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Abstract

Objectives—The aim is to identify exposures associated with lung cancer mortality and
mortality disparities by race and gender using an exposome database coupled to a graph theoretical
toolchain.

Methods—Graph theoretical algorithms were employed to extract paracliques from correlation
graphs using associations between 2162 environmental exposures and lung cancer mortality rates
in 2067 counties, with clique doubling applied to compute an absolute threshold of significance.
Factor analysis and multiple linear regressions then were used to analyze differences in exposures
associated with lung cancer mortality and mortality disparities by race and gender.

Results—While cigarette consumption was highly correlated with rates of lung cancer mortality
for both white men and women, previously unidentified novel exposures were more closely
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associated with lung cancer mortality and mortality disparities for blacks, particularly black

women.

Conclusions—Exposures beyond smoking moderate lung cancer mortality and mortality
disparities by race and gender.

Policy Implications—An exposome approach and database coupled with scalable combinatorial
analytics provides a powerful new approach for analyzing relationships between multiple
environmental exposures, pathways and health outcomes. An assessment of multiple exposures is
needed to appropriately translate research findings into environmental public health practice and

policy.
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INTRODUCTION

Mortality

Lung cancer remains the leading cause of cancer mortality in both males and females in the
United States.[X] Based on 2009-2013 SEER data, the National Cancer Institute projected
that lung and bronchus cancer is associated with an estimated 158,080 deaths in the US.,
415,787 individuals would be living with the disease, and 224,390 new cases would be
diagnosed in 2016.12] These figures translate to an overall, age adjusted incidence rate of
57.3/100,000, and a mortality rate of 46.0.[2] Despite a more than 50% decrease in smoking
rates from 1970 to 2014 (37.4%-16.8%),[3] the number of deaths caused by lung cancer has
more than doubled from 61,700 in 1970[4] to an estimated 159,260 in 2014.[]

While smoking has been identified as contributing to 87% of lung cancer deaths overall,[6]
numerous other etiological factors have been identified. Radon has been attributed to
approximately 10% of lung cancer mortality, accounting for an estimated 21,000 lung cancer
deaths each year.l’] Exposure to secondhand smoke has been estimated to account for 4% of
lung cancer deaths.[”] A 2002 American Cancer Society study found that long term exposure
to combustion related particulate matter (PM, 5) led to an 8% increase in lung cancer
mortality.[8] A recent systematic review of the effects of air pollution found the meta relative
risk for lung cancer associated with PM> 5 was 1.09 (95% confidence interval [CI]: 1.04,
1.14) and the meta relative risk of lung cancer associated with PMqq was 1.08 (95% CI:
1.00, 1.17). In addition, meta relative risk estimates for adenocarcinoma associated with
PM, 5 and PMg were 1.40 (95% CI: 1.07, 1.83) and 1.29 (95% CI: 1.02, 1.63),
respectively.[®] Similarly, occupational exposures (smelters, blast furnaces and foundries,
rubber manufacturing, paving, roofing, painting, and chimney sweeping) and associated
chemical exposures, including certain metals (chromium, cadmium and arsenic), volatile
organic compounds, radiation and diesel exhaust together, have been associated with an
additional 9% to 15% of lung cancer deaths. Individual etiological risk factors linked to lung
cancer mortality when combined, exceed 100%.[1°]
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Smoking rates do not adequately account for racexgender, lung cancer mortality disparities.
Age adjusted, adult smoking rates (2015)[11] and age adjusted, lung cancer mortality rates
(2009-2013)[12] were 17.2% and 57.7 for white males (WM); 16.0% and 38.39 for white
females (WF); 20.9% and 70.6 for black males (BM); and 13.3% and 35.3 for black females
(BF). Similarly, males and females who smoke were 23 and 13 times more likely to develop
lung cancer, respectively, compared to those who never smoked.[23] Poor and medically
underserved populations are more likely to be diagnosed with late-stage cancers than
compared to those treated more effectively or cured if diagnosed earlier.[14]

Social determinants of lung cancer mortality disparities also have been associated with
increased risk for lung cancer mortality, including a broad range of indicators such as
behavioral factors (e.g., smoking, higher rates of alcohol use, and obesity), socioeconomic
status, education, occupation, living conditions, lack of health care coverage, mistrust of the
health care system, and fatalistic attitudes about cancer. Financial barriers, cultural beliefs,
and lack of access to culturally competent health care by low income and/or racial/ethnic
minority groups also have been associated with lung cancer mortality disparities. Aizer et
al[15] found that differences in lung cancer mortality rates between Blacks and Whites
persist even after adjusting for sociodemographic factors, year and stage of diagnosis, and
receipt of definitive treatment. It is unclear, however, whether the mechanisms and pathways
through which social determinants affect lung cancer mortality and mortality disparities are
etiological, mediating, or simply co occurring.

Multiple exposures

While cigarette consumption clearly accounts for the greatest attributable risk, it remains
unclear the extent to which other environmental exposures contribute independently,
interactively, or synergistically. Persons who are exposed to radon, PM> 5, workplace
chemicals, pesticides, or chemicals in the home and who smoke are at greater risk for dying
from lung cancer than those who smoke but who do not experience similar exposures.
Living with a smoker likewise increases a nonsmoker’s chances of developing lung cancer
by 20%-30%,[13] accounting for approximately 3,000 excess lung cancer deaths each
year.[16] Similarly, lung cancer risk associated with PM 5 is greatest for former smokers
(1.44 [95% CI: 1.04, 2.01]) as compared to never smokers (1.18 [95% CI: 1.00, 1.39]).
Deaths attributed to radon exposure also are more likely to occur among smokers than
nonsmokers.[” While persons exposed to ashestos are five times more likely to develop lung
cancer than those not exposed to asbestos, the risk for lung cancer mortality increases 50
fold for those who are exposed to asbestos and who smoke.[X7] Till date, a few studies have
attempted to examine the effects of multiple chemical and nonchemical stressors on lung
cancer mortality or mortality disparities, by race and gender. The evidence clearly supports
the need for applying a risk model that is capable of examining how multiple exposures
across various domains act as etiologic, mediating, or co occurring factors to affect lung
cancer mortality and mortality disparities.[18]
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Exposome

The exposome has been previously defined by Wild[1°] as cumulative exposures across the
lifespan, from conception to death. Juarez er a/[1%1 demonstrated the general utility of the
exposome approach using a graph theoretical toolchain to assess the effects of over 600
measures of environmental exposures on preterm births. That study examined relationships
between annual, county level variables across three domains, and preterm births using graph
theoretical algorithms and scalable combinatorial analyses. By contrast, this study more than
triples the number of environmental stressors included in the analysis, particularly measures
previously linked to lung cancer mortality. The goal of this research was to use an exposome
database comprised 2162 chemical and nonchemical environmental stressors coupled with a
graph theoretical toolchain and a data driven approach to identify putative relationships
between exposures from natural, built, and social environment domains and lung cancer
mortality and mortality disparities across four race and gender groups: WM, WF, BM, and
BF.

METHODS

We integrated a portfolio of advanced computational tools and more conventional
biostatistics, to elucidate latent relationships between annual county level measures of
environmental stressors across the natural, built, and social environment domains with lung
cancer mortality and mortality disparities rates, by race and gender. The overall approach we
employed is depicted in Figure 1.

All exposure and health data were obtained from publically available sources and
standardized as annual, county level, age adjusted rates per 100,000/population. Data were
geo coded using ArcGIS 10.5 and analyzed by county. Due to small numbers of annual lung
cancer deaths by race and gender, particularly in rural, homogeneous, and sparsely populated
counties, data were pooled across multiple years (1999-2013) to derive an average, age
adjusted, annualized, county rate per 100,000, by race, gender, and age (combined 45-84
years of age). Only counties with a minimum, combined total of ten mortality cases of the
lung and bronchus (ICD 10 Codes: C33 (Malignant neoplasm of trachea), C34.0 (Main
bronchus Malignant neoplasms), C34.1 (Upper lobe, bronchus or lung Malignant
neoplasms), C34.2 (Middle lobe, bronchus or lung Malignant neoplasms), C34.3 (Lower
lobe, bronchus or lung Malignant neoplasms), C34.8 (Overlapping lesion of bronchus and
lung Malignant neoplasms), and C34.9 (Bronchus or lung, unspecified Malignant
neoplasms) for each of the four, racexgender groups were included in the study. Racial
differences were limited to blacks and whites based on the small number of counties that had
a minimum of ten lung cancer deaths for other racial groups and exceeded the CDC Wonder
suppression policy.

A total of 2,101 measures of diverse stressors from the three described environment domains
for 2,067 (of 3,144) counties and county equivalents were used in this study. Examples of
measures of the natural environment included meteorological conditions, chemical
emissions, and land cover/use; measures of the built environment included health care
access, neighborhood resources, and occupational codes; social environmental stressors
included population level measures of social, demographic, economic, and political
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variables. See Table 1 in supplemental material for a complete list, source, and year of
exposure variables. Mortality rates due to cancer of the lung and bronchus by county for
WM, WF, BM, and BF were obtained from the CDC Wonder website https://
wonder.cdc.gov/. Pooling, selection of counties, and smoothing were used in response to the
CDC policy of suppressing data for counties in which there were fewer than ten reported
cases. For counties in which persons of all four racexgender groups were counted, but no
lung cancer deaths were reported, rates were smoothed with techniques designed for this
purpose.[20] Suppressed mortality values were otherwise set to missing. All exposure and
health data were obtained from publically available sources and standardized as annual,
county level, age adjusted rates per 100,000/population. As there is a known lag of 20-30
years between environmental exposures and lung cancer mortality, we limited exposure data
to the years 1980-2010. No Institutional Review Board approval was required as mortality
rates and environmental stressors measurements were publically available secondary data.

Scalable computational analysis

We applied graph theoretical algorithms to the data. Pearson correlation coefficients were
first calculated between each pair of variables (environmental exposure and lung cancer
mortality rate). The clique doubling technique[?1] was employed to compute an (absolute)
threshold of significance, which was |r|>0.14. By applying this threshold and by anchoring
on each of the four racexgender lung cancer mortality responses, we created four graphs
(WM, WF, BM, and BF) for further analysis as described by Langston et a/[22] Vertex and
edge counts were as follows. WM: 530, 80249; WF: 477, 65149; BM: 483, 66915; and BF:
486, 61167. Paracliques(?3] were extracted from these graphs using a glom term[24] set to 1
and an anchor variable that was guaranteed to reside in the first and largest paraclique. Other
paracliques also were considered, because those represented latent, putative relationships
with the potential to be equally revealing. To reduce redundancy and extract underlying traits
that bear the highest amount of data variability, we conducted a factor analysis procedure
with varimax rotation using SAS 9.4 (SAS Institute, Cary, NC, USA) on the pool of
variables from the first paraclique. Factor scores were calculated using the original variables
so that we could make direct comparisons of factors within and between regression models;
this resulted in 172 factors. A subset of 120 factors was selected by stepwise regression (due
to computational limitations) and used in all possible regression analyses for each of the
four, racexgender, lung cancer mortality variables, and differences between variables. A P=
0.0001 was the threshold used to determine statistical significance. Using parsimony, R
square, and Akaike information criterion (AIC), we identified the highest contributing
factors for each of the four racexgender groups.

The 20 most commonly occurring factors for each regression model were then analyzed in
final multiple regression models, allowing factors to be compared for differential effects on
racexgender, lung cancer mortality, and lung cancer mortality disparity rates. These effects
then were computed by differences among the single rates. Standardized regression
coefficients (B) were used to compare the relative importance of factors explaining
variability of the eight, dependent variables of the models of lung cancer mortality rates and
disparities.[2%] Final regression models incorporated spatial autocorrelation based on
location of county centers (Moran’s | = 0.0838, £< 0.001). We set absolute values of
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coefficient values above 0.5 to characterize strong factor contributions, between 0.3 and 0.5
for moderate contributions and below 0.3 for weak ones. Geographical information systems
(GIS) were used to generate maps to visualize spatial distributions of each of the factors and
assist with data interpretation (see Appendix 1: Maps, supplemental materials).

Lung cancer mortality

Mean rates and standard deviations of age adjusted, lung cancer mortality rates per 100,000
in the 2067 counties were 193.59 + 61.11 for WM, 110.15 + 33.41 for WF, 120.7 £ 122.27
for BM, and 42.18 + 49.92 for BF. Standardized regression models were used to render the
cumulative effect of combined factors for the highest zero order correlations and to confirm
the main role of the most important variables in each model (nonstandardized regression
models are presented in Tables 2 and 3 of the supplemental materials). Cigarette
consumption contributed the greatest explanation of lung cancer mortality rates for both
WM and WF (8= 0.47 and = 0.60, respectively) while % vulnerable African Americans
(comprised variables: % African American, low birth weight, very low birthweight,
unmarried, chlamydia, and gonorrhea) contributed the greatest explanation of lung cancer
mortality for BM and BF (8= 0.44 and = 0.38, respectively). % disabled and rent were
found to have significant, yet weak, positive coefficients across all four, racexgender models
[Table 1].

For WM, other significant factors with weak positive coefficients included average daily
min/max average temperature, % disabled, household income, poverty, PM, s, precipitation,
rent, and % of population age 19-64. % Catholic, % vulnerable African American, and
access to neighborhood facilities had statistically significant but weak negative coefficients
[Table 1]. For WF, factors with significant, but weak, positive correlations in explaining lung
cancer mortality, in descending order were: rent, daily min/max average temperature, % of
population age 19-64, marital status, and % disabled. Access to neighborhood facilities,
PM, 5, % Catholic, farm dependent, and % vulnerable African American had weak negative
coefficients. For BM, % vulnerable African American had the highest but moderate
contribution (8 = 0.44), followed by weak positive contributions for rent, % disabled,
education, average min/max daily temperature, precipitation, and PM, 5, whereas cigarette
consumption was nonsignificant at £< 0.0001 threshold, with a weak g=0.06 (P< 0.05). In
the case of BF, 20 factors accounted for a /2 = 0.48. Nine factors had significant positive £
values, whereas two factors had negative, significant coefficients. Among these, %
vulnerable African American was the highest contributing factor, with a moderate 5= 0.38,
followed by weak contributions of education, % disability, diversity, cigarette consumption,
rent, and PM5 5, with B between 0.10 and 0.20. A factor comprised of ethyl dichloride and
ethylene oxide, and PM, 5 had weak, negative g coefficients.

Lung cancer mortality disparities

Additional regression models were used to calculate the relative contribution of
environmental exposures on lung mortality disparities rates between WM and BM; WF and
BF; WM and WF, and BM and BF (race); and WM and BM, and WF and BF (gender) at the
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P<0.0001 threshold. Seven factors contributed positively and three negatively to black:
white, racial, lung cancer morality disparities [Figures 2 and 3]. Positive gincluded %
vulnerable African American, education, rent, % disability, % catholic, and PM> 5. Factors
with negative g were cigarette consumption, poverty, and % population age 19-64. %
Vulnerable African American had a strong effect and the others contributed weakly. Six
coefficients contributed negatively and none positively to M/F gender disparities including
% vulnerable African American, min/max average temperature, rent, average precipitation,
% disability, and PM, 5. Disparities between WM and BM were accounted for largely by %
vulnerable African American (8= 0.51). Other positive, but weak coefficients included rent,
% disability, and education. Negative gincluded cigarette consumption, poverty, and %
population 19-64. Significant 8 that contributed weakly to disparities between WF and BF
included education, diversity, rent, and % disability. Cigarette consumption contributed
negatively and weakly to gender disparities.

DISCUSSION

Results of this study suggest that county level, race, and gender differences in cigarette
consumption, % vulnerable African American, level of education, % blue collar workers,
access to neighborhood resources, housing as a % of income, and diversity, as well as
differences in direct exposures to ethyl dichloride and ethylene oxide, min/max average
temperature, PM> 5 and precipitation are associated with lung cancer mortality and/or
racexgender mortality disparities. Of particular interest is the impact of cigarette
consumption on lung cancer mortality disparities. While cigarette consumption is clearly the
leading cause of lung cancer overall, it contributes less to our understanding of lung cancer
mortality between BM and BF as compared to WM and WF and contributes little to our
understanding of racexgender mortality disparities. Interpretation of our findings based on
the previous research suggests that cigarette consumption, ethyl dichloride and ethylene
oxide, and PM,, 5 are etiologic chemical agents associated with lung cancer mortality and
mortality disparities. In parallel, % vulnerable African American, level of education, % blue
collar workers, % disability, access to neighborhood resources, housing as a % of income,
and diversity would appear to be moderating social determinants that impact lung cancer
mortality and mortality disparities. Our mapping of exposures using GIS suggests that other
variables, such as temperature, precipitation, % Catholic, % democrat, and % republican,
may be co occurring or spurious and simply reflect regional differences found in Southern
states [Supplemental Figures 1-24: Maps in Supplemental materials].

Public health implications

From primary prevention to survivorship, the pathway to lung cancer mortality and
racexgender disparities is profoundly affected by environmental exposures. To date, limited
research has examined the combined effects of multiple factors that affect lung cancer
mortality and mortality disparities. By curating large amounts of disparate, heterogeneous
data, an exposome approach provides public health researchers with an opportunity to
harness existing secondary data, generate and test hypotheses, and consider the complex role
of chemical and nonchemical environmental stressors.
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The exposome database and graph theoretical toolchain can also be used to assess the
effectiveness of specific risk reduction interventions that test the intervention itself without
the traditional limitations inherent to the technical validity of the public health action to be
tested. This is particularly relevant where social determinants often act as powerful
confounders to underlying etiologic factors that cause poor health outcomes hampering
conclusive findings. While lung cancer mortality was used as a “demonstration case,” this
approach has applicability to other priority adverse health conditions.

Enabling evidence based science

A major contribution of the public health exposome is that it provides a novel approach for
considering the effects of multiple environmental stressors on health outcomes and racial
disparities. A second contribution is enabling a dual derivation of testable hypotheses. The
graph theoretical toolchain is capable of transforming high volume, disparate heterogeneous
data comprised chemical and nonchemical environmental stressors to support both
hypothesis generating and hypothesis testing inquiries. This data driven approach is
epidemiologically significant in that it provides new opportunities for identifying
populations at risk, risk and protective factors, and spatial and temporal measures of
exposure. Together, these approaches increase the likelihood that environmental health
research will address the public health concerns of affected communities, provide
opportunities for meaningful, bi directional, community engaged research, and lay the fertile
foundation for community academic partnerships working to collaboratively translate
research findings into effective public health policy and practice.

CONCLUSIONS

The exposome paradigm offers a new risk assessment approach to assess the effects of
multiple chemical and nonchemical environmental stressors on health outcomes and
disparities. It provides public health providers and officials the tools to use “big data” and
computational tools in conjunction with traditional biostatistics to analyze complex
exposome relationships and to develop and evaluate targeted community health promotion,
risk reduction, and health disparities interventions. Graph theoretical algorithms and
computational analyses are capable of transforming high volume, heterogeneous, secondary
exposure data, spanning the natural, built, and social environments, beyond that which is
typically used in traditional, narrowly focused, observational studies. A public health
exposome approach provides epidemiologically significant opportunities to identify
environmental exposures associated with complex health outcomes and disparities and
supports further biostatistical analysis, including factor analysis and multiple regression,
multi level, and spatial temporal analyses, GIS and data visualization, and predictive
modeling. The use of these analytics is particularly relevant in health disparities research,
where mediating and moderating factors influencing disparities often are powerful
confounders.

Environ Dis. Author manuscript; available in PMC 2017 November 15.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Juarez et al. Page 9

Limitations

Limitations in this study include the validity and reliability of existing public available data
sets; environmental stressor data reflect different years; data are population level measures;
and not all individuals in a given county are equally affected by a specific stressor.

Directions for future work

An exposome approach, database, and graph theoretical toolchain provides public health
professionals with a novel set of tools for analyzing large, multiple, heterogeneous,
secondary data sets that can be used both for generating and testing hypotheses and for
targeting and evaluating public health interventions. This novel study demonstrates how the
public health exposome approach and database comprised chemical and nonchemical
stressors from the natural, built, and social environments coupled with a graph theoretical
toolchain affords us an opportunity to examine the effects of multiple exposures across
various domains on lung cancer mortality and mortality disparities [Figures 2 and 3]. While
lung cancer mortality was used here as a “demonstration case,” the benefits of a public
health exposome approach coupled with scalable combinatorial analytics are universal and
can be applied to many complex health issues.

The complex causes and correlates of poor health outcomes and health disparities support
the need to move beyond individual risk assessment models to cumulative risk assessment
models which not only incorporate multiple exposures across various domains but also can
identify exposures across the life course and the life stage at which the exposures occurs. We
currently are updating the public health exposome database to include smaller spatial and
temporal units (from county to sub county areas and annual to daily measures—where
available) while expanding the database to span the full 30 years of environmental stressors.
This will allow us to model both the spatial and temporal dimensions of environmental
exposures, more accurately distinguish between etiologic, mediating, and co occurring
factors, and move toward a more robust cumulative assessment of environmental exposures
across the lifespan. These measures should help us achieve the full potential of the
exposome.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Graph theoretical toolchain. These steps were undertaken to assess exposure impact of

multiple chemical and non-chemical environmental exposures on lung cancer mortality and
mortality disparities using a public health exposome approach. Date from diverse sources
were collected, curated and prepared for further interrogation. Modern combinatorial tools
were used to distill highly correlated subgraphs for more traditional statistical analysis.
These results can be used by domain scientists within community settings to generate and
test hypotheses and to translate findings into public and environmental health policy and
practice. The first four operations performed in this paper were used to demonstrate the
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proof of concept of the public health exposome approach while the latter two were designed
to motive action
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Figure 2.

Comparison of standardized regression coefficients of factors included in four models to
explain lung cancer mortality rates for WM, WF, BM, and BF population. Factors are a
combination of multiple years of data
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Figure 3.
Comparison of standardized regression coefficients of factors included in four models to

explain lung cancer mortality disparities rates for BF-WF, BM-WM, B-W, M-F population.
Factors are a combination of multiple years of data
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