
fmicb-11-614313 January 5, 2021 Time: 17:36 # 1

REVIEW
published: 14 January 2021

doi: 10.3389/fmicb.2020.614313

Edited by:
Chinnaswamy Jagannath,

Weill Cornell Medical College
of Cornell University, United States

Reviewed by:
Roberta Olmo Pinheiro,

Oswaldo Cruz Foundation, Brazil
Rosane M. B. Teles,

University of California, Los Angeles,
United States

*Correspondence:
Sunhee Lee

sunhlee@utmb.edu

Specialty section:
This article was submitted to

Microbial Immunology,
a section of the journal

Frontiers in Microbiology

Received: 05 October 2020
Accepted: 21 December 2020

Published: 14 January 2021

Citation:
Strong EJ and Lee S (2021)

Targeting Autophagy as a Strategy
for Developing New Vaccines

and Host-Directed Therapeutics
Against Mycobacteria.

Front. Microbiol. 11:614313.
doi: 10.3389/fmicb.2020.614313

Targeting Autophagy as a Strategy
for Developing New Vaccines and
Host-Directed Therapeutics Against
Mycobacteria
Emily J. Strong and Sunhee Lee*

Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States

Mycobacterial disease is an immense burden worldwide. This disease group
includes tuberculosis, leprosy (Hansen’s disease), Buruli Ulcer, and non-tuberculous
mycobacterial (NTM) disease. The burden of NTM disease, both pulmonary and
ulcerative, is drastically escalating globally, especially in developed countries such as
America and Australia. Mycobacteria’s ability to inhibit or evade the host immune
system has contributed significantly to its continued prevalence. Pre-clinical studies
have highlighted promising candidates that enhance endogenous pathways and/or
limit destructive host responses. Autophagy is a cell-autonomous host defense
mechanism by which intracytoplasmic cargos can be delivered and then destroyed
in lysosomes. Previous studies have reported that autophagy-activating agents,
small molecules, and autophagy-activating vaccines may be beneficial in restricting
intracellular mycobacterial infection, even with multidrug-resistant strains. This review
will examine how mycobacteria evade autophagy and discusses how autophagy could
be exploited to design novel TB treatment strategies, such as host-directed therapeutics
and vaccines, against Mycobacterium tuberculosis and NTMs.

Keywords: autophagy, mycobacteria, host-directed therapies, non-tuberculous mycobacteria, host–microbe
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INTRODUCTION

While TB is a disease of significant global burden, the burden of non-tuberculosis mycobacteria
(NTM) disease is higher than TB in many developed countries such as the United States and
Australia (Prevots et al., 2010). NTMs are mycobacteria other than Mycobacterium tuberculosis
(Mtb) and Mycobacterium leprae (the cause of leprosy/Hansen’s Disease). Globally, the burden
of NTM continues to increase substantially. Like many pathogenic diseases, drug-resistance
has become a severe public health concern for mycobacterial infection. In 2018, there were
approximately 500,000 new rifampicin-resistant TB cases, most of which also comprised multiple
drug-resistant infections (World Health Organisation, 2020). In contrast, the NTM species
display significant heterogeneity in their susceptibility to standard anti-TB drugs and thus the
treatment for NTM diseases usually involves the use of macrolides and injectable aminoglycosides.
Although well-established international guidelines are available, treatment of NTM disease is
mostly empirical and not entirely successful. In general, the treatment duration is much longer for
NTM diseases, compared to TB. Taken together, the considerable global burden of mycobacterial
disease requires much needed further research and the development of new treatment and
prevention strategies.
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The development of TB disease occurs in only 10% of
individuals exposed to the pathogen, which infers that competent
host defense mechanisms exist to control the infection. In
the last decade, autophagy has surfaced as an essential host
immune defense mechanism against intracellular Mtb infection.
Autophagy is a complex, essential, conserved cellular process
allowing for the degradation of intracellular components,
including proteins, organelles, and foreign bodies. Autophagy
targeting by host-directed therapies to enhance treatment options
against pathogenic viruses and bacteria has recently become a
popular research topic. Similarly, autophagy has been proven
not only as an effective antimicrobial mechanism for the
clearance of Mtb and NTMs, but as a process preventing
excessive inflammation to avoid adverse effects of infection
on the host. Still, increasing evidence shows that in order to
augment its intracellular survival, mycobacteria has evolved
multiple strategies to prevent the optimal operation of host
autophagic machinery.

This review will focus on autophagy during mycobacterial
infection. However, it is worth noting that many intracellular
pathogens are known to modulate autophagy to promote their
survival. For example, Legionella pneumophila secrets bacterial
effector that irreversibly inactivates Atg8 proteins unable to be
reconjugated by the Atg7-Atg3 (Choy et al., 2012). Many other
intracellular bacteria like Shigella, Salmonella, and Mycobacteria
also secrete bacterial effectors that inhibit autophagy (Ogawa
et al., 2005; D’Cruze et al., 2011; Popa et al., 2016; Saini et al., 2016;
Jiao and Sun, 2019; Strong et al., 2020). A deeper understanding
of the mechanisms by which these bacteria cause disease should
foster better treatment options. Ongoing analysis is even more
critical, given the rising infection rates of NTMs and rapidly
growing mycobacteria (RGM), increased prevalence of drug-
resistant TB, and TB/Diabetes and TB/HIV comorbidity. This
review will cover the current understanding of the molecular
mechanisms by which mycobacteria can modulate autophagy.
Additionally, it will discuss the potential for these insights to
be utilized and harnessed to develop host-directed therapies as
treatment options against mycobacterial diseases.

AUTOPHAGY PATHWAY AS A GENERAL
ANTIMICROBIAL DEFENSE

Macroautophagy is the most widely studied form of autophagy
and is an evolutionarily conserved pathway controlling quality
and quantity of eukaryotic organelles and the cytoplasmic
biomass (Svenning and Johansen, 2013). Macroautophagy
involves the formation of a double membrane phagosome,
which fuses with a lysosome (Parzych and Klionsky, 2013).
It is a constitutive cellular process that is induced under
stress conditions such as nutrient starvation, which degrades
cytoplasmic material into metabolites and degrades cytoplasmic
foreign bodies (Svenning and Johansen, 2013). Macroautophagy
can be selective, as it recognizes specific marked components
by various receptor proteins such as p62 (SQSTM1) (Svenning
and Johansen, 2013). The degradation of pathogens is called
Xenophagy, whereby bacteria are engulfed by autophagosomes

and degraded after fusion with lysosomes to form autolysosomes.
This review will focus on Xenophagy, which will hereafter be
referred to as “autophagy.” The autophagy pathway is illustrated
in Figure 1A, showing the minimal core components relevant for
the discussion in this review.

The formation of the autophagosome and the fusion to a
lysosome is broken down into five main steps (Figure 1A): (i)
initiation, (ii) elongation, (iii) maturation, (iv) fusion, and (v)
degradation. Autophagy initiation is regulated by the master
regulator, the mammalian/mechanistic target of Rapamycin
(mTOR). It is a negative regulator of autophagy, meaning its
dephosphorylation is responsible for autophagy induction.
Dephosphorylation of mTOR results in the translocation
of the Unc-51 like autophagy activating kinase (Ulk1/2)-
Autophagy related (Atg)13-FAK family-interacting protein
(FIP200)-Atg101 complex to the endoplasmic reticulum
(Itakura and Mizushima, 2010; Mizushima, 2010). The Class
III phosphatidylinositol 3 kinase (PI3K) activates the VPS34-
Beclin1-VPS15-Atg14 complex. The PI3K complex induces
phosphatidylinositol-3-phosphate [PtdIns(3)P], which then
recruits double FYVE-containing protein 1 (DFCP1) and
WD-repeat domain phosphoinositide-interacting (WIPI)
family proteins to initiate the omegasome formation (Axe
et al., 2008; Matsunaga et al., 2009; Itakura and Mizushima,
2010; Polson et al., 2010). Elongation of the omegasome
into the autophagosome is conducted by the Atg7–Atg10
complex and then conjugated to Atg12-Atg5-Atg16L on the
omegasome membrane (Fujita et al., 2008). Atg4 cleaves LC3
into LC3-I, while the Atg7–Atg3 complex lipidates LC3-I into
LC3-II by conjugating phosphatidyl-ethanolamine (PE). The
completed autophagosome fuses with the lysosome to degrade
the autophagosome cargo for subsequent metabolite recycling
or antigen presentation (Knodler and Celli, 2011; Levine et al.,
2011; Münz, 2016; Saini et al., 2016; Yu et al., 2018).

AUTOPHAGY AND TUBERCULOSIS

Autophagy Induction by M. tuberculosis
The global prevalence of mycobacterial diseases of all types
has increased considerably. The most significant mycobacterial
disease is tuberculosis (TB). In 2018, 1.4 million deaths were
attributed to Mtb infection (World Health Organisation, 2020),
meaning TB is one of the top 10 causes of death and the
leading cause of worldwide death from a single infectious agent.
One-quarter of the world’s population is infected with Mtb.
Approximately 5 to 10% of infections progress to the active
disease at some point in their host lives. Mtb is a successful
pathogen due to its capacity to evade the host immune systems
and utilize phagocytes as a replication niche. The bacteria can
significantly inhibit the phagolysosome’s acidification and limit
phagosome maturation, thereby forcing the infected cell to
undergo programmed cell death (Russell et al., 2002). Several
of the seminal observations regarding the antimicrobial role of
autophagy have been made using Mtb (Gutierrez et al., 2004;
Castillo et al., 2012) and such observations were followed by a
gradual increase in studies on autophagy as a cell-autonomous,

Frontiers in Microbiology | www.frontiersin.org 2 January 2021 | Volume 11 | Article 614313

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-11-614313 January 5, 2021 Time: 17:36 # 3

Strong and Lee Autophagy and the Host Defense Against Mycobacteria

FIGURE 1 | Mycobacterium tuberculosis inhibits autophagy to enhance survival in host cells. (A) While autophagy can be explained in terms of its role in cell survival,
the mechanism by which it is regulated is complicated and elaborate. The different steps of the autophagic pathway during mycobacterial infection are shown.
(B) Mtb-autophagy interaction in macrophages. Following phagocytosis, Mtb resides in phagosome and blocks phagosome maturation. Mtb secretes Esx-1,
promoting phagosome damages that trigger ubiquitination, recruitment of autophagic adaptors and mycobacterial capture via STING. The detailed molecular
mechanisms of each steps and mycobacterial factors are discussed in the text.

pharmacologically, physiologically and immunologically
inducible anti-mycobacterial process (Gutierrez et al., 2004; Seto
et al., 2012; Watson et al., 2012; Sakowski et al., 2015). These
studies revealed the colocalization of Mtb with autophagosomes
and increased bacterial clearance during autophagy induction
(Gutierrez et al., 2004; Seto et al., 2012; Watson et al., 2012;
Sakowski et al., 2015). Most of these models have been explored
in the context of Atg5 and its effect on autophagy. Examination

of other important autophagy markers such as Ulk1 and Atg4b
in vivo has uncovered that Atg5 may play a role independent of
canonical autophagy in Mtb control (Kimmey et al., 2015).

Infection with mycobacteria induces significant levels of pro-
inflammatory cytokines, known to be inducers of autophagy.
However, little colocalization of Mtb and autophagosomes
has been observed without non-mycobacterial stimulation
of autophagy. An example of immunological induction of

Frontiers in Microbiology | www.frontiersin.org 3 January 2021 | Volume 11 | Article 614313

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-11-614313 January 5, 2021 Time: 17:36 # 4

Strong and Lee Autophagy and the Host Defense Against Mycobacteria

mycobactericidal autophagy includes stimulation of infected
macrophages with Th1 cytokines such as IFN-γ and TNF-
α in a process that can be antagonized by Th2 cytokines
including IL-4 and IL-13 (Harris et al., 2007; Ghadimi et al.,
2010). Physiological induction of autophagy by IFN-γ generated
significant autophagosome formation in mycobacteria-infected
macrophages and dendritic cells. Although Mtb infection causes a
robust IFN-γ response, the autophagy induction by virulent Mtb
is limited, probably because mycobacteria inhibit IFN-γ mediated
autophagy induction (Zullo and Lee, 2012a; Zullo et al., 2014).
IFN-γ also plays a critical role in the nitric oxide (NO) response
to Mtb infection. The deletion of IFN-γ significantly impedes NO
production and leads to uncontrolled replication of bacilli in vivo
(Cooper et al., 1993; Flynn et al., 1993). The inhibition of NO has
previously been shown to induce autophagy substrates’ clearance,
highlighting the complex role of cytokine signaling in autophagy
pathways (Sarkar et al., 2011). Virulent Mtb infection induces
TNF-α, which is inactivated by the increased release of TNFR2
and results in inhibition of apoptosis (Balcewicz-Sablinska et al.,
1998; Keane et al., 2000). This observation underscores the
potential of virulent Mtb to inhibit autophagy by modulating
cytokines’ bioreactivity known to induce autophagy.

Manipulation of Autophagy Pathways by
Mycobacterial Factors
Several bacterial effector proteins are known to modulate
autophagy. Many of these effectors are secreted through the
type I to type VII and type IX secretion systems (Jiao and
Sun, 2019). Mycobacteria has numerous Type VII secretion
systems (Esx1 – Esx5). Mtb ESX-1 is responsible for the puncture
of the phagosome, allowing for mycobacterial escape (Conrad
et al., 2017) (Figure 1B). Mtb cytosolic DNA is recognized by
the cytosolic DNA sensor, cyclic GMP-AMP synthase (cGAS),
resulting in the release of cyclic guanosine monophosphate
(cGAMP). cGAMP is recognized by the stimulator of interferon
genes (STING), leading to type I IFN release and the recruitment
of autophagy receptors p62, NDP52, and optineurin (Watson
et al., 2012, 2015). These receptors are recruited to the
ubiquitinated pathogen, thereby allowing for specific targeting
by the autophagosome. The receptors contain an LC3 interaction
region (LIR) to bind the LC3 autophagy protein (Thurston et al.,
2009; Zheng et al., 2009; Wild et al., 2011).

EspB is a part of the Esx1 secretory apparatus responsible
for the secretion of early secretory antigenic target-6 (ESAT-
6). Treatment of macrophages with EspB protein demonstrates
downregulation of the IFN-γ receptor IFN-γR1, resulting in
the inhibition of STAT-1 activation even in the presence of
IFN-γ (Huang and Bao, 2016). EspB and ESAT-6 are not the
only Mtb proteins linked to the inhibition of autophagy. The
“enhanced intracellular survival” (eis) gene of Mtb can confer
enhanced survival of Mycobacterium smegmatis in macrophages.
However, it is not required for the persistence of Mtb in these
cells (Wei et al., 2000; Shin et al., 2010). During Mtb infection,
eis significantly inhibits the activation of JNK, which prevents
the induction of non-canonical autophagy through Atg7. JNK
activation also induced reactive oxygen species (ROS) generation

and significantly increased type 2 macrophage cell death by Mtb
eis deletion mutant (Shin et al., 2010). Eis was also found to
substantially inhibit the production of TNF-α, IL-4, and IL-
6, while simultaneously stimulating INF-γ and IL-10 secretion
(Lella and Sharma, 2007; Samuel et al., 2007; Shin et al., 2010).

Mtb inhibits autophagy to protect against bacterial clearance
and host cell death, which also impedes antigen presentation.
The Mtb PE_PGRS47 protein inhibits autophagy and limits MHC
class II antigen presentation (Saini et al., 2016). Several other
Mtb PE/PPE proteins are also known to inhibit autophagy. For
example, Mtb PE_PGRS41 (Deng et al., 2017), Mycobacterium
marinum MMAR_0242 (Singh et al., 2016), and Mtb PE_PGRS29
(Chai et al., 2019) interact with autophagy machinery. Mtb also
secrets a probable ligase (CpsA) to inhibit the non-canonical
autophagy pathway designated as LC3-associated phagocytosis
(LAP) and NADPH oxidase (Köster et al., 2017) (Figure 1A).
In contrast to canonical autophagosomes, LAP does not result
in double-membrane structures and instead promotes rapid
phagosome maturation (Fazeli and Wehman, 2017). This cellular
process limits the phagocytosed pathogen’s ability to replicate
by expediting phagosome maturation while regulating the IFN
pathway and antigen presentation.

Additionally, studies have found that virulent Mtb, but not
avirulent Mtb, can inhibit autophagy flux in macrophages and
dendritic cells in an ESAT-6 and PhoP dependent manner
(Chandra et al., 2015). Autophagy flux is an important cellular
mechanism that degrades autophagosome cargo, which allows
nutrient recycling or antigen presentation. Increased autophagic
flux was found to improve bacterial clearance from macrophages
and dendritic cells (Romagnoli et al., 2012; Chandra et al.,
2015). The maturation of Mtb-containing autophagosomes into
autolysosomes was inhibited by blocking recruitment of the late
endosome marker Rab7 (Chandra et al., 2015). Inhibition of Rab5
conversion to Rab7 in endosomes is a well-established method
in which mycobacteria inhibit lysosomal fusion (Via et al., 1997;
Rink et al., 2005).

Mtb inhibits canonical and non-canonical autophagy by
several means and it is apparent that the role of infection-
induced autophagy is complicated. While overcoming autophagy
inhibition by Mtb could lead to better treatment options, further
consideration should be given to evidence suggesting that Mtb
can inhibit autolysosome formation (Chandra et al., 2015).
Additionally, there may be value in examining host-directed
therapies targeting mTOR-independent autophagy pathways
(Schiebler et al., 2015), since Mtb infection markedly activates
mTOR. Exploring alternative autophagy-inducing pathways may
lead to more efficacious drugs and may prove more useful in
patients presenting with co-disease such as TB/Diabetes.

AUTOPHAGY AND
NON-TUBERCULOSIS MYCOBACTERIA

NTM Disease
NTM is the broad term for diseases caused by over 170
mycobacteria. The most commonly isolated specie is the
Mycobacterium avium Complex (MAC), accounting for 71.1%
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of Australian cases and 31.3% of NTM cases in South America.
M. avium is the most common species isolated in Europe,
Asia, South America, and North America. At the same time,
M. intracellulare is prevalent in South Africa and Australia
(Johnson and Odell, 2014; Griffith, 2019; Gopalaswamy et al.,
2020). M. avium, MAC, and M. intracellulare most commonly
present as a pulmonary disease similar to TB. In 2013, a
nearly six-fold increase in NTM cases were reported in America
compared to the 1980s (Donohue and Wymer, 2016), with
similar trends in the United Kingdom, Denmark, and Germany
(Ratnatunga et al., 2020). Some studies have attributed this rise
of NTM infections to a vaccination policy change from a blanket
BCG vaccination to a limited vaccination only for specific groups
(SAGE Working Group of BCG Vaccines and WHO Secretariat,
2017; Kontturi et al., 2018).

Other common NTMs include Mycobacterium fortuitum,
Mycobacterium kansasii, Mycobacterium abscessus, M. marinum,
and Mycobacterium ulcerans. NTMs are opportunistic
environmental pathogens that are typically found in soil
and water. Although NTM disease presentation is most
commonly pulmonary, observation of lymphatic, skin/soft
tissue and disseminated disease have been reported (Griffith
et al., 2007; Bodle et al., 2008; Tortoli, 2009). Many species
of mycobacteria can also cause ulcerative disease. Four main
presentations of the mycobacterial ulcerative disease have been
designated: (i) cutaneous Mtb infection, (ii) leprosy (the second
most common mycobacterial disease; caused by M. leprae or
Mycobacterium lepromatosis), (iii) Buruli Ulcer, the third most
common mycobacterial disease (caused by M. ulcerans), and
(iv) opportunistic infections caused by other non-tuberculosis
mycobacteria such as M. marinum. Franco-Paredes et al. (2018)
eloquently summarized the disease presentation of cutaneous
mycobacterial infections in their 2018 review.

Besides Mtb, M. leprae and M. ulcerans account for the
next highest mycobacterial disease burdens. Buruli Ulcer,
caused by M. ulcerans, primarily occurs in the West and
Central Africa, Asia, South America, the western Pacific, and
Australasia (Simpson et al., 2019). Unlike the well-studied
Mtb and M. leprae, the mode of transmission of M. ulcerans
remains unknown (Röltgen and Pluschke, 2015). As with other
mycobacteria, treatment of Buruli Ulcer is costly and takes a
long time. Traditional antimycobacterial antibiotics are used for
treatment, including rifampicin, streptomycin, clarithromycin,
and moxifloxacin. However, wound interventions, such as
lymphedema management and surgery, are commonly used to
speed up healing (Yotsu et al., 2018; Converse et al., 2019;
World Health Organisation, 2019). Though leprosy transmission
remains on the decline with less than 200,000 cases in 2017
(World Health Organization, 2016), improved treatment options
are a vital resource for continued disease decline (Fischer, 2017;
Maymone et al., 2020; Scollard, 2020). Leprosy broadly presents
two different clinical manifestations; paucibacillary tuberculoid,
which is characterized by negative smears for acid-fast bacilli, and
multibacillary lepromatous, which is characterized by positive
smears for acid-fast bacilli (Nath, 2016).

Mycobacteria’s unique cell wall and some species’ ability
to form biofilms, spread by aerosolization, slow growth, and

intrinsic antibiotic resistance, also contribute to their ability to
survive in unique and low nutrient environments (De Groote
and Huitt, 2006). Their lipid-rich cell wall influences the bacteria’s
ability to modulate autophagy (Zullo and Lee, 2012a). The ability
to form biofilms and survive in low nutrient environments
indicates that these bacteria can form unique replication niches
within the hosts’ cells that traditional mycobacterial drugs cannot
penetrate to be effective (Islam et al., 2012).

NTM and Autophagy
The induction of autophagy by mycobacteria is species-
dependent. Although all mycobacteria elicit strong mTOR
activation, most non-pathogenic mycobacteria simultaneously
induce significant autophagy, unlike their pathogenic relatives
(Zullo and Lee, 2012a). M. smegmatis is often utilized as a model
organism to study pathogenic mycobacteria due to its short
culture time and BSL2 classification (Deng et al., 2017). While a
low concentration of mTOR-inhibiting drugs like Rapamycin and
Torin are able to inhibit mTOR activation and induce autophagy
during mycobacterial infection (Zullo et al., 2014), clearance of
M. smegmatis requires up to 10 times higher quantity of those
drugs than needed to inhibit mTOR activation. Interestingly,
this killing was observed to be independent of LC3B or Atg5,
indicating a non-canonical autophagy pathway is involved in
the clearance of M. smegmatis from macrophages (Zullo et al.,
2014). This interesting observation suggests that targeting a non-
canonical autophagy pathway for mycobacterial treatment may
be useful. It has previously been shown that treatment of Mtb
infected macrophages with potent autophagy inducers such as
M. smegmatis can clear bacteria (Singh et al., 2017).

The role of autophagy during NTM has not been studied
extensively. However, evidence exists that genetic variants in
the autophagy-related genes, nucleotide-binding oligomerization
domain-containing 2 (NOD2), E3 ubiquitin-protein ligase
parkin (PARK2), IRGM, and autophagy-related proteins 16-1
(ATG16L1), are associated with susceptibility to mycobacterial
disease (Yang et al., 2014; Capela et al., 2016; Uaska Sartori
Priscila et al., 2020). A single nucleotide polymorphism (SNP)
in PARK2 correlates significantly with increased susceptibility to
M. ulcerans infection, while an SNP in NOD2 is associated with
increased disease progression. Conversely, an SNP in ATG16L1
protects against severe disease during M. ulcerans infection
(Capela et al., 2016; Manry et al., 2020). Although not directly
associated with autophagy, other SNPs in iNOS and IFN-γ have
been associated with increased susceptibility to Buruli Ulcer,
leprosy, and TB (Bibert et al., 2017).

The major virulence factor of M. ulcerans is mycolactone,
a cytotoxic, immunosuppressive polyketide-derived macrolide.
Mycolactone alone induces autophagy, although it impairs
autophagy flux (Gama et al., 2014). The induction of autophagy
is further evidenced by mycolactone’s ability to inhibit mTOR,
thereby resulting in the upregulation of apoptosis activating
protein, Bim (Bieri et al., 2017). This pathway signals through
the inactivation of Akt by an alternative mTOR pathway.
As such, activation of mTOR could lead to inhibition of
Bim and, subsequently, apoptosis, resulting in control of
bacterial infection.
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Two variants of M. abscessus and M. fortuitum are frequently
observed: rough (R) and smooth (S) (Byrd and Lyons, 1999;
Catherinot et al., 2007; Lee et al., 2016). It is widely accepted
that the R variant is hypervirulent compared to its S counterpart.
It is known that the loss of glycopeptidolipid (GPL) is the
cause of the S-variant of M. abscessus in several animal models
(Byrd and Lyons, 1999; Catherinot et al., 2007). A highly
virulent clinical isolate of M. abscessus-R significantly inhibited
autophagic flux than the S variant of M. abscessus. The R variant’s
intracellular survival is enhanced considerably by blocking the
autophagosome-lysosome fusion in macrophages compared to
the S variant (Kim et al., 2017c). These immunological effects
of NTMs have been mostly studied from the perspective of
respiratory illness and genome comparison studies focusing on
traditional virulence factors for related opportunistic pathogens
(N’Goma et al., 2015) indicates we have only a minimal
understanding of their impact during ulcerative infection.

Whereas M. abscessus S utilizes phosphatidyl-myoinositol to
mask TLR2 activation, M. fortuitum R does not induce the anti-
inflammatory molecule TNFAIP3 (Lee et al., 2016). TNFAIP3 is
an anti-apoptotic molecule that inhibits NF-κB and TNF-induced
cell death (Lee et al., 2000). TNF- α and the TLR2 signaling
pathway appear to play an essential role in M. fortuitum infection.
Some lipids of RGMs have differential terminal modifications
compared to those from pathogenic slow-growing mycobacteria.
Specifically, lipoarabinomannan (LAM) in RGM is capped with
phosphomyo-inositol (PI) caps compared to mannose (Man)
caps in pathogenic mycobacteria. Purified PI-LAM induces
significantly more apoptosis than purified Man-LAM in a TLR2
dependent manner (Bohsali et al., 2010). Similarly, PILAM
caused significant autophagy induction, unlike ManLAM, which
did not induce autophagy (Shui et al., 2011; Singh et al., 2019).
Although terminal modifications of LAM appear to play a role in
the modulation of apoptosis, total lipid from both pathogenic and
non-pathogenic mycobacteria can induce autophagy (Zullo et al.,
2014; Kim et al., 2017c; Mishra et al., 2019). Interestingly, while
total lipids from M. abscessus-R induce a significant autophagy
level, live M. marinum induces autophagy and simultaneously
inhibits autophagy flux, which leads to increased intracellular
survival (Lerena and Colombo, 2011; Kim et al., 2017c; Oliveira
et al., 2020; Pohl et al., 2020).

It has been known for many years that autophagy is an
efficient mechanism to clear M. leprae from macrophages
(Evans and Levy, 1972). However, it has been recently
described that autophagy may be a major modulating factor
in leprosy disease presentation. In patients presenting with
multibacillary leprosy, there is significantly less autophagic
control in macrophages taken from patient lesions than
patients presenting with paucibacillary tuberculoid leprosy (Silva
et al., 2017a). This supports previous studies which found
that the autophagy inhibiting cytokine IL-10 is predominant
in multibacillary leprosy compared to high levels of IL-
26, IFN-γ, and TNF-α, autophagy inducing cytokines, found
during paucibacillary tuberculoid leprosy (Yamamura, 1992;
Sieling and Modlin, 1994; Nath, 2016; Dang et al., 2019).
Multibacillary leprosy patients who developed type 1 reaction
(T1R) episodes demonstrated dysregulation of autophagy genes

and significantly increased expression of the mTOR complex
leading to overexpression of the NLRP3-inflammasome-IL-1B
pathway. These data demonstrate that leprosy treatment with
pro-autophagic drugs may improve treatment outcomes by
reducing reversal reaction risk (de Mattos Barbosa et al., 2018).

The establishment of uncontrolled mycobacterial infection in
an extracellular bacterial milieu or biofilm presents significant
complications for treatment (Greendyke and Byrd, 2008). Many
mycobacterial species causing ulcerative diseases are widely
considered to have significantly reduced sensitivity to antibiotics
and a natural ability to acquire antibiotic resistance, making it
very hard to treat and leading to high failure rates (Moore and
Frerichs, 1953; Jarlier and Nikaido, 1990; Sanguinetti et al., 2001;
Nessar et al., 2012). Utilizing host-directed therapies, such as
those inducing autophagy, to inhibit bacterial release from the
cell and form biofilms or bacterial milieus may enhance the
efficacy of currently available antibiotics.

HARNESSING AUTOPHAGY TO FIGHT
MYCOBACTERIA

Targeting Autophagy to Treat a
Mycobacterial Infection
Rapamycin has been the most frequently used autophagy-
inducing drug for host-directed therapies. While Rapamycin
appears to improve pathology during Mtb infection, there is
evidence that it is directly antimycobacterial in vitro at the high
concentration used for the reported studies. Rapamycin does
not seem to have a direct effect on M. smegmatis or BCG for
short periods. Still, it was found to significantly inhibit BCG,
M. kansasii, M. avium, and multiple virulent Mtb strains over
7–8 days incubation (Greenstein et al., 2008; Zullo et al., 2014).
This direct antimycobacterial activity is somewhat unsurprising
as Rapamycin was initially discovered as a novel antifungal
antibiotic (Singh et al., 1979). Rapamycin is not the only
drug evaluated as a host-directed therapy for the treatment
of tuberculosis. Some medications, such as azithromycin and
metformin, have been found to decrease mycobacterial infections
in patients with cystic fibrosis and diabetes due to their ability to
increase the autophagic clearance of bacteria (Renna et al., 2011;
Tseng, 2018). Table 1 summarizes the drugs and compounds that
have been tested for their ability to induce autophagy and treat
mycobacterial diseases.

Of importance, the use of Rapamycin to treat infectious
diseases is not practical due to its immunosuppressant actions.
Gupta et al. (2014) have attempted to address this issue with
the administration of Rapamycin by microparticles directly
to the airway. Highlighting the delicate balance needed for
host-directed therapies, the study found that the induction
of autophagy in the lung macrophages was inverse to the
dosing interval. In vitro and in vivo rapamycin microparticles
induce autophagolysosomal formation in macrophages infected
with Mtb in an mTOR-dependent manner (Gupta et al., 2014;
Gupta et al., 2016). Rapamycin alone significantly improved
pathology during Mtb infection in a mouse model but did
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TABLE 1 | Summary of current experimental treatments inducing autophagy during M. tuberculosis infection.

Drug Model Mode References

Small Molecule Enhancers of
Rapamycin

M. bovis BCG infection of primary human macrophages Induce autophagy independently of mTOR Floto et al., 2007

Rifampicin Mtb infection of human differentiated monocytes Increased autolysosome formation, directly antimycobacterial Genestet et al., 2018

Linezolid Mtb infection of human differentiated monocytes Increased autophagosomes production, directly antimycobacterial Genestet et al., 2018

Bedaquiline Mtb infection of human differentiated monocytes Increased autophagosomes production, directly antimycobacterial Genestet et al., 2018

Nitazoxanide Mtb infection of human differentiated monocytes. M. leprae
infection of mice

Increased autophagy by inhibition of NADPH quinone
oxidoreductase 1 leading to mTOR inhibition by TSC2

Lam et al., 2012; Bailey
et al., 2017

Baicalin Mtb infection of mouse macrophages Induce autophagy via the PI3K/Akt/mTOR pathway, inhibit NLRP3
inflammasome activation via the PI3K/Akt/NF-κB, reduction of
proinflammatory cytokines

Lin et al., 2013; Zhang
et al., 2017

Vitamin D Mtb/HIV co-infection model of primary human macrophages Cathelicidin dependent induction of autophagy Liu et al., 2007; Martineau
et al., 2007; Yuk et al.,
2009; Jo, 2010; Campbell
and Spector, 2012b

4-phenylbutyrate Mtb infection of human monocytes Induction of LL-37 promoting autophagy via P2RX7 receptor,
increasing free Ca2+ and activation of AMPK and PtdIns3K
pathway.

Rekha et al., 2015

Gefitinib Mtb infection of murine bone marrow-derived macrophages STAT3 dependent cytokine responses, increasing lysosomal
trafficking

Stanley et al., 2014; Sogi
et al., 2017

Carbamazepine Mtb infection of human-derived macrophages or murine
alveolar macrophages. M. marinum zebrafish model of
infection. MDR Mtb infection of C57BL/6 mice

Induce autophagy by blocking myoinositol uptake, decreasing
phosphatidylinositol, and activating AMP kinase in an mTOR
independent manner.

Schiebler et al., 2015;
Juárez et al., 2016

Valproic acid Mtb infection of human-derived macrophages or murine
alveolar macrophages

Increases colocalization of LC3 with Mtb Schiebler et al., 2015;
Juárez et al., 2016

Loperamide Mtb infection of human-derived macrophages or murine
alveolar macrophages

Increases colocalization of LC3 with Mtb and reduces TNF-α
production

Juárez et al., 2016

Simvastatin Mtb infection of C57BL/6 mice Reduction of membrane cholesterol levels promotes phagosomal
maturation and autophagy

Parihar et al., 2013

Metformin Mtb infection of C57BL/6 mice Induction of mitochondrial reactive oxygen species, AMPK
activation, and autophagy induction

Singhal et al., 2014;
Restrepo, 2016

Trehalose Mtb/M. avium/M. fortuitum infection of human differentiated
monocytes

Increase autophagy flux through activation of ptdIns3P by activation
of PIKFYVE

Sarkar et al., 2007; Sharma
et al., 2020

Mycobacterial PILAM Mtb infection of murine macrophages Induction of autophagy and pro-inflammatory cytokines, enhanced
colocalization of Mtb with phagolysosomes

Shui et al., 2011; Singh
et al., 2019

Nordi-hydroguaiaretic acid Avirulent Mtb infection of human differentiated monocytes Directly antimycobacterial, induce autophagosome formation and
colocalization with Mtb

Guzmán-Beltrán et al.,
2016

Lactoferricin peptides M. avium infection of murine bone marrow macrophages Increased autophagosome formation Silva et al., 2017b
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not clear bacteria. Co-administration of isoniazid and rifabutin
with Rapamycin microparticles considerably improved bacterial
clearance (Gupta et al., 2014, 2016). As the administration
of microparticles with autophagy-inducing drugs may improve
traditional antimycobacterial chemotherapies, an alternative
strategy is utilizing microparticles that directly induce autophagy.
Poly (lactic-co-glycolic acid) microparticles were found to be
antimycobacterial in human macrophages. For example, NFκB
activity was increased during microparticle treatment, and
antimycobacterial effects were reversed by autophagy inhibitors
(Lawlor et al., 2016).

An antiprotozoal drug, nitazoxanide, has been extensively
tested to treat Mtb and NTMs alone and in conjunction with
traditional antimycobacterial medicines. These conventional
antibiotics were not found to inhibit autophagosome formation
stimulated by nitazoxanide (Lam et al., 2012). Nitazoxanide
has been previously explored as an autophagy agonist for
treating multiple disease states such as Alzheimer’s and cancer
(Di Santo and Ehrisman, 2014; Li et al., 2020). It has also
been examined as a potential treatment option against several
mycobacteria including M. leprae (Bailey et al., 2017) and
MAC (Rossignol, 1999). Nitazoxanide is metabolized into
hydroxylamine by mycobacterial nitroreductase NfnB (Buchieri
et al., 2017). Interestingly, nitazoxanide can kill replicating and
non-replicating mycobacteria, emphasizing its potential role in
combating latent mycobacterial infection (de Carvalho et al.,
2009; Iacobino et al., 2019). Like Rapamycin and nitazoxanide,
metformin also increases bacterial clearance during traditional
anti-mycobacterial treatment, while inducing autophagy (Singhal
et al., 2014; Lachmandas et al., 2019).

Two of the most promising experimental host-directed
therapies against M. tuberculosis are Vitamin D3 and Metformin
(Naicker et al., 2020). Metformin was shown to increase
mitochondrial reactive oxygen species production, acting
through AMPK, leading to control of drug-resistant Mtb and
facilitation of phagolysosome fusion (Singhal et al., 2014; Yew
et al., 2020). There also appears to be a correlation between
metformin treatment for diabetes mellitus type II and delayed
smear and culture conversion and reduced unfavorable outcomes
(Singhal et al., 2014; Degner et al., 2017; Marupuru et al., 2017;
Lee et al., 2018; Padmapriyadarsini et al., 2019). While metformin
shows promise in preventing TB in type II diabetes patients,
Vitamin D supplementation showed no improvement in TB
treatment outcomes in patients with vitamin D sufficiency during
drug sensitive Mtb infection. However, vitamin D deficiency is
associated with an increased risk of Mtb infection (Ustianowski
et al., 2005; Chun et al., 2011). Vitamin D supplementation
did reduce the time to sputum culture conversion in patients
with Taql vitamin D receptor gene polymorphism, indicating
that Vitamin D does play an important role in TB treatment
outcomes. Vitamin D supplementation also improved the MDR-
TB sputum culture conversion rate (Zhang et al., 2019). In vitro
treatment with vitamin D during HIV and Mtb co-infection
or Mtb infection alone concluded that autophagy induction
was responsible for the better control of both HIV and Mtb in
macrophages (Yuk et al., 2009; Fabri et al., 2011; Campbell and
Spector, 2012a).

Many host pathways may constitute viable targets for host-
directed therapies (HDTs). Apoptosis and autophagy have been
the most explored HDT targets of Mtb and NTMs. Even
though apoptosis may be a possible target, there is mounting
evidence that NTMs can escape apoptotic bodies to ensure
survival and disease progression (Early et al., 2011; Bento et al.,
2020). Autophagy presents an exciting target as the induction of
autophagy promotes bacterial clearance and antigen presentation
(Castillo et al., 2012; Saini et al., 2016). The current recommended
treatment for NTM infection is clarithromycin or azithromycin,
ethambutol, and rifamycin (Griffith, 2018; Griffith, 2019; Daley
et al., 2020; Gopalaswamy et al., 2020). Azithromycin was
shown to inhibit autophagosome maturation resulting in an
increased risk of M. abscessus infection (Renna et al., 2011;
Torfs et al., 2019). It has also been found that many traditional
anti-mycobacterials, though directly antimycobacterial, also have
off-target effects that promote autophagy (Kim et al., 2012;
Zullo and Lee, 2012b). Unfortunately, the development of new
drugs targeting particular host pathways is often slow and
expensive. One potential strategy to expedite this drug discovery
is studying and assessing previous medications known to increase
autophagy and their effect on mycobacteria (Williams et al.,
2008; Sundaramurthy et al., 2013; Stanley et al., 2014; Kim et al.,
2019). Potentially repurposed autophagy targeting host-directed
therapies are summarized in Table 2. Many of these drugs are of
interest because of the modulation of the host immune response.
Accordingly, they should also be effective against a broad range
of mycobacteria and other intracellular pathogens.

As a better understanding of the role of infection-induced
autophagy transpires, more targeted host-directed therapy
approaches can be developed and exploited. With C4T4 (a TLR4
agonist), autophagy was induced in guinea pigs infected with Mtb
in a CLEC4E-dependent manner through MYD88 and PrdIns3K
activation, leading to reduced mycobacterial burden (Pahari et al.,
2020). Along with targeting cell receptors to activate autophagy,
there is increasing evidence that many microRNAs (miRNAs)
can be targeted to activate autophagy during mycobacterial
infection (Wang et al., 2013; Kim et al., 2015, 2017a,b; Kumar
et al., 2016; Etna et al., 2018; Liu et al., 2018; Li et al., 2019).
These miRNAs modulate autophagy through different upstream
pathways of mTOR. Mtb infection induces miRNA-144, which
targets the DNA damage regulated autophagy modulator 2
(DRAM2), resulting in autophagy inhibition through AMPK
(Kim et al., 2017b). Similar to targeting CLEC4E through TLR4
agonists, TLR2 and MYD88 are required to induce miRNA-125a
during Mtb infection. Mtb induces expression of miR-125a in
macrophages, which results in the inhibition of autophagy by
targeting UV radiation resistance-associated gene (UVRAG) in
the AMPK dependent manner (Kim et al., 2015).

Targeting Autophagy to Prevent
Mycobacterial Infection
BCG is widely used as a vaccine against tuberculosis. BCG
evades phagosome maturation, autophagy, MHC-II expression
of antigen-presenting cells (APCs), and T-cell activation (Deretic
et al., 1997; Singh et al., 2006; Münz, 2016; Saini et al., 2016;
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Khan et al., 2019). Clinical isolates of Mtb that could not
inhibit autophagy showed increased TB disease outcomes and
the extent of disease (Li et al., 2016), strongly indicating that
autophagy is a crucial host pathway for the control of TB.
The ability to utilize this essential host pathway could prove a
viable avenue for improving mycobacterial vaccines (Yuk and
Jo, 2014; Flores-Valdez et al., 2018; Tao and Drexler, 2020).
Notably, the yellow fever vaccine, YF-17D, one of the most
successful vaccines, has been found to enhance autophagy-
dependent antigen presentation. The mechanisms of the vaccine
efficacy by YF-17D were not well understood until its role in
autophagy modulation was deciphered (Ravindran et al., 2014).

Developing new vaccines or improving the BCG by harnessing
autophagy is an area of interest and has garnered examination.
BCG, like Mtb, expresses a wide array of bacterial effectors
that modulate autophagy, but co-immunization of mice with
BCG and rapamycin-treated dendritic cells enhanced Th1-
mediated protection against Mtb infection (Jagannath et al.,
2009). Similarly, it was demonstrated that a recombinant
BCG expressing 85C5 (BCG85C5) induced a robust MHC-II-
dependent antigen presentation to CD4+ T cells in vitro. The
85C5 peptide contains the TLR-2 activating C5 peptide from
Mtb CFP-10 protein. The vaccine also elicited stronger Th1
cytokines from APCs of C57Bl/6 mice and enhanced MHC-II
surface expression on macrophages by inhibiting the membrane
associated RING-CH 1 (MARCH1) E3 ligase that degrades
MHC-II. BCG85C5 infected APCs presented antigens in a MyD88
or a TLR-2 dependent manner (Khan et al., 2019). Additionally,
activation of TLR3 or TLR4 by LPS cleared mycobacteria in vitro
in an autophagy-dependent way (Xu et al., 2007, 2013).

BCG was genetically modified to improve its immunogenicity
by replacing the urease C encoding gene with the listeriolysin
encoding gene from Listeria monocytogenes (Nieuwenhuizen
et al., 2017). Listeriolysin perturbates the phagosomal membrane
at acidic pH and Urease C neutralize the phagosome
harboring BCG. Deletion of ureC leads to rapid phagosome
acidification and promotes phagolysosome fusion. Subsequently,
BCG1ureC:hly elevates apoptosis and autophagy and accelerates
release of mycobacterial antigens into the cytosol. The
BCG1ureC:hly vaccine completed phase I and IIa clinical
trials. Upon deleting the anti-apoptotic gene nuoG to enhance
cross protection, BCG1ureC:hly1nuoG vaccine showed reduced
Mtb burden in the lungs of mice leading to less pathology
and, most importantly, enhanced immune responses. It was
found that the nuoG deletion leads to significant induction of
autophagy and an improved safety profile (Gengenbacher et al.,
2016). M. indicus pranii is another potential immunotherapy and
vaccine candidate under clinical trials (Gupta et al., 2012; Saqib
et al., 2016; Sharma et al., 2017). Boosting BCG vaccination with
M. indicus pranii resulted in improved protection in a murine
model of Mtb infection. Increased IFN-γ, IL-12, and IL-17 were
observed along with increased polyfunctional T cells (Saqib et al.,
2016). This increased protection and immune response were
subsequently due to increased autophagy induced by M. indicus
pranii, potentially due to its PILAM (Singh et al., 2017, 2019).

While improving the BCG vaccine appears a viable short-term
solution to improve vaccine efficacy against Mtb, the efforts
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to develop new vaccines must be continued. BCG is a live
attenuated vaccine, but it is not suitable for use in all cases. The
development of other vaccine options, such as DNA vaccines
or subunit vaccines, would significantly advance the vaccination
strategy against Mtb and NTMs. A DNA vaccine encoding for
the potent Mtb antigen 85B (Ag85B) significantly enhanced
autophagy activation and vaccine efficacy when delivered with a
plasmid encoding a kinase defective (mTOR-KD) (Meerak et al.,
2013). This mTOR-KD DNA vaccine-elicited considerably higher
Ag85B-specific antibodies, increased secretion of IFN-γ and IL-
2 levels, and enhanced proliferation of CD4+ T cells. Similar
to this approach, it was found that an LC3-LpqH-Ag85B DNA
vaccination reduced mycobacterial burden, increased IFN-γ and
IL-2, and enhanced the Th1 immune response (Hu et al., 2014).

Adjuvating or boosting BCG with autophagy-inducing
substrates has also been examined as a potential way to
increase the efficacy of current vaccines. Curcumin-coated
nanoparticles have been found to enhance autophagy, leading
to increased Th1 and Th17 central memory T cells (Ahmad
et al., 2019). Other studies have identified autophagy as having
an essential role in forming and surviving memory T cells
(Xu et al., 2014). Like curcumin nanoparticles, boosting BCG
vaccine with nanofibers acting through the autophagy pathway
improved BCG efficacy (Rudra et al., 2017; Chesson et al.,
2018). While some DNA vaccines directly target autophagy, the
development of an adjuvant system targeting autophagy may
improve the efficacy of potential subunit vaccines. Utilizing
the lactic acid bacteria (LAB) as an adjuvant for Mtb antigens
showed improved IFN-γ and NO responses, polarizing a Th1
response and increasing autophagosome formation. Although
LAB’s protective efficacy was not tested, these improved
immunological responses compared to Mtb antigen alone are
promising (Ghadimi et al., 2010).

CONCLUSION

Autophagy has been established as an effective mechanism for the
clearance of mycobacteria from the infected macrophages. Many
studies have looked at the potential of autophagy-inducing drugs
to improve current treatment regimens against mycobacteria.
Due to the dramatic rise of antibiotic-resistant mycobacteria
and the upsurge of NTMs that are intrinsically resistant to
traditional antibiotics, host-directed therapies are even more
relevant (Deretic, 2008; Kim et al., 2012; Zullo and Lee, 2012b;
Kim et al., 2019; Bento et al., 2020).

While Mtb inhibits apoptosis for bacterial survival (Hinchey
et al., 2007), NTMs utilize the hosts’ cellular progression from
apoptosis to secondary necrosis (Gao and Kwaik, 2000; Lee
et al., 2011) or induce membrane perforation (similar to that

observed during necrosis) to allow for bacterial escape and
communication (Roux et al., 2016). Subsequent expression of
bacterial factors that form an extracellular milieu or biofilm
makes control by either phagocytic cells or administered
antibiotics much more difficult. If host-directed therapies
inhibiting apoptosis or inducing autophagy could be employed
against these non-tuberculosis mycobacteria, infection control
of the contained intracellular mycobacteria with traditional
antibiotics may be far more successful. Additionally, it has been
demonstrated that potent autophagy-inducing chemicals could
increase mycobacterial clearance from macrophages, like seen
during rapamycin treatment (Singh et al., 2017).

Autophagy-targeting host-directed therapies and vaccines
for mycobacteria have numerous potential benefits. However,
further understanding of the role of autophagy, its molecular
mechanisms, and regulation during mycobacterial infection is
required to develop persistent, viable, and safe host-directed
therapies and vaccines. Additionally, examination of the crosstalk
between autophagy and apoptosis during infection should
significantly improve our understanding of the applicability of
these host pathways as a viable target for treatment. Though
host-directed therapies may play a vital role for intrinsically
antibiotic-resistant NTMs and drug-resistant TB, they will need
to be considered together with traditional anti-mycobacterial
medicines, with the goal of shorter treatment times and
improved outcomes.
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