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Abstract: Ventilated facades are becoming an increasingly popular solution for external part of walls
in the buildings. They may differ in many elements, among others things: claddings (fiber cement
boards, HPL plates, large-slab ceramic tiles, ACM panels, stone cladding), types of substructures,
console supports, etc. The main part that characterizes ventilated facades is the use of an air
cavity between the cladding and thermal insulation. Unfortunately, in some aspects they are not
yet well-standardized and tested. Above all, the requirements for the falling-off of elements from
ventilated facades during a fire are not precisely defined by, among other things, the lack of clearly
specified requirements and testing. This is undoubtedly a major problem, as it significantly affects
the safety of evacuation during a fire emergency. For the purposes of this article, experimental tests
were carried out on a large-scale facade model, with two types of external-facade cladding. The
materials used as external cladding were fiber cement boards and large-slab ceramic tiles. The model
of large-scale test was 3.95 m × 3.95 m, the burning gas released from the burner was used as the
source of fire. The test lasted one hour. The facade model was equipped with thermocouples. The
cladding materials showed different behavior during the test. Large-slab ceramic tiles seemed to be a
safer form of external cladding for ventilated facades. Unfortunately, they were destroyed much faster,
for about 6 min. Large-slab ceramic tiles were destroyed within the first dozen or so minutes, then
their destruction did not proceed or was minimal. In the case of fiber cement boards, the destruction
started from the eleventh minute and increased until the end of the test. The authors referred the
results of large-scale test to testing on samples carried out by other authors. The results presented
the convergence of large-scale test with samples. External claddings was equipped with additional
mechanical protection. The use of additional mechanical protection to maintain external cladding
elements increases their safety but does not completely eliminate the problem of the falling-off of
parts of the facade. As research on fiber cement boards and large-slab ceramic tiles presented, these
claddings were a major hazard due to fall-off from facade.

Keywords: ventilated facades; large-scale facade model; fire safety; fiber cement board; large-slab
ceramic tile

1. Introduction

Ventilated facades are a type of external part of multilayer wall, which has a construction part and
is usually a masonry or concrete wall, but it can also be a wooden or steel structure. The wall is then
fitted with insulation, with consoles holding the elements of the substructure and the external cladding.
This external cladding protects the aforementioned layers against environmental influences and gives
the final shape and appearance of the facade. There is an air gap between the external cladding and the
insulation, also known as a ventilation gap. The width of the air gap in ventilated facades ranges from

Materials 2020, 13, 2387; doi:10.3390/ma13102387 www.mdpi.com/journal/materials

http://www.mdpi.com/journal/materials
http://www.mdpi.com
https://orcid.org/0000-0001-6320-9539
https://orcid.org/0000-0001-8050-8194
https://orcid.org/0000-0003-2828-5899
http://dx.doi.org/10.3390/ma13102387
http://www.mdpi.com/journal/materials
https://www.mdpi.com/1996-1944/13/10/2387?type=check_update&version=2


Materials 2020, 13, 2387 2 of 14

20 to 50 mm [1,2], some sources also provide higher values, e.g., from 40 to 100 mm [3]. Ventilated
facades allow for shaping external claddings from various materials, structures, textures or colors. Due
to their high aesthetics, ventilated facades are increasingly often used as external parts of newly built
buildings, but they are also perfect for buildings undergoing renovations. External cladding elements
can have very large individual elements. The standard dimension for fiber cement boards is 1250 mm
× 3100 mm [1] and for HPL 1850 mm × 4100 mm [1].

Regulations control a number of requirements for external walls, such as ensuring appropriate
thermal insulation, the requirements for durability and protection of the building according to [4,5]
and safety of use in environmental and emergency situations. One of the most important requirements
a building must meet in emergency situations, is the impact of fire, is to ensure the possibility of
evacuation of users and work of rescue teams [5]. External walls with external facade cladding must
ensure, among other things, sufficient durability in emergencies, i.e., prevent facade elements from
falling off. This problem is widely known throughout Europe.

The European Commission in [5], presented analysis of today’s requirements of the falling-off of
parts of facades in countries. In [5] standardization proposals were also presented, among others of
falling-off cladding elements during a fire. Propose two methods for assessing falling elements of the
façade, the first one was dependent on fire class:

• No falling-off of parts larger than 1 kg and 0.1 m2 (class F1);
• No falling-off of parts larger than 5 kg and 0.4 m2 (class F2);
• No burning particles at all (class D0);
• Limited duration burning debris <20 s (class D1).

There was presented also alternative test method: falling parts are limited to a maximum of 1
kg and an area of 0.1 m2 for each individual piece. Until the standards are harmonized in Europe,
manufacturers of entire ventilated façade systems, designers and contractors [6–8] will have a problem
delivering these products within the European Union.

There are many standards in the world for the large-scale facade test [9–12]. They are based on
the spread of fire from a recess/hole, simulating the window openings of a room in a real building. The
fire source is located there, defined by the normal temperature action curve. The flames escape from
the recess affecting the external facade cladding and other wall elements. Individual standards differ
in details, i.e., the type of fire source: wood crib [9–11] or propane-butane gas [12], dimensions of the
recess/hole, test time, shape of the facade model in large scale and its dimensions. The comparison of
individual standards for the test of large—scale facade models in the scope of fire safety is presented
by Smolka in [13]. Due to the growing awareness of the phenomenon of fire spreading on the external
part of the elevation and a number of threats caused by this phenomenon, the European Commission
started an attempt to harmonize the testing standards [11].

Sulik and Kinowski [14,15] analyzed the large-scale facade models at the impact of fire. Ventilated
facades with different external claddings have been assumed as initial conditions. The external
claddings include fiber cement boards and high-pressure laminate (HPL) panels, ceramic tiles, natural
stone and synthetic stone marmoglass (glass conglomerate), layered steel ACM panels (aluminum
composite material). During the research, a number of dependencies were noted, among others: that
the way the external facade cladding is installed has an impact on its safety. Mechanical assembly is
safer than adhesive assembly. The requirements for the test duration are usually 60–120 min. After
30 min the destruction of the cladding is minimized or even stopped in some cases. The claddings
that have been positively tested in this type of test are fiber cement boards and ACM panels, in which
case the falling-off of parts were up to 2 kg. In the case of ceramic tiles, the falling-off of parts were
also of acceptable weight, but they were sharp and posed a risk to evacuating people. In the case of
stone cladding and marmoglass, the weight of the falling elements was several or even several dozen
kilograms. Sulik and Kinowski [6] also presents the verification of fire safety of glass facades. The
results indicate a problem with the falling-off of elements of facades.
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It should also be emphasized that fiber cement boards are not well identified when it comes to the
conditions of fire and high temperatures. Szymków’s research presented in the study [16] showed that
fibers in fiber cement boards are destroyed at 230 ◦C only after 3 h. Destruction of such boards during
the bending test takes place through brittle high-energy cracking. Other fiber-reinforced materials
show similar behavior. The study [17] shows that the decrease of compression strength of concrete
and fiber-reinforced concrete at temperatures up to 300 ◦C is about 10%. On the other hand, in the
case of fiber-reinforced cement composites, the modulus of rupture increases with the temperature
increase up to about 300 ◦C [18]. Temperatures up to about 300 ◦C for fiber-reinforced materials are
relatively safe in a short period of time. Their destruction takes place only after a longer period of time,
usually after several hours. Szymków in his work [16] also carried out tests on samples of fiber cement
boards at 400 ◦C. At this temperature, the samples showed much lower stability and were destroyed
much faster. The results had large discrepancies because, depending on the manufacturer, components,
manufacturing technology, they “withstood” for up to several minutes. Some were destroyed even
in a shorter period of time. Unfortunately, in case of fire, the temperature impact on external facade
claddings may reach a value locally even up to 900 ◦C (the external curve provides a value of 660 ◦C),
and such experimental tests are not available for fiber cement boards. Looking at the above analogies of
other materials with the use of fibers, interesting conclusions are contained in the study [17], where the
tests for concrete and fiber-reinforced concrete were performed. It was found that the temperature of
800 ◦C reduces the compressive strength of concrete and fiber-reinforced concrete class C30/37 by over
90%. In the case of high-quality concrete and fiber-reinforced concrete of class C60/75, the compression
strength decreases by more than 90%, only after the samples are heated at 1000 ◦C. At 500 and 600 ◦C,
the samples without the addition of fibers were destroyed during their annealing, whereas those with
the addition of polypropylene fibers retained their residual bending strength [18]. The study [19] also
showed a positive effect of using fibers to increase the bending strength of beams subjected to the
normative fire temperature curve. The fibers have a positive effect on increasing the load capacity of
the elements under the influence of high temperatures, e.g., in an emergency situation, such as a fire.

The authors of this study and [20–26], due to the lack of scientific literature on the problem
of destruction of fiber cement boards used as external facade claddings in ventilated facades, have
attempted to analyze this issue. This analysis was based on the large-scale model of facade. This issue
is important because the popularity and demand for ventilated facades is increasing, and unfortunately
the problem quoted by the authors concerns the safety of these facades in an exceptional situation, i.e.,
the impact of fire.

To sum up, it can be argued that today practically no type of material used for external facade
claddings (except for steel sheets) ensures that the condition specified in the Regulation [5] is met. It
is therefore necessary to apply some kind of compromises and, above all, to harmonize the testing
standards and analysis of these results.

2. Materials and Model of Ventilated Facade

In order to solve the scientific task, a model was prepared to reproduce the facade of the building,
made in the so-called large-scale model. The model was constructed with reference to the existing
wooden frame building systems.

The analyzed wall was a part of the wooden panel and modular skeleton construction system. The
construction of the elements consisted of a wooden skeleton with a glass wool insulation material filling.

The subject of the research verification was the layout of the ventilated facade, which included
two variants of external claddings: fiber cement boards and large-slab ceramic tiles. The external
cladding was attached to steel consoles. The supporting structure was a wooden. Between the posts
there was a layer of thermal insulation made of glass wool. On the inside and outside of the wall there
was a layer of 12.5 mm plasterboard. The substructure fastening the external cladding was made of an
aluminum grate with a section of L60 × 40 mm × 2 mm, screwed to steel consoles. The consoles were
fixed to the system skeleton wall (model’s supporting element) by means of 8 × 60 steel disc screws.
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The layout of the aluminum substructure and the consoles transferring loads from the aluminum
substructure to the system skeleton wall is shown in Figure 1.

The external cladding of the ventilated facade consisted of fiber cement boards with a thickness of
8 mm and density of 1700 kg/m3 and large-slab ceramic tiles with a thickness of 5.6 mm and density
of 2855 kg/m3. The external facade claddings attached to the aluminum grate were made with the
use of the system adhesive technology and additionally with the use of steel mechanical connectors,
i.e., perforated steel tapes attached to the substructure. The dilatation between individual boards was
8 mm. Figure 1 shows the division scheme of the external cladding and indicates the material of which
they were made, namely, the fiber cement boards in the left part and the large-slab ceramic tiles in the
right part.
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Figure 1. Scheme of the aluminum substructure, console arrangement, external cladding panels
arrangement and material indication.

Selected details of the tested ventilated facade are shown in Figure 2. Total dimensions of the
tested model of ventilated facade were 3950 mm × 3950 mm, air gap width 38 mm, dimensions of fire
hole 2000 mm × 1000 mm.
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Figure 2. Selected details of the ventilated facade model under test: (a) thermal insulation system;
(b) the detail of perforated tape connection with the console; (c) the detail of closing sheet above the
window opening; (d) the detail of sill system.

The scenario of the ventilated facade fire assumed that the flames would escape through a window
opening from a room located directly behind the facade, inside the building. In order to map the room
from which the flame was emitted, a recess was made in the model of the facade where the source of fire
was placed. The burner parameters were selected in such a way as to reproduce the standard fire in the
room, defined in the fire resistance test standard [20]. The fire was mapped with a gas burner releasing
propane-butane gas at the speed of 3.8 m/s. The air from the recess in which the so-called sand burner
was placed, supplied by the furnace installation had the possibility of inflow from the side of the
opening, through a technical solution ensuring laminar air inflow, the so-called vent. In order to verify
and identify damage to the external cladding, four thermocouples were installed. Thermocouples send
information regarding temperatures as a function in time. Influence of high temperature was one of the
negative external environmental effects on buildings elements. Thermocouples were placed in the gaps
between the panels: two in the part of fiber cement boards and two in the part of large-slab ceramic
tiles. The location of the thermocouples is shown in Figure 3. A ventilated facade with open joints
was made, where additional gaps (gaps between individual external cladding panels) can provide
air circulation.
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Figure 3. Ventilated facade model with location of thermocouples.

3. The Test and Results

The test was carried out in a closed hall, with an ambient temperature of 18.9 ◦C and relative
humidity of 60.7%. The test started with setting the burner and calibrating the gas release. The first
5 min of the fire revealed smoke/charring of the external cladding, no falling-off of the external cladding
elements (Figure 4a).

The first falling-off of elements were observed in the 6th minute of the test, i.e., large-slab ceramic
tiles elements started to fall off (Figure 4b). The subsequent minutes of high temperature impact caused
greater destruction of the external cladding, particularly visible in the part where large-slab ceramic tiles
were located. On 11th minute, the degradation of fiber cement boards started significantly. Figure 4c
shows the initial stages of expansion of the fiber cement boards. The destruction of the large-slab
ceramic tiles slowed down around 20th minute. The places where the temperature impact was highest
were destroyed, and in the remaining places, large-slab ceramic tiles “tolerated” high temperatures
quite well. Large-slab ceramic tiles had the greatest degradation in the first several minutes of fire. No
further degradation of ceramic sinters was noticed.

These materials destruct themselves also in another way. In the case of large-slab ceramic tiles,
which have a uniform structure, the destruction takes place by cracking and falling-off of pieces of
elements. In the case of fiber cement boards and their nonuniform structure, the boards, despite
significant warping (deplanation) caused by high temperature (e.g., Figure 4e), do not fall off among
others due to the good tensile properties of the fibers. Only complete destruction of the fibers causes
the elements to fall off.

The test revealed cracking and falling-off of fragments of both fiber cement boards and large-slab
ceramic tiles. This mainly concerned the external cladding located above the opening, i.e., above the
fire source. Some of the claddings have detached from the grate but have not fallen off and hang
on perforated steel tapes mechanically attached to the cladding. The maximum mass of a single
component which fell off and dropped during the test was 1.15 kg. This was due to a safety system
using a steel perforated tape and mechanical fasteners. Degradation of the large-slab ceramic tiles took
place during the first few minutes, then this part of the facade was stable. Fiber cement boards behaved
differently. The first minutes showed the stability of the fiber cement boards. From 11th minute, the
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boards started to show significant degradation progressing practically until the end of the test. If
perforated steel tapes were not used, the cladding elements falling off the facade would probably be of
considerable dimensions.
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The horizontal upper splay, made of 0.5 mm thick steel sheet, deformed, but its location has
not changed. The aluminum grate directly above the recess with the fire source, except in places
directly sheltered by the steel top splay was burnt at a height of up to 1660 mm. Glass mineral wool
was melted directly above the recess at a height of up to 1400 mm. The steel fasteners and consoles
remained in place, as did the lower splay. Figure 5 shows the condition of the facade after the fire
source was extinguished.
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The results of temperature measurement from the thermocouples located in the part of the fiber
cement boards, as shown in Figure 3, are presented as a function of time in Figure 6 for thermocouples
TE1 and TE2. On the other hand, the results for TE3 and TE4 thermocouples located in the part of
large-slab ceramic tiles are shown in Figure 7. The results presented for TE1 and TE2 thermocouples
show high instability and temperature variations. This was due to the high development of degradation
over time of fiber cement boards, especially after full development of the fire. The locations of the
greatest temperature fluctuations in Figure 6 can be associated with cracking or detachment of external
cladding elements.



Materials 2020, 13, 2387 9 of 14

Thermocouples TE3 and TE4, as opposed to thermocouples located in a part of fiber cement
boards, initially showed higher temperature increase. The power of the fire was constant, the difference
in temperature was caused by the heating of the elements. In 6–7 min, TE3 thermocouples showed
high stability—large-slab ceramic tiles were quickly destroyed in the central part above the fire recess.
TE4 thermocouple initially showed high instability and temperature fluctuations. This was caused
by the influence of lower temperature on large-slab ceramic tiles in this part of the facade. TE4
thermocouple became stable in about 15th minute when the ceramic sinters were no longer damaged
by high temperature. The damage is shown in Figure 4c. This state or a slightly altered state, was
maintained practically until the end of the test.
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Figure 7. Temperature measurement results for TE3 and TE4 thermocouples.

4. Discussion

The test of a model of a ventilated facade made of two different external claddings showed
significant material differences. Large-slab ceramic tiles very quickly, in the first few minutes or so,
were destroyed by high temperatures, then their degradation does not deepen. The course of events in
the part made of fiber cement boards looks different. In the initial stage of the fire, the panels show
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high resistance—the first few minutes or so. About 11 min, the first signs of degradation of fiber
cement boards are visible (Figure 4c). Then the state of the degradation was deepened until the final
destruction. Fiber cement boards have exhausted their load-bearing capacity during high temperature
exposure. They were held on the structure only by perforated steel tapes. The authors wanting to refer
the results from large-scale test to testing on samples by Szymków [1], had to specify the method of
reference of the results. The temperature in the large-scale test was much higher than in Szymków’s
research [1], the time function will be not representative. The authors determined that as the most
reflecting value will be function of integral.

The integral corresponding to the temperature function from time was determined for all
thermocouples. The following results were obtained:

• the integral for TE1 (◦C ×min) was 15,745.0 (◦C ×min);
• the integral for TE2 (◦C ×min) was 29,475.1 (◦C ×min);
• the integral for TE3 (◦C ×min) was 42,686.2 (◦C ×min);
• the integral for TE4 (◦C ×min) was 13,912.0 (◦C ×min).

These results are shown in Figure 8 together with temperature diagrams for all thermocouples:
TE1, TE2, TE3, TE4. In this graph we can observe a linear growth pattern of the integral for TE3 and
TE4 thermocouples (thermocouples placed in a part of the cladding made of large-slab ceramic tiles).
In addition, in the part with ceramic sinters the fire force was much higher. The maximum temperature
for TE3 was 862.7 ◦C and for TE2 thermocouple measuring the temperature in the area of fiber cement
boards it was 735.5 ◦C. The much higher temperatures in the large-slab ceramic tiles area were caused
by the much faster destruction of this material, the “release” of access to the thermocouples. The
falling-off of large-slab ceramic tiles made easier way to burn mineral wool, this allows maintain higher
temperature. In addition, it was likely that ceramic sinters insulate thermocouples much worse than
fiber cement boards. The temperature course for TE1 and TE2 thermocouples contains much more
disturbances and significant faults. In addition, the integral function has a visible refraction in 34th
and 39th minutes for TE1 thermocouple and 42nd and 48th minutes for TE2 thermocouple.
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Szymków in [16] carried out tests to identify the degree of destruction of fiber cement boards
under high temperatures. He analyzed the influence of temperature 400 ◦C in a given unit of time.
Different samples of 20 mm× 100 mm fiber cement boards were subjected to high temperature influence
in 1 to 15 min. The samples differed in technical parameters, composition, production technology and
area of application and were tested at different times. Characteristic parameters of individual sample
series given by the manufacturer are presented in Table 1.

Table 1. Characteristic parameters of individual sample series.

Boards
Series

Designation

Board
Thickness

(mm)
Board Color Application

Bulk
Density
(g/cm3)

Pressing
During

Production

Modulus of Rupture
MOR
(MPa)

SERIE A 8.0 Natural color External 1.60 Yes 25
SERIE B 341.97 Dyed in the mass External 1.60 Yes 30
SERIE C 139.37 Dyed in the mass External 1.65 Yes 30
SERIE D 133.65 Natural color External 1.70 Yes 20
SERIE E 281.84 Natural color external 1.20 Partially 12

For the purposes of the articles, selected test results from [16] were used. Fracture energy Wf and
modulus of rupture MOR were analyzed. The results are presented in Table 2.

Table 2. Aggregate summary of averaged values of fracture energy Wf and modulus of rupture MOR
for panels, under the influence of high temperature 400 ◦C from 1 to 15 min [1].

Boards Series Designation Fracture Energy Wf (J/m2) Modulus of Rupture MOR (MPa)

SERIE A2—1 min of influence 372.82 20.89
SERIE A3—2.5 min of influence 341.97 23.05
SERIE A4—5 min of influence 139.37 17.68

SERIE A5—7.5 min of influence 133.65 15.50
SERIE B2—1 min of influence 281.84 23.30

SERIE B3—2.5 min of influence 302.99 23.80
SERIE B4—5 min of influence 301.84 25.56

SERIE B5—7.5 min of influence 309.52 30.29
SERIE B6—10 min of influence 229.02 23.22

SERIE B7—12.5 min of influence 134.53 14.13
SERIE B8—15 min of influence 86.94 12.53
SERIE C2—1 min of influence 1375.14 35.75

SERIE C3—2.5 min of influence 1396.19 44.61
SERIE C4—5 min of influence 320.86 22.44

SERIE C5—7.5 min of influence 276.12 17.63
SERIE C6—10 min of influence 30.67 7.98
SERIE D2—1 min of influence 297.11 23.27

SERIE D3—2.5 min of influence 298.18 26.36
SERIE D4—5 min of influence 233.90 23.90

SERIE D5—7.5 min of influence 204.31 21.31
SERIE D6—10 min of influence 152.94 15.31
SERIE E2—1 min of influence 736.44 14.41

SERIE E3—2.5 min of influence 555.62 11.89
SERIE E4—5 min of influence 250.92 10.11

As the results shown in the study [16] show, for fiber cement boards at high temperature of 400 ◦C,
the fracture energy increased in the initial phase. In case of B, C, D series boards, the fracture energy
increased from 2% to 9%. Then a decrease in the fracture energy was visible for all types of fiber cement
boards. The same was true for modulus of rupture MOR, which increased from 3% to 20% in the initial
period and then decreases. Table 3 shows the aggregate summary of the temperature function integral
from the maximum time that a sample could be tested for the A–E series of boards.
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Table 3. Aggregate summary of the temperature function integral from the maximum time [1].

Boards Series Designation
Fracture Energy Wf

(J/m2)
Modulus of Rupture MOR

(MPa)
Function Integral

(◦C ×min)

SERIES A5—7.5 min of influence 133.65 15.50 3000
SERIES B8—15 min of influence 86.94 12.53 6000
SERIES C6—10 min of influence 30.67 7.98 4000
SERIES D6—10 min of influence 152.94 15.31 4000
SERIES E4—5 min of influence 250.92 10.11 2000

For the purpose of further analyses, the average value of the function integral for all series
was assumed to be 3800 (◦C × min). The average value of the function integral for all series
corresponds to the increasing integral for TE1 thermocouple in about 20.5 min and the increasing
integral for TE2 thermocouple in about 12.75 min. This is reflected in Figure 6; Figure 8. The time of
12.75 min approximately coincides with the point of significant fault in the temperature graph for TE1
thermocouple. This corresponds to the beginning of the destruction in 11th minute of the tested model
(Figure 5). Fiber cement boards detach into parts, probably obscuring the TE1 thermocouple. Then
the fiber cement panels were continuously destroyed until the end of the test. This corresponds to
integral 42,686.2 (◦C ×min). The tests shown in [16] end with the integral value of 6000 (◦C ×min).
The results obtained during the test in question indicate identical tendencies to the behavior of the
samples presented in [16].

5. Conclusions

The model of large-scale ventilated facade is a huge source of knowledge about its behavior
during a fire. The problem of destruction of the external cladding in the case of fiber cement boards
and large-slab ceramic tiles has not been sufficiently recognized so far and such studies as presented in
the article indicate trends in the “behavior” of the facade and these claddings.

Fiber cement boards pose a great threat to the safety of use in case of flames escaping from
window openings to facades during a fire. Large-slab ceramic tiles appear to be a safer form of external
cladding for ventilated facades. Unfortunately, they were destroyed much quicker, i.e., starting from
the 6th minute. The danger of falling elements passes after a dozen or so minutes of fire. In the case of
fiber cement boards, the visible destruction starts from about 11th minute and runs throughout the
whole period of high temperature impact. Falling-off of elements in the case of fiber cement boards
were large sizes, even despite the use of additional protections. In the case of standard mechanical or
adhesive fastening, fiber cement boards would pose an even greater threat.

In the next part of the article compared behavior of fiber cement boards on samples test with the
large-scale facade test. The temperature integral was taken as the comparative value of the samples
with the large-scale façade test. The results of both tests show convergent results. The samples were a
good alternative initial verification of the facade cladding behavior in fire conditions in global analysis.

The authors are planning next research in this field, developing the model and using more
thermocouples. The tests will be carried out on a greater number of different types of claddings.

The next research steps, helping to better solve the problems of ventilated facades and to increase
their safety, should, according to the authors, concern the samples of fiber cement panels tested at a
temperature closer to the actual fire, i.e., about 550–650 ◦C (Figure 6). Such tests should also be carried
out for ceramic sinters, which have not yet been described in the literature.
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fibrobetonu. Zesz. Nauk. SGSP 2008, 36, 61–84.

18. Drzymała, T.; Ogrodnik, P.; Zegardło, B. Wpływ oddziaływania wysokiej temperatury na zmianę
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przy remontach, modernizacjach i wzmocnieniach obiektów budowlanych. Bad. Nieniszcz. Diagn. 2017, 3,
20–23.

22. Bełzowski, A. Degradacja Mechaniczna Kompozytów Polimerowych: Oficyna Wydawnicza; Oficyna Wydawnicza
Politechniki Wrocławskiej: Wrocław, Poland, 2002; p. 176.

23. Bezerra, E.M.; Joaquim, A.P.; Savastano, H. Some properties of fibre-cement composites with selected fibers.
In Proceedings of the Conferencia Brasileira de Materiais e Tecnologias Não Convencionais: Habitações e
Infra-Estrutura de Interesse Social Brasil-NOCMAT 2004, Pirassununga, SP, Brasil, 29 October–3 November
2004; pp. 34–43.

24. Kolaitis, D.I.; Asimakopoulou, E.K.; Founti, M.A. A Full-scale fore test to investigate the fire behaviour of the
“ventilated facade” system. In Proceedings of the Interflam 2016, Windsor, UK, 4–6 July 2016; pp. 1–12.

25. Bentchikou, M.; Guidoum, A.; Scrivener, K.; Silhadi, K.; Hanini, S. Effect of recycled cellulose fibres on the
properties of lightweight cement composite matrix. Constr. Build. Mater. 2012, 34, 451–456. [CrossRef]

26. Polish Committee for Standardization. Fire Resistance Tests. Part 1. General Requirements; Polish Committee
for Standardization: Warsaw, Poland, 2012.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.conbuildmat.2012.02.097
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Model of Ventilated Facade 
	The Test and Results 
	Discussion 
	Conclusions 
	References

