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Abstract

Summary: It is known that some mutant peptides, such as those resulting from missense mutations and frameshift
insertions, can bind to the major histocompatibility complex and be presented to antitumor T cells on the surface of
a tumor cell. These peptides are termed neoantigen, and it is important to understand this process for cancer im-
munotherapy. Here, we introduce an R package termed Neoantimon that can predict a list of potential neoantigens
from a variety of mutations, which include not only somatic point mutations but insertions, deletions and structural
variants. Beyond the existing applications, Neoantimon is capable of attaching and reflecting several additional in-
formation, e.g. wild-type binding capability, allele specific RNA expression levels, single nucleotide polymorphism
information and combinations of mutations to filter out infeasible peptides as neoantigen.

Availability and implementation: The R package is available at http://github/hase62/Neoantimon.

Contact: t-hasegw@u-tokyo.ims.ac.jp

1 Introduction

Recent technological advances in massively parallel sequencing
have enabled the identification of genetic variants, e.g. single nu-
cleotide variants (SNVs) and insertions or deletions (indels), in in-
dividual cancer patients. Furthermore, substantial evidence
indicates that tumor-specific peptides that result from such varia-
tions can bind to a major histocompatibility complex (MHC) mol-
ecule and be presented to antitumor T cells on the surface of a
tumor cell. Identification of such tumor-specific peptides, termed
neoantigens, has been receiving increasing attention because of its
numerous potential applications in cancer immunotherapy
(Carreno et al., 2015; Matsushita et al., 2012; Mizuno et al.,
2018).

To identify the possible presence of neoantigens in individual
tumor, we have to predict whether mutant peptides can bind to the
patient’s human leukocyte antigens (HLAs). Several computational
methods such as netMHCpan (Jurtz et al., 2017) and MHCflurry
(O’Donnell et al., 2018) have been proposed to predict the binding
capability, including binding affinity and percentage rank of affinity.
To apply these methodologies, we need to determine the patient’s
HLA types and prepare a list of tumor-specific peptides obtained

from sequencing data. Designing such peptides requires not only
mutation information, but also the reference sequences with their
coding protein information because they are fractions of expressed
mutant proteins. Even after the prediction of the binding capability
of such mutant peptides, further classification filters should be
applied to the selection, e.g. a comparison in binding affinity be-
tween wild-type and mutant peptides and the evaluation of allele-
specific RNA expression levels.

To automate this process and easily identify tumor-specific neoanti-
gens, some computational tools have been developed (Bjerregaard
et al., 2017; Hundal et al., 2016). These tools greatly help to obtain
predicted results; however, a few tools can use mutation data [such as
variant call format (vcf) files] in a local analytical environment such as
the R. In addition, the existing tools are applicable only for the predic-
tion of HLA Class I binding and for handling of SNVs and indels at
best, but not for the prediction of HLA Class II binding and handling
of structural variants (SVs) and mutant RNA sequences such as fusion
transcript. Moreover, they lack detailed considerations, e.g. reflecting
SNVs on the frameshift regions and single nucleotide polymorphisms
(SNPs) to generated peptides. To address these requirements, we devel-
oped an easy and multifunctional R package termed Neoantimon that
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can produce a list of candidate neoantigens (for HLA Class I and II)
caused by SNVs, indels and SVs. It can automatically construct mutant
peptides from vcf files or mutant RNA sequences and calculate their
binding capability to the corresponding HLAs with some information
for filtering. This tool has been used in the Mitochondrial Genome and
Immunogenomics Working Group in the PanCancer Analysis of Whole
Genomes (PCAWG) project (Mizuno et al., 2018).

2 Implementation

2.1 Required input files
This package requires the two following inputs: (i) a text file storing
gene sequence variations and (ii) a list of HLA types identified by,
e.g. ALPHLARD (Hayashi et al., 2018). (i) can be either one of the
following files: (a) an annotated vcf file generated by ANNOVAR
(Wang et al., 2010) or Ensembl Variant Effect Predictor (VEP)
(McLaren et al., 2016), (b) non-annotated vcf file with using annota-
tion option in this package or (c) a list of mutant RNA sequences in
association with the corresponding gene symbols or NM IDs to filter
out wild-type peptides. Only non-synonymous substitutions, in-
frame and out-of-frame indels are extracted from SNVs and indels
described in vcf files to generate mutant peptides. For the evaluation
of potential fusion transcripts on the basis of SVs, vcf files must con-
form to the break-end (BND) format. A sample procedure to gener-
ate mutant peptides is illustrated in Figures 1–4.

2.2 Optional input files and considerations
Users can optionally provide (a) RNA expression data with and
without (b) the corresponding Binary Alignment Map (BAM) file to
attach total and allele-specific RNA expression levels and (c) copy
number variation data to calculate the posterior probability distribu-
tion over cancer-cell fraction (CCFP) to evaluate tumor subclonality
(Lohr et al., 2014). Considering a somatic mutation observed in a of
N sequencing reads on a locus of absolute somatic copy-number q in
a sample of purity a, CCFP is calculated as P(c) / Binom(a/N, f(c)),
where f ðcÞ ¼ ac=2ð1� aÞ þ aqÞ and c corresponds to a uniform
prior. They are attached to the output, as illustrated in Figure 5.
Note that, (c) should be according to the output format of ASCAT
(Allele-Specific Copy Number Analysis of Tumors) (Van Loo et al.,
2010) or include locus, #copy of Allele A and B, variant allele

frequency (VAF), total read depth and tumor purity (VAF and total
read depth can be automatically assigned from the input file).

In addition, users can consider specific cases of existing SNPs on
the mutant peptide by providing (c) SNPs data, and multiple SNVs
on the same mutant peptides and among the frameshift region
caused by indels. These cases are explained in Figure 6.

Fig. 1. A sample procedure to generate mutant peptides from SNVs described in the

input vcf file. Mutant and wild-type peptides are generated through the construction

of the corresponding RNA sequences using Reference Sequence Database (RefSeq).

Reference and alternative alleles, and wild-type and mutant amino acids are colored

red.

Fig. 2. A sample procedure to generate mutant peptides from indels described in the

input vcf file. In contrast to generate mutant peptides based on SNVs, indels are sep-

arated to (a) out-of-frame and (b) in-frame indels. In the former case, mutant pepti-

des are generated from the mutation position to the stop codon. In the latter case, it

is similar to the case of non-synonymous SNVs, as illustrated in Figure 1. The ori-

ginal peptide sequences are colored black, and mutant peptide and deleted peptide

regions are colored red

Fig. 3. A sample procedure to generate mutant peptides from SVs described in the

input vcf file following BND format. As same as indels, it can generate out-of-frame

and in-frame potential fusion transcripts. By referring to the original protein sequen-

ces, peptides included in the original genes are removed for the evaluation. Here,

RNA sequences and peptides generated from SLC25A12 and NFASC are colored

red and green, respectively
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The comparison of the functions among pVACseq (Hundal
et al., 2016) and MuPeXI (Bjerregaard et al., 2017), and our R pack-
age (neoantimon) is displayed in Table 1. One can install this pack-
age from a GitHub repository and use it in the R environment on
Mac/Linux.

2.3 Output files
This package generates FASTA files consisting of mutant and corre-
sponding wild-type (for SNVs) peptides according to the RefSeq
trasncript sequences, and an integrated output file including pep-
tide–MHC binding capability estimated by NetMHCpan4.0 (Jurtz
et al., 2017) or MHCflurry (O’Donnell et al., 2018), and
NetMHCIIpan3.2 (Andreatta et al., 2015). In the application to
frameshift indels and potential fusion transcripts, all mutant pepti-
des generated from the mutation position to the stop codon are con-
structed. The output file includes (i) the HLA type, (ii) gene symbol,
(iii) wild-type (if exists) and mutant peptide sequences, (iv) their
IC50 and percentages of rank affinity calculated by either
NetMHCpan or MHCflurry (user selected), (v) chromosome number,
(vi) NM_ID, (vii) amino acid changes (AAchages), (viii) reference and
alternative alleles, (xi) exon start and end positions, (x) mutation pos-
ition, (xi) total read depth and VAF, (xii) corresponding total and al-
lele specific RNA expression (optional), (xiii) tumor subclonality
represented by CCFP and the priority score defined in the next subsec-
tion. From the output file, users can extract a plausible set of peptides
for neoantigen by setting any threshold for binding capability, RNA
expressions and CCFP (such functions are also implemented). A sim-
ple overview of the package is illustrated in Figure 7.

2.4 Calculation of priority score
For the evaluation of generated mutant peptides, we propose prior-
ity scores to roughly predict their immunogenicity. Based on the

Fig. 4. A sample procedure to generate mutant peptides directly from an RNA se-

quence. By referring to the original peptide sequences, peptides included in the ori-

ginal genes are removed for the evaluation. Here, peptides sequence included in

NFKB are colored red. Note that, in this case, we assume that the input RNA se-

quence is a fusion transcript generated from NFKB

Fig. 5. An explanation of attaching total and allele-specific RNA expressions, and

CCFP. Additional information can be attached to the standard annotation in the

output using (a) RNA expression data with and without (b) the corresponding

Binary Alignment Map (BAM) file and (c) copy number variation data. Total and al-

lele-specific RNA expression based on DNA alleles (VAF/total read depth � total

RNA expression level), VAF and allele-specific RNA expression based on RNA

sequences using samtools, and CCFP are attached given (a), (a) and (b) and (c)

Fig. 6. The consideration of the following cases; (a) multiple SNVs exist on the same

peptide, (b) SNVs exist among the frameshift region generated by indels and (c)

SNPs exist on the mutant peptide. In these cases, the package can optionally gener-

ate all patterns of mutant peptides and evaluate them

Table 1. A comparison table of the functions among pVACseq,

MuPeXI and Neoantimon

Neoantimon pVACseq MuPeXI

Input file format vcf file vcf file vcf file

Variant annotation YES YES YES

SNV support YES YES YES

Indel support YES YES YES

SV support YES NO NO

RNA seq. support YES NO NO

Output wild-type YES YES YES

Total RNA exp. Manual Manual Manual

Allelic RNA exp. BAM required BAM required NO

Subclonal filter YES NO NO

Multiple SNVs YES NO NO

SNVs on frameshift YES NO NO

SNPs integration YES NO NO

Prediction software netMHCpan/ netMHCpan/ netMHCpan

MHCflurry MHCflurry, etc.

Note: ‘manual’ means that users manually upload RNA expression files.

Fig. 7. An overview of the input and output file information of the package. Green

circles with and without dotted rectangles are optional and required inputs, respect-

ively. Red rectangles and yellow circles are intermediate processes and the output

files, respectively
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previous research (Bjerregaard et al., 2017), we calculate the priority
scores PI and PR for using IC50 and percentage of rank affinity, re-
spectively, as follows.

PI ¼ ½LIðImÞf ðA;EÞ�½ð1� 2�MLIðIwÞ�C; (1)

PR ¼ ½LRðRmÞf ðA;EÞ�½ð1� 2�MLRðRwÞ�C; (2)

f ðA;EÞ ¼ tanhðgðAÞEÞ; (3)

gðAÞ ¼ tanhð5AÞ; (4)

LIðxÞ ¼
1

1þ exp 0:015ðx�500Þ ; (5)

LRðxÞ ¼
1

1þ exp 5ðx�2Þ ; (6)

C ¼ 1

1� exp �30ðx�0:8Þ ; (7)

where Im and Rm are IC50 and percentage of rank affinity of the mu-
tant peptide, respectively, and Iw and Rw are IC50 and percentage of
rank affinity of the wild-type peptide, respectively. E is the expres-
sion level of the corresponding gene, A is the variant allele fre-
quency, M is the number of mismatches between the mutant and
wild-type peptides and C is the median value of CCFP. In contrast
to the previous research (Bjerregaard et al., 2017), the output does
not include any peptide that perfectly matches to wild-type peptides.
For the comparison, output file also includes the previous score.

3 Conclusions

We developed an R package generating candidate neoantigens from
variety of mutations, i.e. SNVs, indels and SVs and mutant RNA
sequences. In particular, this package can cover specific cases such
as multiple SNVs on the same mutant peptide and among frameshift
region, as explained in Figure 6, and include RNA expression and
tumor subclonality data to filter-out implausible peptides for neoan-
tigen. Thus, as compared in Table 1, it enables us to more finely se-
lect the candidate neoantigens beyond previously developed
platforms. For the use of tumor immunotherapy, it can be attractive
because it requires a great deal of cost to evaluate candidate mutant
peptides to be neoantigen. Thanks to our package, one can easily
complete the evaluation processes of candidate neoantigens by

integrating several information. The package, documentation and
sample analysis are available at http://github/hase62/Neoantimon,
and an analysis result in PCAWG project is also available (Mizuno
et al., 2018).
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