t 1dj k j k j k, , , by computing
the mean and STD of these changes for different groups of contact
weights ( − )w t 1dj k, , averaged over days of simulated time t.
Consistent with experimental measurements of dendritic spine
volume (Yasumatsu et al. 2008), the mean contact weight change
(Fig. 2e, black) is positive for an intermediate range of contact
weights (spine volumes) and becomes negative for large weights
(large volumes). Contact removal over 1 day occurs only for
weights smaller than some threshold, consistent with functional
(Le Be and Markram 2006) and optical (Wiegert and Oertner
2013) connectivity measurements. The STD of the changes
(Fig. 2e, red) is rather homogeneous for all weights (volumes)
but increases slightly for very large weights. The mean change
of very small contact weight is negative in our model, in con-
trast to previous experiments (Yasumatsu et al. 2008), but this
difference might be due to experimental difficulties of observ-
ing very small spines (see Discussion).

As synaptic connections in our model consist of several syn-
aptic contacts, we asked whether there is a systematic relation
between synaptic weight and the number of contacts in the
steady state (Fig. 2f). Indeed, the synaptic weight is strongly
correlated with the number of actual contacts: Strong synaptic
connections in our model consist of at least 5 synaptic contacts
and connections with less than 3 contacts are physiologically
weak (Fig. 2f, red, left axis). Moreover, we find that in our model
individual contacts in connections made of more than 3 actual
contacts tend to be stronger than those made of less than 3
(Fig. 2f, blue, right axis).

We further assess the statistical properties of the steady
state by multiple measures. First, the distribution of actual syn-
aptic contact numbers per connection (Fig. 3a) is bimodal, in
line with experimental findings (Markram, Lübke, Frotscher,
Roth et al. 1997a; Fares and Stepanyants 2009), see Figure 2a. In
particular, the distribution of actual contacts goes through a
clearly visible minimum at around 3 contacts (Fig. 3a), and this
observation is stable over 100 days of simulated time. Second,
the turnover ratio of synaptic contacts in the model is

±0.176 0.018/day (mean ± STD) consistent with the values
found experimentally in somatosensory cortex (Holtmaat et al.
2005; Holtmaat and Svoboda 2009). Third, a stable distribution
of contact weights (Fig. 3b) is formed, which also hardly
changes over 100 days of simulated time.

The probability of a synaptic contact in our model simula-
tions to survive for 8 consecutive days, irrespective of whether
the contact is newly created, weak, or strong, depends strongly
on the number of actual contacts in the connection that the
contact is part of (Fig. 3c). In other words, contacts within a

connection co-operate and stabilize each other. Tracking of
individual synaptic contacts that existed at =t 0 for 150 days
of simulated time (Fig. 3d) reveals a time course of the number
of surviving synapses in our model that is qualitatively consis-
tent with long-term in vivo imaging data of dendritic spines
from mouse neocortex (Yang et al. 2009), even though the sur-
vival fraction in our model is slightly lower than their data and
higher than in some other experimental measurements
(Holtmaat et al. 2005; Keck et al. 2008; Loewenstein et al. 2015).
Connections that consist of several contacts are stable in our
model for long periods of time (here 150 days) (Fig. 3e, inset).
The pruned connections in our model are almost exclusively
connections that consist of a single contact and have relatively
small total weight (Fig. 3e). Finally, the lifetime of synaptic con-
nections increases strongly with the total weight of the connec-
tion (Fig. 3f), indicating that strong connections are protected
against spine turnover by mutual co-operation of contacts.
Overall, these findings from our simulation study of synaptic
contacts are consistent with functional connectivity measures
in layer 5 pyramidal neurons (Le Be and Markram 2006). The
computational model enabled us to directly follow the weights,
and statistics, of individual contacts over 100 h of simulated
time, whereas Le Be and Markram had to infer the strength of
individual contacts and their multiplicity indirectly from mea-
surements over a much shorter amount of time.

Contact Multiplicity is Crucial for Synaptic Stability

To investigate the role of multiple synaptic contacts in our
model, we compare its dynamics to the same model restricted
to single-contact connections. In order to preserve the total
amount of potential synaptic contacts of the full model, which
is necessary for a fair comparison, we increase the number of
presynaptic neurons in the single-contact model to compen-
sate for the reduced number of potential contacts per presyn-
aptic neuron (see Synaptic Contacts in Materials and Methods).
Similar to the full model, the single-contact model (Fig. 4a)
exhibits steady-state dynamics in which postsynaptic firing
rate, total weight, and synaptic contact number are tightly reg-
ulated (data not shown), and the distribution of contact weights
is stable over time (Fig. 4b). However, in contrast to the multi-
contact model (Fig. 3), in the single-contact model, the tempo-
ral dynamics of synaptic contact survival do not indicate the
presence of a subgroup of stable connections (Fig. 4c), and all
connections are prone to random pruning, irrespective of
whether they have a small or large synaptic weight (Fig. 4d,e).
Thus, co-operation in multiple synaptic contacts from the
same presynaptic neuron is crucial for the long-term stabil-
ity of strong synaptic connections (Fig. 3e,f): in multicontact
synaptic connections, contacts support each other via Hebbian
synaptic plasticity and give rise to stable connectivity pat-
terns despite turn over of spines (Le Be and Markram 2006).
This co-operativity between synaptic contacts from the same
presynaptic neurons is analogous to the well-known co-
operativity of Hebbian learning in the presence of correlated
input (Bienenstock et al. 1982; Oja 1982; Kempter et al. 1999;
Song et al. 2000; Helias et al. 2008) but occurs here even in the
absence of correlated inputs.

A theoretical analysis further explains the crucial role of
contact multiplicity in synaptic transmission. We characterize
the fidelity of transmission of a presynaptic spike by the ratio
of the (trial-averaged) mean and STD of the evoked PSP, which
we call the SNR (see Materials and Methods). In our model, fail-
ures of synaptic transmission occur randomly at each synaptic
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contact, which causes variability of the PSP. If a synaptic con-
nection consists of several contacts, a presynaptic spike is
more reliably transmitted than in the case of a single contact
(Fig. 4f). The mathematical analysis shows that the SNR is pro-
portional to ⋅−

m
p

p

1 f

f
, where m is the multiplicity of the contact

and pf the synaptic failure probability. If 10 contacts are con-
sidered to be the maximum number of actual contacts connect-
ing a pair of neurons due to geometrical constraints of the
tissue, about 6 contacts give a SNR of 6/10 ≈80% of the maxi-
mum value achievable – and this result is independent of the
synaptic failure rate pf (Fig. 4f). In electrophysiological experi-
ments, the relatively high reliability of synaptic transmission in
layer 5 neurons of the somatosensory cortex of the rat has pre-
viously been interpreted as a signature of multiple synaptic
contacts per connection (Le Be and Markram 2006; Nawrot et al.
2009). Intuitively speaking, even if 3 out of 6 contacts in a multi-
contact connection fail to transmit, there will still be a large
response of the postsynaptic neuron. Our model shows that
this postsynaptic response in turn contributes to stabilizing all
contacts in the multicontact connection via Hebbian synaptic
plasticity – even those contacts that have failed to transmit
(see Model Analysis in Materials and Methods).

Presynaptic Lesions Lead to Increased Formation
of Persistent Contacts

Experimentally, structural plasticity can be induced by trim-
ming whiskers (Trachtenberg et al. 2002; Holtmaat et al. 2006),
lesions of the retina (Keck et al. 2008), or occlusion of one of the
eyes (Rose et al. 2016). In our full model with multiple potential
contacts for each of the 1000 presynaptic neurons, after ablat-
ing 50% of those presynaptic model neurons that have active
synaptic contacts (Fig. 5a), we observe a loss of 50% of the syn-
aptic contacts on the postsynaptic neuron after 30min (Fig. 5b).
However, this loss is rapidly compensated such that the firing
rate and total weight (summed over all presynaptic neurons
and all synaptic contacts) are hardly changed throughout the
process (Fig. 5b,c). The compensation occurs on 2 different time
scales. First, on the time scale of 10–30min, existing synaptic
contacts are upregulated from a prelesion value of ( ± )⋅ −3.3 1.3 10 3

to a value of ( ± )⋅ −6.6 1.3 10 3 measured 30min after the lesion
(Fig. 5d,f). Second, on the slow time scale of 10–30 days after the
lesion, the number of presynaptic neurons without postsynaptic
contact decreases from 886 prelesion to 810, 30 days after lesion
while the number of presynaptic neurons with 1, 2, or 3 contact
points transiently increases (Fig. 5e), suggesting that the plasticity
rule “tests” new connection patterns. Competition between syn-
aptic contacts from different presynaptic neurons and simulta-
neous co-operation of synaptic contacts arising from the same
presynaptic neuron leads to pruning or strengthening, so that
after 99 days, the distribution of contact numbers and synaptic
weights is again very similar (but not yet completely identical) to
the prelesion distributions (Fig. 5e). The gradual recovery of the
contact numbers is due to an elevated probability of newly formed
contacts to survive and become long-term stable compared with
the control condition (Fig. 5g). In a simulated lesion experiment
where 20% of the actual contacts are removed (instead of 50% in
the simulations so far), 14.6% of newly created contacts survive
for 8 days or more, consistent with experimental results on den-
dritic spines in the somatosensory cortex after whisker trimming
(Holtmaat et al. 2006) and significantly above the 7.7% of surviving
contacts in the control condition (Fig. 5g).

Rewiring of Input-Deprived Cortical Barrels Under
Structural Plasticity

We wondered whether our model would generalize from a sin-
gle postsynaptic neuron to predict structural changes in large
recurrent networks of excitatory and inhibitory neurons.
Therefore, in this section, we do no longer focus on the distri-
bution of synaptic contact numbers but take a slightly more
macroscopic view and ask how connectivity patterns develop
in networks and how these patterns re-adapt after sensory
deprivation.

Our network architecture (Fig. 6a) is inspired by rodent bar-
rel cortex with 3 strongly connected cortical populations (repre-
senting the columns corresponding to different barrels) of
excitatory neurons (labeled “exc” 1–3), each preferentially
innervated by a thalamically driven population (labeled “tha”
1–3) that conveys sensory input from 1 of 3 whiskers (labeled
“whi” 1–3) by strong connections. In the model, connections
between different cortical populations and from thalamically
driven populations to nonpreferred cortical barrel columns are
random and weaker on average, but all excitatory connections,
whether strong or weak, are subject to the same plasticity
model. To simplify the simulations, we stay at the level of an
abstract model and do not distinguish between different corti-
cal layers, even though there are known differences in response
properties; similarly, the thalamically driven populations in
our model are not necessarily located in the thalamus but
could instead represent layer 4 excitatory neurons. Note that
although biological connections from thalamus to cortex are
plastic during the critical period, they might not be thereafter
(Crair and Malenka 1995), whereas connections from thalami-
cally driven layer 4 neurons to excitatory neurons in other
cortical layers might remain plastic similar to other cortical
connections.

A short movement (flick) of the whisker is represented in our
model by a small increase in the firing rate of the neurons in the
thalamically driven population and results in a modest increase
of the firing rate of the corresponding cortical population (Fig. 6b)
above a spontaneous network activity of about 5Hz (Fig. 6d bot-
tom left). After an initial transient of 7 days of simulated time, we
followed the mean connection weights of synapses from several
groups (from tha 2 to exc 2, from tha 3 to exc 3, from tha 2 to exc
3, from exc 3 to exc 3, and from exc 2 to exc 2) during 3 days of
simulated time and found no changes (Fig. 6c, top), indicating
that the average connectivity pattern is globally robust during
ongoing activity and random whisker stimulation, despite struc-
tural plasticity always being active. Note that, by model design,
the neuronal activity inside each population is correlated. Since
correlated inputs to a given neuron change the distribution of
synaptic weights and contact numbers, we know that the distri-
bution of contact numbers in the network neurons with correlated
input is different from that of Figures 2 and 3 (Supplementary
Material S2.7). Instead of retuning parameters to optimize contact
numbers again, we decided that, for consistency with the earlier
simulations, we would keep the parameters of the plasticity
model unchanged and focus in the network simulations on the
resulting connectivity patterns.

After 10 days of simulated time, the whisker corresponding
to barrel 3 is trimmed. Whisker lesion is modeled by 1) absence
of whisker flicks in the thalamically driven group “tha 3” while
stimulation of the groups “tha 1” and “tha 2” continues and 2)
an exponential decrease of the firing rate of the corresponding
thalamic population with a time constant of 5min to a new
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baseline level of 0.1 Hz. We found that the spiking activity of
the network after the lesion remains asynchronous and irregu-
lar (Fig. 6b). Within 3 days after the lesion, the recurrent con-
nectivity of the barrel column 3 has increased (Fig. 6c, center)
consistent with a recent experiment (Albieri et al. 2015). The
average weight of connections within barrel column 2 is hardly
affected by the lesion. The lateral connections between excit-
atory neurons of barrel columns 2 and 3 increase on average.
Similarly, the average connection weight of the nonpreferred
pathway from the group “tha 2” to the group “exc 3” increases,
whereas the connections in the preferred pathway disappear
after the lesion (Fig. 6c, center). We followed the synaptic
changes for a total of 50 days after the lesion, during which the
recurrent network slowly continues to reorganize itself into a
new connectivity pattern. In particular, the average connectivity
from excitatory neurons in barrel column 3 to those in 2 con-
tinues to slowly increase.

The detailed connectivity pattern in Figure 6d indicates that
the increase in the average connection weight of the nonpre-
ferred pathway (from the group “tha 2” to “exc 3”) during the
first 3 days after the lesion is due to a strong increase of a subset
of the feed-forward connections. After clustering (see Materials
and Methods) and color-coding the excitatory neurons in barrel
column 3 according to their responsiveness (yellow shade: newly
responsive to whisker 1; red shade: newly responsive to whisker
2; green shade: responsiveness unchanged), the relevance of this
reorganization into subsets manifests itself in four consistent
ways: 1) the subset of red-shaded neurons in population “exc 3”
responds more strongly to stimulation of whisker 2 than the
average of neurons in population “exc 3”, nearly as strongly as
neurons in barrel column 2 (Fig. 6d, bottom right), 2) the same
subset has a larger fraction of strong lateral connections to
excitatory neurons in barrel column 2 than other neurons in
population “exc 3,” 3) the same subset receives a larger frac-
tion of strong lateral connections from excitatory neurons in
barrel column 2 than from neurons in barrel column 1, 4) the
same subset receives a larger fraction of strong feed-forward
connections from thalamic neurons in group 2 than other
neurons in “exc 3.” Taken together, these four observations
suggest that the subset of red-shaded neurons in barrel col-
umn 3 has been integrated in the information-processing
stream of barrel column 2. The same observations can be
repeated for the yellow-shaded subgroup of neurons in barrel
column 3, except that these neurons have been integrated
into barrel column 1. In both cases, the integration has been
made possible by structural plasticity triggered by the lesion.
Interestingly, the subset of those neurons of the deprived corti-
cal column that are integrated into a new whisker-processing
stream do not have to be physical neighbors but can be identi-
fied as those who, before the trimming, had already a stronger
response to the adjacent whisker (Fig. 7a).

The simulation results mentioned under point 1) above are
consistent with experience-dependent receptive field plasticity
found experimentally in pyramidal neurons in mouse somato-
sensory cortex 3–4 days (Trachtenberg et al. 2002) or 20 days
(Wilbrecht et al. 2010) after whisker trimming, where neurons
that were part of a deprived barrel became responsive to the
first-order surrounding whisker, in particular the subset of
neurons located in the border region to the neighboring bar-
rel (Wilbrecht et al. 2010). Observations (2)–(4) listed above
are predictions of our model. Note that in our simulations,
both barrel columns “exc 1” and “exc 2” are first-order sur-
rounding columns of the deprived column (exc 3) since we
have not introduced any distance-dependent connectivity.

We emphasize that the parameters of the structural plasticity
model are kept fixed throughout the simulation, be it before, dur-
ing, or after the lesion: First the network connection density was
stationary before the lesion, then it changed significantly during
3 days after the lesion, and finally settled into a new state
(Fig. 6c) while structural plasticity has always been “turned on.”
Indeed, individual synaptic contact points continue to grow or
disappear even during the phases where the coarse connectivity
pattern remains unchanged; see Figure 3.

Discussion
We linked structural dynamics of synaptic contacts in neuronal
networks to a novel STDP rule with synaptic depression for
strong correlations. In this plasticity model, weight changes
depend on the relative timing of pre- and postsynaptic spiking,
where firing of the postsynaptic cell could be transmitted by
back-propagating action potentials to dendritic synapses. The
implicit coupling between synaptic contacts onto the same
postsynaptic neuron through back-propagating action poten-
tials is sufficient to make synaptic contacts from one presynap-
tic neuron compete with contacts of other presynaptic neurons
and co-operate with contacts of the same presynaptic neuron.
Our phenomenological (as opposed to “molecular”) model provides
a mathematically tractable description of structural plasticity. We
hypothesize that any synaptic and structural plasticity model
must contain at least 3 mathematical terms (possibly correspond-
ing to 3 biological mechanisms) so as to enable the maintenance
of bimodal distributions of synaptic contacts and competition
between presynaptic neurons. First, a simple Hebbian correlation
term that drives learning. In our learning rule, this term is a some-
what naïve correlation detector, but this term could be replaced by
more detailed plasticity models (Kempter et al. 1999; Song et al.
2000; van Rossum et al. 2000; Shouval et al. 2002; Pfister and
Gerstner 2006; Morrison et al. 2007; Helias et al. 2008; Clopath et al.
2010). Second, a heterosynaptic plasticity term that stabilizes the
postsynaptic activity on a rapid time scale. In our learning rule, we
used a fourth-order term in the postsynaptic rate (Zenke et al.
2015), but other rate normalization rules (Oja 1982; Miller and
MacKay 1994; van Rossum et al. 2000; Tetzlaff et al. 2011) have a
similar spirit and could potentially work just as well if the feedback
is fast enough to allow effective control of firing rates (Zenke et al.
2013) and if competition between presynaptic neurons is not
removed. Third, and most importantly, a term that limits strong
correlations between pre- and postsynaptic neurons. In our learn-
ing rule, we introduced an anti-Hebbian term triggering synaptic
depression for strong pre- and postsynaptic correlation, which is
sensitive to the amount of correlations squared, inspired by prim-
ing experiments of plasticity induction (Huang et al. 1992). The
effects of this term are similar to the more traditional hard bounds
on the synaptic weights (e.g., Kempter et al. 1999; Song et al. 2000;
Gerstner and Kistler 2002; Morrison et al. 2008), but give, in a multi-
neuron multicontact scenario, rise to a much broader variety of
stable synaptic configurations. In particular, the combination of
these 3 terms enables parameter settings where, for example,
2-contact connections are unstable, whereas zero-contact con-
nections and 5-contact connections are stable. Moreover, in a
scenario with N input neurons out of which N0 have exactly 5
contacts each, there are ! ( − )! !N N N N/ 0 0 different combinations
of input neurons with active synapses. If any of the 3 terms in
our model is omitted, our mathematical analysis suggests that
the outcome will be qualitatively different. In particular, if firing
rate normalization and weight bounds are implemented by the
same mechanism, the number of available combinations of
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input neurons with active synapses is likely to be much smaller
(Tetzlaff et al. 2011, 2012; Fauth et al. 2015a).

The bimodal contact number distribution of synapses has
been discussed in several theoretical papers. To explain the
bimodal distribution, Fares and Stepanyants (2009) used an
algorithmic 2-step approach: first they transformed a potential
contact with probability P into a realized contact, then they
probabilistically removed those connections that had less than
Ns

c contacts (see also Reimann et al. 2015 for a related approach)
but did not provide dynamical equations of how co-operativity
could be implemented. Deger et al. (2012) showed in a multi-
contact model of a single pair of pre- and postsynaptic neurons
that Markov transitions between 3 different states (inactive,
small, and large contacts) can give rise to cooperative contact
formation if plasticity is mediated by STDP. Fauth et al. (2015a)
presented an elegant mathematical analysis for equilibrium
distributions in a multicontact synapse model with predefined
weight-dependent contact deletion rates. However, their analy-
sis is restricted to a single pair of pre- and postsynaptic neu-
rons and assumes that firing rate stabilization is achieved by
adjusting the weights (and contact numbers) of this single neu-
ron. If we re-interpret their model for multiple presynaptic neu-
rons, their mathematical solution corresponds to a homogeneous
configuration where connections of all presynaptic neurons
behave identically; that is, they exclude solutions where different
presynaptic neurons compete with each other. In contrast to the
approach of Fauth et al. (2015a) and Deger et al. (2012), we study a
model with multiple presynaptic neurons and show that stable
solutions exist where a subset of presynaptic neurons develops
strong multicontact connections, while other presynaptic neu-
rons do not. Moreover, our approach highlights that stabilization
of individual contact weights can be mathematically separated
from firing rate stabilization. Finally, our approach does not
assume a predefined weight dependence of the contact removal
rate, but we simply remove contacts when they hit zero, similar
to earlier single-contact STDP models that sometimes have a
structural component of contact removal (Gerstner et al. 1996;
Helias et al. 2008; Vlachos et al. 2013; Miner and Triesch 2016).

Co-operation and competition are both well-established con-
cepts in theories of synaptic plasticity. For example, in classical
rate-based plasticity models, synapses of different presynaptic
neurons co-operate if they share correlated input (Bienenstock
et al. 1982; Oja 1982). At the same time, synapses compete with
each other if the firing rate (Bienenstock et al. 1982) or the vector
of input weights (Oja 1982) is normalized. Analogous statements
are valid for models of STDP (Gerstner et al. 1996; Kempter et al.
1999; Song et al. 2000; van Rossum et al. 2000; Gerstner and
Kistler 2002; Helias et al. 2008; Morrison et al. 2008; Vlachos et al.
2013). Here, we have presented a multicontact plasticity model
that shows competition of synapses from different neurons and co-
operation of synaptic contacts arising from the same presynaptic
neuron even if inputs are uncorrelated Poisson spike trains. The co-
operation of synaptic contacts from the same neuron disappears in
our model if the synaptic failure rate approaches 1. Note that sev-
eral existing structural plasticity models rely on noncompetitive,
purely homeostatic structural dynamics (Butz and Ooyen 2013;
Diaz-Pier et al. 2016). However, in our opinion, competition is
needed to make some synapses grow at the expense of others, in
the tradition of Bienenstock-Cooper-Munro (1982).

Relations to, and Predictions for, Experiments

1. A synaptic contact with a given (potentially small) weight is
more stable if it is part of a group of 4 or 5 synaptic contacts

arising from the same presynaptic neuron than if it is isolated or
part of a group of only 2 synaptic contacts (Fig. 3c). This result
is generic in the sense that any Hebbian plasticity model with
some normalization mechanism would predict this (Fauth et al.
2015b). The conditional stability of contact weights could be mea-
sured by correlating the survival time of a given synaptic contact
(Holtmaat et al. 2005, Yasumatsu et al. 2008) with the total EPSP
amplitude of the connection (Le Be and Markram 2006).

2. Our model predicts a substantial fraction of synaptic con-
nections that have only one actual contact (see Fig. 3a). These
synaptic contacts, however, are small and quickly removed (see
Fig. 2f). Since weight, PSP amplitude, volume, and size are tightly
correlated (Holtmaat and Svoboda 2009), these weak synapses
might escape electrophysiological or visual detection with stan-
dard methods, which could explain the differences to experi-
mental reports (Markram, Lübke, Frotscher, Roth et al. 1997a;
Trachtenberg et al. 2002) but might be detectable using sub-
diffraction resolution imaging (Attardo et al. 2015).

3. After a lesion, the number of connections consisting of
exactly 2 synaptic contacts increases transiently. While this
might be expected, since the process of building a novel synap-
tic connection with 5 contacts has to pass through a transient
state with only 2 contacts, our model predicts that only about a
quarter of the 2-contact connections actually stabilize to a mul-
ticontact synapse, while the majority disappears again. Again,
this result is generic and has been reported similarly in other
models (Vlachos et al. 2013). As a consequence, the number of
presynaptic neurons without a connection transiently decreases
after a lesion before it increases again to a stable value (Fig. 5d
and e).

4. After whisker trimming, the subset of neurons of the
deprived cortical column, which will be integrated in the signal
processing of an adjacent whisker, will establish stronger incom-
ing and lateral projections to the cortical column in which they
become integrated than other neurons in the deprived column
(Fig. 6d). Again, we expect this result to be generic for a large
class of Hebbian plasticity rules. As an aside, we note that the
subset of those neurons of the deprived cortical column that are
integrated into a new whisker-processing stream do not have to
be physical neighbors but can be identified as those who, before
the trimming, had already a stronger response to the adjacent
whisker (Fig. 7a).

5. Our learning rule assumes that synaptic contact plasticity
strongly depends on local traces of correlations that must be
processed in the dendritic spines. Therefore, we expect experi-
mental manipulations of biophysical activity traces, such as
the calcium concentration, to crucially influence the develop-
ment of dendritic spines (Lohmann et al. 2005).

Two Theoretical Insights

First, in our plasticity model, firing rate stabilization is separate,
and significantly faster, than contact weight stabilization. The
rapid time scale of firing rate stabilization is necessary in recur-
rent networks (Zenke et al. 2013) and has similar effects as a
renormalization of the weight vector of afferent synapses in
each time step (Miller and MacKay 1994). The separation of fir-
ing rate stabilization by a fast compensatory mechanism from
other control terms that stabilize individual weights enables
competition between synapses from different presynaptic neu-
rons (Zenke et al. 2017), in contrast to models where firing rate
stabilization is strong but mixed with weight stabilization
(Tetzlaff et al. 2011). A separation similar to the one proposed
here also occurs in models with hard bounds on the synaptic
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weights (Kempter et al. 1999; Song et al. 2000). However, with
hard bounds, weight values tend to get “stuck” at the upper
and lower bounds so that fluctuation of contact weights as
those highlighted in Figure 2b would not be possible. Soft-
bound STDP models can show fluctuations but are less suitable
for long-term storage of memories (Morrison et al. 2007; Billings
and van Rossum 2009).

Second, our novel anti-Hebbian term in the synaptic plastic-
ity rule, which causes the stabilization of weights without
upper bounds, leads to an intrinsic stabilization of correlations
between pre- and postsynaptic neuron at synaptic contact
points (Supplementary Material S2.2). We hypothesize that
there could be a novel class of “normative” learning rules in
unsupervised learning, which do not maximize second-order
correlations (as done by Oja’s rule (Oja 1982)), but instead nor-
malize these. While experimentally known forms of homeosta-
sis have focused on the normalization of the mean firing rate
(Ibata et al. 2008), we suggest that it is also worthwhile to study
a normalization of correlations at each synaptic contact point.
We speculate that in this class of correlation-normalizing
learning rules, there could be rules that are sensitive to higher
order correlations but suppress second-order correlations with-
out the need of “pre-whitening” of data (Olshausen and Field
1996; Brito 2016).

The stabilization of the weights of individual contacts in the
absence of explicit hard or soft bounds leads to a class of plas-
ticity models with potentially interesting properties for infor-
mation processing. On one side, for a given number m of
contacts, the weights can be considered as bistable, and hence
near-binary: our theory predicts that a contact weight is either
zero (Brunel 2016) or approaches a finite value w*(m)/m. On the
other side, this finite value depends on the number of contacts
m and on the correlations in the input – hence, there is infor-
mation beyond purely binary weights. Moreover, the distribu-
tion of contact numbers may contain information about past
plasticity events (Fusi and Abbott 2007).

Simplifications and Shortcomings

First, we limited the simulations and analysis to a point neuron
model. We speculate that the synaptic plasticity rule used in
this paper could also produce branch-specific synaptic plastic-
ity and steady-state configurations (Druckmann et al. 2014) if
we combine it with a more complex neuron model with nonlin-
ear dendritic branches (see e.g., Schiess et al. (2016) and
Kastellakis et al. (2016)). We expect local co-operation in such a
model to stabilize preferentially several synaptic contacts from
the same presynaptic neurons onto the same dendritic com-
partments, as observed in experiments (Toni et al. 1999; Fu
et al. 2012) and earlier models (Kastellakis et al. 2016).

Second, the specific choice of STDP rule used in this paper
shows, at low frequencies, a symmetric pre–post and post–pre
learning window for LTP, which is not compatible with experi-
ments on cortical STDP (Markram, Lübke, Frotscher et al. 1997b;
Sjöström et al. 2001). However, important for our model is only
that there are some synaptic traces sensitive to correlations.
We have combined these traces in a specific manner so as to
simplify the mathematical analysis, but it would be straightfor-
ward to extend our formalism to more realistic STDP models
with phases of both potentiation and depression (Pfister and
Gerstner 2006; Morrison et al. 2008). Importantly, our model
assumes that, for high correlations between the activities of
pre- and postsynaptic neurons, there is a transition from strong
LTP to much weaker LTP or even LTD. The effects of such a

term should be comparatively weak, and escape analysis in
standard protocols, but appear compatible with results that found
LTP to be weaker if the synapses were previously subjected to
strong correlations (Huang et al. 1992). Similar principles might
explain why, depending on experimental preparations, variable
STDP rules have been reported in experiments (Sjöström et al.
2001).

Third, whereas for our recurrent network simulation of
Figure 6, we have used leaky integrate-and-fire neurons, for the
mathematical analysis of the system dynamics, we chose to
describe the activity of the postsynaptic neuron by a Poisson
process with a linearly modulated rate. However, we expect
very similar mathematical results in the case of nonlinear neu-
rons linearized around the operating point, which changes little
on the time scale of hours or days (see Fig. 2c, black).

Fourth, the parameters of our synaptic plasticity rule have
been adapted so that a bimodal distribution of contact numbers
is seen for independent Poisson spike trains at 5 Hz, whereas
cortical neurons in vivo show typically a small amount of corre-
lations and are active at lower frequencies. Indeed, a bimodal
distribution of contact numbers is also possible in the presence
of correlations and at lower firing rates, but with a different set
of parameters (Supplementary Material S2). Nevertheless, for
the sake of consistency of parameters across the paper, we per-
formed our network simulations with the same set of synaptic
plasticity parameters as the single-neuron simulations even
though we knew that with this set of parameters synaptic con-
tact distribution numbers are not bimodal (Supplementary
Material S2.7). The question then arises whether, in the brain,
bimodality is specific to a few sensory cortex areas where
experiments have been done or truly generic across brain areas
and neuron types with potentially different firing rates and cor-
relations. In the latter case, our model cannot account for
bimodality unless additional metaparameters are introduced
that would automatically retune the parameters.

Fifth, the time scale of effective firing rate homeostasis in
our model is too fast compared with experimental results.
Homeostatic synaptic scaling in response to experimental
blocking of postsynaptic firing occurs on the time scale of hours
(Ibata et al. 2008) or, in response to sensory deprivation (likely
to correspond to a reduction in presynaptic firing), on the time
scale of days (Toyoizumi et al. 2014). In an earlier structural
model, weights were given an explicit time dependence after a
lesion (Vlachos et al. 2013), while the dynamic model of
Toyoizumi et al. (2014) captures these time scales intrinsically,
but is nonstructural. In our model, lesion-induced changes of
synaptic contact weights occur rather quickly. While the aver-
age synaptic contact number recovers slowly within about 20
days, within less than 10min after the lesion, the contact
weights from spared presynaptic neurons are upregulated to
compensate for the loss of input (see Figs. 5b-d and 6c). We pro-
pose to extend the model presented in this paper by a combina-
tion of hard bounds (Morrison et al. 2008) and multiplicative
interaction of Hebbian and explicit homeostatic processes
(Toyoizumi et al. 2014). For example, with hard bounds set to
twice the fixed-point weight, the stationary distributions and
results of Figures 1–3 remain unchanged while the recovery of
the firing rate after a lesion is slower since individual synaptic
contacts cannot grow beyond the hard bound (see Fig 7b). A
more complete model could combine the hard bounds with the
essential features of the model of Toyoizumi et al. (2014). More
generally, the interactions of our rule with manifold plasticity
mechanisms such as short-term plasticity (Markram and
Tsodyks 1996), homeostasis (Ibata et al. 2008; Butz and Ooyen
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2013; Toyoizumi et al. 2014; Zenke et al. 2017), or intrinsic excit-
ability (Daoudal and Debanne 2003; Miner and Triesch 2016)
pose interesting challenges for future research.

Our synaptic and structural plasticity model results in
multiple contacts that form stable clusters. The contact
weights are binary in the sense that the 2 stable fixed points of a
contact weight are either zero or some finite value, but this finite
value depends on the input correlations and firing rates
(Supplementary Material S2). Interestingly, a model with multiple
binary contacts is one of the potential implementations of a synap-
tic consolidation model of Benna and Fusi (2016). In contrast to
other binary synapse models, our approach does not rely on
predefined weight values for strong weights, which may give
additional flexibility to neural systems while preserving their
long-term stability.
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