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MOTIVATION Reconstructing lineage trees is fundamental for gaining insights into basic biological and
disease processes. Although powerful tools to infer cellular relationships have been developed, these
methods typically have a clonal resolution that prevents the reconstruction of lineage trees at an individ-
ual-cell-division resolution. Moreover, these methods require a transgene, which poses a significant barrier
to the study of human tissues. In this work, we develop a complementary approach that does not require
exogenous labeling and can reconstruct each cell division within a lineage tree.
SUMMARY
Lineage reconstruction is central to understanding tissue development and maintenance. To overcome the
limitations of current techniques that typically reconstruct clonal trees using genetically encoded reporters,
we report scPECLR, a probabilistic algorithm to endogenously infer lineage trees at a single-cell-division res-
olution by using 5-hydroxymethylcytosine (5hmC). When applied to 8-cell pre-implantation mouse embryos,
scPECLR predicts the full lineage treewith greater than 95%accuracy. In addition, we developed scH&G-seq
to sequence both 5hmC and genomic DNA from the same cell. Given that genomic DNA sequencing yields
information on both copy number variations and single-nucleotide polymorphisms, when combined with
scPECLR it enables more accurate lineage reconstruction of larger trees. Finally, we show that scPECLR
can also be used to map chromosome strand segregation patterns during cell division, thereby providing
a strategy to test the ‘‘immortal strand’’ hypothesis. Thus, scPECLRprovides a generalizedmethod to endog-
enously reconstruct lineage trees at an individual-cell-division resolution.
INTRODUCTION

Understanding lineage relationships between cells in a tissue is a

central question in biology. Reconstructing lineage trees is not

only fundamental to understanding tissue development, homeo-

stasis, and repair but is also important for gaining insights into

the dynamics of tumor evolution and other diseases. Genetically

encoded fluorescent reporters have been a powerful approach

to reconstruct the lineage of many tissues (Kretzschmar and

Watt, 2012). However, these methods require the generation of

complex animal models for each stem or progenitor cell type

of interest, and are limited to a clonal resolution (Kretzschmar

and Watt, 2012). Similarly, other techniques, such as the use of

viruses (Naik et al., 2013), transposons (Sun et al., 2014; Wagner
Cell Re
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et al., 2018), Cre-loxP-based recombination (Pei et al., 2017),

and CRISPR/Cas9 (Alemany et al., 2018; Kalhor et al., 2017;

McKenna et al., 2016; Perli et al., 2016; Raj et al., 2018; Span-

jaard et al., 2018) have also been used to genetically label cells

to primarily reconstruct clonal lineages. This clonal resolution

limits our ability to understand tissue dynamics at a single-cell-

division resolution. Although a recent report that combined

CRISPR/Cas9-mediated mutagenesis with single-molecule

RNA fluorescence in situ hybridization (FISH) enabled recon-

struction of lineages at a single-cell-division resolution

(MEMOIR) (Frieda et al., 2017), their ability to infer lineages drop-

ped substantially by the third cell division.

Furthermore, as these methods involve exogenous labeling,

they cannot be used to directly map cellular lineages in human
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tissues, thereby posing a barrier to understanding human devel-

opment and diseases. Although endogenous somatic mutations

have been used to reconstruct lineages, their low frequency of

occurrence over the whole genome make them challenging to

detect and therefore limit their application as a lineage recon-

struction tool (Behjati et al., 2014; Ju et al., 2017; Lodato et al.,

2015). Similarly, recent methods have used mutations within

the mitochondrial genome or microsatellites to reconstruct line-

ages, but these approaches are also limited to a clonal resolution

(Biezuner et al., 2016; Evrony et al., 2015; Ludwig et al., 2019; Xu

et al., 2019). Previously, we developed a method to detect the

endogenous epigenetic mark 5-hydroxymethylcytosine (5hmC)

in single cells (scAba-seq) and showed that the lack of mainte-

nance of this mark during replication resulted in older DNA

strands containing higher levels of 5hmC (Mooijman et al.,

2016). The ability to track individual DNA strands through cell di-

vision allowed us to deterministically reconstruct lineages that

were limited to two cell divisions (Mooijman et al., 2016). There-

fore, to reconstruct larger trees and overcome limitations

of other methods, we report single-cell Probabilistic Endoge-

nous Cellular Lineage Reconstruction (scPECLR), a generalized

probabilistic framework to endogenously reconstruct cellular lin-

eages at an individual-cell-division resolution by using single-cell

5hmC sequencing. This approach can be used to successfully

reconstruct up to four cell divisions. To reconstruct larger trees,

we developed an integrated single-cell method, scH&G-seq, to

simultaneously sequence 5hmC and genomic/mitochondrial

DNA from the same cell. By combining information from genomic

variants that can be used to identify clonal subtrees within the

complete tree, together with strand-specific 5hmC that enables

tracking the lineage of individual cells, scH&G-seq can be gener-

alized to endogenously reconstruct the lineage of larger trees at

a single-cell-division resolution.

RESULTS

Genome-wide strand-specific 5hmC enables initial
lineage bifurcation of individual cells into two subtrees
As proof of principle, we dissociated 8-cell mouse embryos and

performed scAba-seq to quantify strand-specific genome-wide

patterns of 5hmC in single cells (Figure 1A). As shown previously,

a majority of 5hmC is present on the paternal genome during

these stages of pre-implantation development (Inoue and

Zhang, 2011; Iqbal et al., 2011; Wossidlo et al., 2011). Single

cells from an 8-cell embryo displayed a mosaic genome-wide

distribution with no overlap of 5hmC between the plus andminus

strands of a chromosome (Figure 1B). Furthermore, for each

chromosome the strand-specific 5hmC was localized to a few

cells, and other cells contained undetectable levels of the mark

(Figure 1B). These observations show that only one allele carries

a majority of 5hmC and that we are primarily detecting 5hmC on

the original paternal genome, with DNA strands synthesized in

subsequent rounds of replication carrying very low levels of the

mark. We used this as our basis to reconstruct cellular lineages

of 8-cell embryos.

As the first step toward reconstructing lineage trees, we noted

that the original plus andminus strands of each paternal chromo-

some in the 1-cell zygote will be found in distinct cells on oppo-
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site sides of the lineage tree after n cell divisions. As a result, all

cells can be placed in one of two subtrees, thereby reducing the

number of cell divisions to be reconstructed from n to n� 1. For

example, at the 8-cell stage, the original paternal plus strand of

chromosome 7 is detected in cell 8 and the minus strand is de-

tected in cells 1 and 2 (Figure 1B). This suggests that cell 8 is

on the opposite side of the tree compared with cells 1 and 2. Per-

forming this first step of scPECLR, referred to as original strand

segregation (OSS) analysis, over all the chromosomes enables

us to place cells 1–4 and 5–8 on opposite sides of the lineage

tree, reducing the complexity of the problem from reconstructing

3 cell divisions with 315 tree topologies to 2 cell divisions with 9

tree topologies (Figure 1C).

Probabilistic lineage reconstruction using scPECLR
accurately predicts 8-cell embryo trees
To reconstruct the complete lineage tree, we next used the

mosaic pattern of 5hmC arising from abrupt transitions in hy-

droxymethylation levels among cells along the length of a chro-

mosome. These sharp transitions in 5hmC that are shared be-

tween two cells are the result of homologous recombination

during sister chromatid exchange (SCE) events in the G2 phase

of a previous cell cycle (Mooijman et al., 2016). Detection of

5hmC transitions that are common to two cells therefore indicate

a shared evolutionary history between these cells (Figure 1A,

inset). However, although an SCE event at the 4-cell stage would

imply that the cells are sisters (Figure 1C, left), one occurring at

the 2-cell stage would indicate that the same pattern of 5hmC

transition can also be observed between cousins (Figure 1C,

right). Thus, the observation of a single shared SCE event be-

tween two cells cannot be used to immediately discriminate be-

tween sister and cousin cell configurations.

To systematically determine the likelihood of observing

different tree topologies, we developed a probabilistic frame-

work where the occurrence of SCE events is modeled as a Pois-

son process. The total number of SCE events is used to estimate

the parameter b of the Poisson process, the rate of SCE events

per chromosome per cell division, using maximum-likelihood

estimation (STAR Methods). After OSS, 8-cell trees can be

grouped into two 4-cell subtrees, each with three possible tree

arrangements (Figure 2A). Next, we used the probabilistic model

to calculate the likelihood of observing an SCE pattern for a chro-

mosome given a tree topology. We observed a large variety of

SCE patterns, ranging from commonly observed patterns,

such as one or two SCE transitions shared between two cells,

tomore complex distributions of 5hmCbetween cells (Figure S1).

For themost common pattern of one SCE transition between two

cells, scPECLR predicts that the tree with the two cells as sisters

(tree A) is twice as likely as one where the two cells are cousins

(tree B or C), in good agreement with simulated data (Figure 2B

and STAR Methods). Similarly, when two SCE transitions are

shared between two cells, the probability that the two cells are

sisters is 2–3 times higher than the probability that they are

cousins, with the likelihood ratio between sister and cousin

tree configurations depending on the relative position of the

SCE transition on the chromosome (Figures 2C and S2; STAR

Methods). More complex 5hmC distribution patterns, such as

when two SCE events are shared between three cells,



Figure 1. Strand-specific single-cell 5hmC

enables initial lineage bifurcation of individ-

ual cells into two subtrees

(A) Schematic shows a zygote with chromosomes

containing high 5hmC levels (solid lines) undergo-

ing three cell divisions. The newly synthesized

strands contain very low levels of 5hmC (dotted

lines). SCE events occur randomly during each cell

cycle. Single cells are sequenced by using scAba-

seq to quantify strand-specific 5hmC.

(B) Data showing mosaic pattern of strand-specific

5hmC in single cells obtained from an 8-cell mouse

embryo. 5hmC counts within 2-Mb bins on the plus

and minus strands are shown in orange and blue,

respectively.

(C) OSS analysis on chromosome 7 places cell 8 in

one 4-cell subtree and cells 1 and 2 in the other

subtree. Performing OSS on all chromosomes

places cells in one of these two 4-cell subtrees and

reduces the complexity of the lineage reconstruc-

tion problem.
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substantially favors the configuration of tree A (Figure 2C and

STAR Methods). After the SCE pattern of each chromosome is

analyzed, we can estimate the total likelihood of observing

different tree topologies, assuming that the SCE events on
Cell Repo
each chromosome are independent

(STAR Methods). Finally, the likelihood of

an 8-cell tree is the product of the likeli-

hoods of the two corresponding 4-cell

subtrees (Figure 2D and Method S1).

To test the accuracy of scPECLR, we

simulated 5hmC patterns of 8-cell em-

bryos with an SCE rate similar to the

experimentally observed value (b = 0:3)

and within the range found in other cell

types (Falconer et al., 2012; Hongslo

et al., 1991; Tateishi et al., 2003; Wu

et al., 2017; Zack et al., 1977). scPECLR

predicted the lineage tree correctly in

96% of all simulations (Figure 3A, left). In

contrast, MEMOIR predicted the lineage

tree accurately in only �67% of the top

40% most reliably reconstructed trees,

although this was based on ground truth

obtained from imaging data (Figure 3A,

left). This improved accuracy of scPECLR

strongly suggests that endogenous

strand-specific 5hmC patterns present

an accurate tool to reconstruct lineage

trees at an individual-cell-division resolu-

tion. Furthermore, to directly validate our

method against experimental data, we

combined the lineage trees predicted by

scPECLR from simulated 8-cell embryos

to estimate the number of SCE events at

the 4-cell stage. We hypothesized that if

scPECLR predicted the correct tree then

it would produce a distribution of SCE
events similar to that of the experimental data at the 4-cell stage.

We found that the scPECLR-predicted distribution of SCE

events per cell at the 4-cell stage was statistically indistinguish-

able from the experimentally obtained distribution in 4-cell
rts Methods 1, 100060, August 23, 2021 3



Figure 2. Endogenous 5hmC-based lineage reconstruction using scPECLR

(A) Two cells sharing an original DNA strand (solid orange line) can either be sisters (Tree A) or cousins (trees B and C) depending on whether the SCE event

occurred at the 4- to 8-cell or 2- to 4-cell stage, respectively. Newly synthesized DNA strands are shown as dashed black lines.

(B) For an SCE transition between two cells, the probability of the pair of cells being sisters versus cousins is plotted against the relative position of the SCE event

on the chromosome (k11). The model prediction (black) and simulation results (yellow) are shown for chromosome 1 (N = 97 for 2-Mb bins) with b = 0:3:

(C) The probability ratio between Trees A and B are shown forN = 97 and b= 0:3 for two cases: two SCE transitions shared between two cells and two SCE events

shared between three cells.

(D) For the 8-cell mouse embryo in Figure 1B, the probability of observing the different topologies, rounded to four decimal places, for the two 4-cell subtrees are

shown.
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embryos (p>0:8, two-sample Kolmogorov-Smirnov [KS] test)

(Figure 3A, right). In contrast, when one of the 314 incorrect

tree topologies at the 8-cell stage were sampled randomly, it re-

sulted in a distribution of SCE events per cell that was signifi-

cantly different from the experimental data (p<10�4, two-sample

KS test) (Figure 3A, right). These results show that scPECLR can

reconstruct three cell divisions with high accuracy. Finally, we

applied scPECLR on the 8-cell mouse embryo shown in Fig-

ure 1B and other embryos to predict lineage trees with high con-

fidence (Figure 2D and Data S1).

As SCE transitions play a central role in reconstructing lineage

trees with scPECLR, we next explored how the endogenous rate

of SCE events influences the accuracy of the model. As ex-

pected, the accuracy of lineage reconstruction increases mono-

tonically with increasing rates of SCE events, and greater than

98% of the simulated 8-cell trees were correctly predicted for

bR0:4 (Figure 3B and STAR Methods). These simulations were

performed by using 19 paternal autosomes based on our obser-

vations in pre-implantation mouse embryos; however, most cell

types carry 5hmC on both alleles, and therefore we also per-

formed simulations with 38 chromosomes. Again, as expected,

the predictive power of the model increases, and more than

98% of the simulated 8-cell trees were accurately predicted for

bR0:2 (Figure 3B). These results demonstrate that the lineage
4 Cell Reports Methods 1, 100060, August 23, 2021
tree can be accurately predicted up to three cell divisions even

with low rates of SCE events (Figure 3B).

scPECLR can be extended to reconstruct the lineage of
16-cell trees
We next extended scPECLR to reconstruct the lineage of 16-cell

trees, whereby the number of possible tree topologies increases

exponentially tomore than 63 108. Although the ability to predict

the complete lineage tree decreases (17% accuracy for b = 0:3),

large parts of the tree were reconstructed accurately, with the

most common error being the misidentification of one sister

pair within a 4-cell subtree (Figures 3B and 3C). For an SCE

rate of b = 0:3, 83% of all 4-cell subtrees and 63% of all 2-cell

subtreeswere predicted correctly (Figure 3C). These results sug-

gest that when reconstructing 16-cell trees it is important to

identify parts of the tree that can be predicted with high confi-

dence. To accomplish this, we first included all tree topologies

with probabilities above a threshold in relation to the tree with

the highest probability (Figure 3D). A consensus tree that is

consistent with all these tree topologies is then established (Fig-

ures 3D and S3; STAR Methods). As the relative threshold is

increased (i.e., we include fewer tree topologies to construct

the consensus tree), the median consensus tree contains fewer

topologies, resulting in a more specific consensus tree.



Figure 3. scPECLR can reconstruct 8- and 16-

cell lineage trees

(A) (Left) scPECLR accurately predicts the lineage of

96% of simulated 8-cell trees (b = 0:3). Error bars

indicate the bootstrapped standard error. In compari-

son, MEMOIR accurately predicts 67% of the top 40%

most reliably reconstructed 8-cell trees (Frieda et al.,

2017). (Right) The distribution of SCE events in 4-cell

embryos (blue) is not statistically different from that of

4-cell trees inferred with scPECLR starting from 8-cell

trees (orange, p > 0.8), but is different from 4-cell trees

inferred from a random topology at the 8-cell stage

(brown, p<10�4).

(B) Percentage of simulated 8- and 16-cell trees that are

correctly predicted by scPECLR for different SCE rates

(b). The prediction accuracy is computed by simulating

5,000 trees. Error bars indicate the bootstrapped

standard error.

(C) Percentage of 2-, 4-, and 8-cell subtrees that are

accurately predicted within simulated 16-cell trees as a

function of the SCE rate (b). The prediction accuracy is

computed by simulating 5,000 16-cell trees. Error bars

indicate the bootstrapped standard error.

(D) Construction of consensus trees. In this example,

the top six tree topologies (with the highest probabili-

ties) obtained after applying scPECLR on a 16-cell tree

are shown. The relative threshold (RT) parameter is

used to determine the number of topologies considered

in the consensus tree analysis. With an RT of 0.5, the

top 5 topologies are selected to generate a consensus

tree that is consistent with all these trees. The uncer-

tainty within the consensus tree is quantified by the

number of tree topologies it contains. Red fonts indi-

cate parts of the lineage tree that are incorrectly pre-

dicted. The tree highlighted in bold is the true tree.

(E) Simulations show that as the RT increases, the

median number of topologies in the consensus tree

decreases (solid lines, left axis) whereas the false dis-

covery rate (FDR) increases (dotted lines, right axis). In

these simulations, two other parameters t8 and t4 are

set to 0.75 and 1.0, respectively. For details, see STAR

Methods.

(F) Graph showing how the specificity of the consensus

tree is related to error tolerance. As the FDR decreases,

the median number of topologies contained within the

consensus tree increases. Note that the lowest FDR

possible for b = 0.3, 0.5, 0.7, and 1.0 are 15%, 10%,

10%, and 5%, respectively.

(G) Single-cell 5hmC sequencing data for a 16-cell

mouse embryo (4-Mb bins). The consensus tree asso-

ciated with this embryo is estimated to have a 15%FDR

rate. RT, t8, and t4 are set at 0.05, 0.85, and 0.8,

respectively. The consensus tree is constrained to only

180 possible topologies, a significant reduction from

the more than 600 million trees originally.
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However, this results in an increase in false discovery rate (FDR).

For example, with b= 0:3 and a relative threshold of 0.1, the me-

dian consensus tree contained 24 tree topologies (Figure 3E,

solid red line). The consensus trees displayed an FDR of

�26%, implying that in 26% of the simulations the consensus

tree has at least some part of the lineage tree that is not consis-

tent with the true tree (Figure 3E, dotted red line). Thus, the rela-

tive threshold allows us to tune the competing goals of specificity

and accuracy of the consensus tree. These results show that for

a certain rate of SCE events and a desired level of FDR, the me-

dian number of topologies contained in the consensus tree can

be estimated, yielding insights into how much lineage informa-

tion can be extracted (Figure 3F and STAR Methods). Finally,

as proof of principle, we sequenced a 16-cell mouse embryo

and applied scPECLR to show that we can extract partial lineage

information from larger trees (Figure 3G and STAR Methods).

Integrated single-cell genomic DNA and 5hmC
sequencing enables reconstruction of larger lineage
trees
For larger 32-cell trees, the number of possible tree topologies

increases to more than 1026, making it computationally very

expensive to calculate the likelihood of all trees. Therefore, we

extended scPECLR by developing an algorithm that efficiently

searches through the tree topology space to reconstruct these

larger trees. After OSS bifurcates the 32 cells into 2 16-cell sub-

trees, we identify groups of 8 cells that when combined minimize

the number of SCE events at the 4-cell stage. This algorithm re-

lies on the strategy that incorrectly grouped cells will increase the

number of SCE events at the 4-cell stage, and this subsampling

enables rapid search through the tree topology space. Finally,

the four groups of eight cells are reconstructed using scPECLR

as described above (STAR Methods). As expected, although

the ability to predict the complete lineage tree is lower than

that for 16-cell trees, this method can rapidly predict subtrees

within the 32-cell tree. For example, for b= 1 and 19 alleles, 2-,

4-, and 8-cell subtrees are predicted with 50%–60% accuracy,

whereas the 16-cell subtrees are predicted at close to 100% ac-

curacy (Figure 4A, solid lines). For the more general case of 38

alleles in mouse genomes, the prediction accuracy increases

substantially, and 80%–95% of the 2-, 4-, and 8-cell subtrees

were predicted correctly for b= 1 (Figure 4A, dotted lines).

To endogenously reconstruct large lineage trees at an individ-

ual-cell division resolution, we hypothesized that single-cell

strand-specific 5hmC data combined with information on

genomic variants, such as genomic copy-number variations

(CNV), genomic single-nucleotide polymorphisms (SNPs), or

mitochondrial SNPs, could significantly improve the prediction

accuracy. Genomic variants have previously been used to

reconstruct clonal lineages and, therefore, when integrated

with strand-specific 5hmC could help anchor subtrees within

the complete lineage tree (Biezuner et al., 2016; Evrony et al.,

2015; Ludwig et al., 2019; Xu et al., 2019). To test this hypothesis,

we simulated trees with genomic variants together with SCE

events and found that the prediction accuracy increases dramat-

ically compared with the use of SCE events alone (Figures 4A,

4B, S4B, and S4C; STAR Methods). For example, for b = 1,

the complete 32-cell lineage tree was predicted correctly in
6 Cell Reports Methods 1, 100060, August 23, 2021
76% of all simulations, and the 2- to 16-cell subtrees were pre-

dicted with greater than 96% accuracy (Figure 4B). In contrast,

when using 5hmC or genomic variants alone, the prediction ac-

curacy was lower (Figures 4A and 4B). Overall, these results

demonstrate that 5hmC and genomic variants together present

a general strategy to accurately reconstruct large lineage trees

at a single-cell division resolution.

To accomplish this goal experimentally, we developed a

method to simultaneously quantify 5hmC and the genome from

the same cell (scH&G-seq). Single cells are lysed, and the

genomic DNA (gDNA) and mitochondrial DNA (mtDNA) are di-

gested by using the restriction enzymes AluI and/or BseRI (Fig-

ure 4C). After stripping chromatin from gDNA, 5hmC sites are

glucosylated, and these sites are thereafter digested by the re-

striction enzyme AbaSI (Figure 4C). Double-stranded adapters,

containing a cell-specific barcode, a 50 Illumina adapter, and

T7 promoter, together with restriction enzyme-compatible over-

hangs, are ligated to the fragmented DNAmolecules (Figure 4C).

These ligated molecules are then amplified by in vitro transcrip-

tion and used to prepare Illumina libraries as described previ-

ously (Hashimshony et al., 2016; Mooijman et al., 2016; Rooijers

et al., 2019; Sen et al., 2021), enabling simultaneous quantifica-

tion of gDNA, mtDNA, and 5hmC from the same cell.

As proof of concept, we applied scH&G-seq to single H9 hu-

man embryonic stem cells with different combination of restric-

tion enzymes—AluI and AbaSI, BseRI and AbaSI, or AluI, BseRI,

and AbaSI—and successfully detected both gDNA/mtDNA and

5hmC from the same cell (Figures 4D and S4D). We detected a

similar number of 5hmC sites per cell, when compared with

scAba-seq control cells, and integration with additional restric-

tion enzymes enabled genome-wide sequencing of gDNA/

mtDNA (Figures 4D and S4D). To show that gDNA variants can

infer clonal cellular relationships, we called CNVs in single cells.

Hierarchical clustering identified two major clusters with a

diploid and non-diploid population, with additional subgroups

within the non-diploid population (Figures 4E and 4F). These re-

sults demonstrate that scH&G-seq can be used to predict large

lineage trees at a single-cell-division resolution. Similarly, the

high mutation rate in mtDNA has previously been used to recon-

struct clonal lineage trees, and therefore we used scH&G-seq to

identify mtSNPs. Although we identified nearly 40 mtSNPs in H9

cells when mapping to the reference human genome, these

SNPs were observed at a frequency of close to 100%. Compar-

ison with previously published ATAC-seq data from H9 cells

together with SNP calls from another human cell line also identi-

fied the same SNPs, suggesting that these nucleotides repre-

sented the wild-type sequence (Table S1) (Diroma et al., 2020;

Liu et al., 2017). Nevertheless, these results show that in addition

to sequencing 5hmC in single cells, scH&G-seq can be used to

obtain clonal lineage information that can together be used to

reconstruct larger trees.

scPECLR can be used to infer the rate of SCE events at
each cell division and test the ‘‘immortal strand’’
hypothesis
In addition to reconstructing lineage trees, scPECLR can also be

used to infer the rate of SCE events at each cell division. For

example, in 8-cell embryos, the 5hmC distribution at the 4-cell



Figure 4. Integrated single-cell 5hmC and

genomic DNA sequencing can be used to

endogenously reconstruct larger lineage

trees

(A) Percentage of the full lineage, along with 2-, 4-,

8-, and 16-cell subtrees, that are accurately pre-

dicted in simulated 32-cell trees as a function of

SCE rates (b). The prediction accuracy is

computed by simulating 2,000 trees. Solid and

dotted lines indicate cells where 5hmC can be

quantified in 19 or 38 chromosomes, respectively.

(B) Percentage of the full lineage, along with the

subtrees, that are correctly predicted in simulated

32-cell trees as a function of SCE rates (b), by using

information from both 5hmC and gDNA. Solid and

dotted lines indicate prediction accuracy by using

integrated information and gDNA alone, respec-

tively. The prediction accuracy is computed by

simulating 2,000 38-chromosome trees, and the

rate of occurrence of genomic variants is set to 0.6

per chromosome per cell division.

(C) Schematic illustration of scH&G-seq.

(D) scH&G-seq enables simultaneous detection of

gDNA and 5hmC from the same cell.

(E) Heatmap of the Euclidean distance between

cells and the corresponding dendrogram. Single

cells cluster into two major groups. Cells from AluI,

BseRI, and dual enzyme libraries are displayed in

green, orange, and blue, respectively.

(F) Heatmap of the copy number profile of single

cells sorted in the same order as the dendrogram

in (E).
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and 2-cell stages can be reconstituted on the basis of the pre-

dicted lineage, enabling us to estimate the rate of SCE events

at each cell division (Figure 2D and Data S1). Although the overall

SCE rate over three cell divisions for all the 8-cell mouse em-

bryos analyzed in this study was estimated to be 0.35 events
Cell Repo
per chromosome per cell division on

average, the individual SCE rates for the

1- to 2-cell, 2- to 4-cell, and 4- to 8-cell

stages were 0.31, 0.24, and 0.51, respec-

tively. Furthermore, we found that the

different rates of SCE events at each cell

division did not affect the prediction accu-

racy of scPECLR (Figure S5 and STAR

Methods). These results show that

scPECLR can be used to infer the rate of

double-stranded DNA (dsDNA) breaks at

each cell division and that the rate of

SCE events can vary during development.

Finally, we explored another applica-

tion of scPECLR. As scPECLR uses

endogenous strand-specific 5hmC in sin-

gle cells to accurately reconstruct 8-cell

trees, we hypothesized that this method

could quantify how paternal alleles are

segregatedduringcell division (Figure 5A).

Different stem cell populations, such as

hair follicle (Huh et al., 2013), neural
(Karpowicz et al., 2005), satellite muscle (Conboy et al., 2007;

Rocheteau et al., 2012), and intestinal crypt stem cells (Falconer

et al., 2010; Potten et al., 2002), have been shown to display non-

random segregation of DNA strands that can influence cell-fate

decisions. These results have led to the ‘‘immortal strand’’
rts Methods 1, 100060, August 23, 2021 7



Figure 5. scPECLR can be used to map DNA strand segregation patterns

(A) Schematic of DNA strand segregation patterns during cell division.

(B) Combining the experimental 5hmC data for the 8-cell embryo in Figure 1B with the lineage tree predicted by scPECLR enables the genome-wide recon-

stitution of 5hmC in single cells at the 4-cell stage.

(C) Testing non-random segregation of DNA strands at the 4-cell stage of mouse embryogenesis. The p values from a binomial test under a null hypothesis of

random segregation shows that, out of 27 embryos, two pairs of sister cells display statistically significant (p<0:05) non-random segregation of DNA strands.

(D) Twenty-seven embryos were randomly sampled 10,000 times from a pool of 100,000 simulated 4-cell embryos, generated with a constant SCE rate of b =

0:3. A cumulative distribution of the number of sister pairs that display statistically significant (p<0:05) non-random segregation within the 27 embryos is shown.

Red dot indicates the experimentally observed value of 2.
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hypothesis, which postulates that old DNA strands are retained

by daughter stem cells during asymmetric cell divisions to

reduce the mutational load arising from genome replication of

these long-lived cells. During mouse pre-implantation develop-

ment, recent reports have shown that blastomeres show biases

in cell fate specification as early as the 4-cell stage (Goolam

et al., 2016; White et al., 2016). Therefore, we investigated sister

chromatid segregation patterns of the paternal alleles at the 4-

cell stage.We first combined 5hmC data from reconstructed sis-

ter cell pairs at the 8-cell stage to generate the distribution of the

oldest DNA strands at the 4-cell stage (Figure 5B). In the example

shown, when comparing cells (1,2) and (3,4), the original DNA

strands appear to preferentially segregate to cell (1,2). In

contrast, such a non-random pattern of DNA strand segregation

is not observed between sister cells (5,6) and (7,8). Quantita-

tively, we analyzed 14 8-cell mouse embryos (equivalent to 28
8 Cell Reports Methods 1, 100060, August 23, 2021
2- to 4-cell division events) to find one sister pair at the 4-cell

stage that displayed statistically significant non-random segre-

gation of DNA strands (p<0:05) (Figure 5C and STAR Methods).

To directly validate these results, we performed scAba-seq on 13

4-cell mouse embryos (equivalent to 26 2- to 4-cell division

events). We again observed a similar distribution with one sister

pair displaying a statistically significant non-random segregation

pattern of DNA strands (p<0:05), which was statistically indistin-

guishable from that observed in 8-cell embryos (p>0:8, two-

sample KS test) (Figure 5C and STARMethods). The observation

of two non-random segregation events out of 27 embryos was

not statistically significant (p>0:15), suggesting this level of

non-random segregation at the 4-cell stage of mouse

embryogenesis could arise by random chance (Figure 5D and

STAR Methods). Thus, this study shows that strand-specific

reconstruction of lineage trees can be a powerful approach to
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test the immortal strand hypothesis in different stem cell

populations.

DISCUSSION

Cellular lineage reconstruction plays an important role in

answering fundamental questions in several areas of biology,

such as immunology, cancer biology, and developmental

biology. However, most current methods have two major limita-

tions: (1) clonal lineage reconstruction cannot establish lineage

relationships at the resolution of individual cell divisions; and

(2) the use of transgenes involves time-intensive generation of

complex animal models and is an approach that cannot be

extended to map lineages in human tissues. To overcome these

limitations, we developed a generalized probabilistic framework,

scPECLR, to reconstruct short-term cellular lineage trees at an

individual-cell-division resolution by using strand-specific sin-

gle-cell 5hmC sequencing data. Using simulated 8-cell trees,

scPECLR showed a prediction accuracy of 96%. Because simul-

taneous live-cell imaging combined with single-cell 5hmC

sequencing to directly compare lineage predictions is chal-

lenging, we validated our results by showing that 8-cell trees pre-

dicted by scPECLR, and not randomly selected incorrect trees,

allow us to estimate the distribution of SCE events at the 4-cell

stage that is consistent with experimental data (Figure 3A).

These results highlight that scPECLR is not only accurate at re-

constructing short-term lineage trees at an individual-cell-divi-

sion resolution but can also be used to quantify DNA strand

segregation patterns and test the immortal strand hypothesis

in stem cell biology.

Furthermore, scPECLR can be applied to single-cell measure-

ments of other non-maintained epigenetic marks, such as non-

CpG methylation, 5-formylcytosine, and 5-carboxylcytosine, to

reconstruct lineages (Sen et al., 2021; Wu et al., 2017), and

more generally to systems where the chromosome strands pre-

sent in the original cell can be distinguished from subsequently

synthesized strands, such as those exposed to bromodeoxyur-

idine (Claussin et al., 2017; Sanders et al., 2020). Finally, we

show that by integrating 5hmC data with information on genomic

variants from the same cell (scH&G-seq) significantly improves

the prediction accuracy of larger lineage trees. Importantly, the

use of an endogenous epigenetic mark and genomic variants

to reconstruct lineage trees suggests that this method can be

directly extended to study human development.

Limitations of the study
Although scPECLR enables endogenous lineage reconstruction

at a single-cell-division resolution, the method suffers from two

limitations. First, it cannot be applied to cell types in which the

levels of 5hmC are below the detection limit of scAba-seq and

scH&G-seq. However, as scPECLR relies on the relative levels

of 5hmC between the two strands of a chromosome, it can be

applied to many cell types, including those with low levels of

5hmC in their genome. For example, 16-cell mouse embryos

display distinct mosaic genome-wide strand-specific 5hmC pat-

terns that enable lineage reconstruction despite undergoing

global erasure of DNA methylation (Messerschmidt et al., 2014;

Saitou et al., 2012) (Figure 3G). A second general limitation of re-
constructing larger lineage trees at an individual-cell division res-

olution is that the number of tree topologies increases exponen-

tially, resulting in a drop in prediction accuracy with each

additional cell division. However, as this work demonstrates,

scPECLR, in combination with scH&G-seq, significantly im-

proves the lineage-reconstruction accuracy of larger trees (Fig-

ure 4B). Finally, as most other lineage-reconstruction methods

employing CRISPR/Cas9, viruses, transposons, or Cre-loxP

resolve larger-scale clonal information, scPECLR presents a

complementary approach to these methods for applications

that require reconstructing smaller lineage trees at an individ-

ual-cell-division resolution.
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Chemicals, peptides, and recombinant proteins

TrypLE Select Enzyme (10X), no phenol red ThermoFisher A12177-01

Vapor-Lock Qiagen 981611

NEBuffer 4 New England BioLabs B7004S

Qiagen Protease Qiagen 19155

T4 Phage b-glucosyltransferase New England BioLabs M0357L

AbaSI New England BioLabs R0665S

T4 DNA Ligase New England BioLabs M0202M

Adenosine 5’-Triphosphate New England BioLabs P0756L

Agencourt AMPure XP Beckman Coulter A63880

SuperScript II Reverse Transcriptase ThermoFisher 18064014

RNaseOUT Recombinant Ribonuclease

Inhibitor

ThermoFisher 10777019

NEBNext High-Fidelity 2X PCR Master Mix New England BioLabs M0541L

IGEPAL CA-630 Sigma-Aldrich I8896-50ML

AluI New England BioLabs R0137S

BseRI New England BioLabs R0581S

Critical commercial assays

MEGAscript T7 Transcription Kit ThermoFisher AMB13345

Deposited data

Single-cell 5hmC sequencing data and

scH&G-seq data

This paper GEO: GSE131678

Experimental models: cell lines

Human: H9 WiCell WA09

Experimental models: organisms/strains

Mouse: C57BL/6J The Jackson Laboratory 000664

Mouse: CBA/J The Jackson Laboratory 000656

Oligonucleotides

Double-stranded adapters for scAba-Seq Mooijman et al., 2016 N/A

RandomhexRT primer Hashimshony et al., 2016 N/A

Illumina sequencing primers Hashimshony et al., 2016 N/A

Blunt-end adapter scDam&T NA

Software and algorithms

scPECLR (MATLAB) This paper N/A

scH&G-seq This paper https://github.com/alexchialastri/

scH-G-seq
RESOURCE AVAILABILITY

Lead contact
Additional information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Sid-

dharth S. Dey (sdey@ucsb.edu)

Materials availability

This study did not generate new unique materials nor reagents
e1 Cell Reports Methods 1, 100060, August 23, 2021

mailto:sdey@ucsb.edu
https://github.com/alexchialastri/scH-G-seq
https://github.com/alexchialastri/scH-G-seq


Report
ll

OPEN ACCESS
Data and code availability

d The raw and processed single-cell sequencing data have been deposited at GEO and are publicly available as of the date of

publication. The accession number is listed in the key resources table.

d All original code for scPECLR implementation is available in this paper’s supplemental information. All original code for scH&G-

seq implementation has been deposited at GitHub and is publicly available as of the date of publication. TheGitHub link is listed

in the key resources table.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Embryo isolation and cell picking
Embryoswere gently flushed out of the infundibulum of E2.5 pregnantmice usingwarmM2medium. Embryoswere thenmanipulated

in 4-ring IVF dishes coated with RNase-free BSA. Embryos were washed in PBS-0 and in Tyrode’s acid to remove the zona pellucida,

then placed in a 1/3 dilution of TrypLE Select Gibco A12177-01 (stock solution is referred by Gibco as 10x concentrated) and placed

on the warm plate for 2 minutes. Glass capillaries of different diameters were then used to dissociate the embryo into 2-3 clusters.

Cells were then progressively extracted from each cluster, one after the other, using glass capillaries. Every single cell that is released

from the clusters is immediately placed into a well of a 384-well plate containing lysis buffer.

Embryos were obtained by mating CBA and C57BL/6 mice with age ranging from 8 to 25 weeks. Mice were placed together in the

evening and considered to mate at midnight (E0). The next morning, plugged females were separated. All experiments were

approved by the Dutch ethical committee under the DEC KNAWHI14.2402. Mice were bred under the oversight of the animal facility

of the Hubrecht Institute.

Cell culture and cell sorting
H9 cells were grown on Matrigel (Fisher cat #08-774-552) in mTeSR1 (Stem Cell Technologies cat #85850). Cells were passed in

clumps using Versene solution (Thermo fisher scientific cat # 15040066). For sorting, cells were dissociated into single cells using

TrypLE, resuspended in 1x PBS, and passed through a cell strainer.

METHOD DETAILS

Single-cell 5hmC sequencing (scAba-Seq)
Single cells isolated from 4-, 8- and 16-cell mouse embryos were deposited into 384-well plates and the scAba-Seq protocol was

performed using the Nanodrop II liquid-handing robot. Briefly, after protease treatment to strip off chromatin, 5hmC sites in the

genome were glucosylated using T4-Phage b-glucosyltransferase. Next, AbaSI, which recognizes glucosylated sites and introduces

double-stranded breaks with 3’ overhangs 11-13 nucleotides downstream of the recognition site, was added to the reaction mixture.

The fragmented genomic DNA molecules were ligated to double-stranded adapters containing a cell barcode, 5’ Illumina adapter,

and T7 promoter. The ligated molecules were amplified by in vitro transcription and then used to prepare Illumina libraries. A detailed

protocol can be found in Mooijman et al. (2016).

Modeling SCE events as a Poisson process
The 5hmC data was discretized into 2 or 4 Mb bins and all SCE transitions in the 8-cell mouse embryos were identified manually. A

specific SCE transition on chromosome 14 was found at the same genomic position in all embryos due to a misorientation of the

reference genome (mm10), consistent with previous reports (Falconer et al., 2012; Wu et al., 2017). The stochastic nature of SCE

events is modeled as a Poisson process. In using a Poisson process to model SCE events, we assume that all SCE events occur

independently and at a constant rate. The probability of observing x SCE transitions in one cell cycle is given by:

P½x� = bx � e�b

x!
(Equation 1)

where b is the average number of SCE transitions per chromosome per cell division. Further, to build a probabilistic framework to

reconstruct cellular lineages, we define the following parameters: (1) r is the probability that an original strand is inherited by a partic-

ular daughter cell, which is equal to ½ for randomly segregating DNA strands; (2) kij is the genomic length fraction of the jth segment

(1%j%l + 1; where l is the number of SCE transitions) of the original DNA strand that is observed in cell i; and (3) N is the number of

unique positions where SCE events can occur.

scPECLR
The first step is to use the numbers of observed SCE events to estimate b using maximum likelihood estimation (MLE). Thereafter,

Original Strand Segregation (OSS) analysis is used to separate the cells into two groups, reducing the number of cell divisions to be

reconstructed from n to n� 1. Next, within each subtree, we calculate the probability of observing a SCE pattern of a chromosome
Cell Reports Methods 1, 100060, August 23, 2021 e2



Report
ll

OPEN ACCESS
given a tree topology. For example, for the most frequently occurring pattern of one SCE event shared between two cells (see

example in Figure 2A), the probability of observing it in Tree A is given by the product of the probability of having no SCE events

in the first cell division and the probability of having one SCE event in the second cell division

Pðk11; k22jtAÞ = PtA =
� r

eb

�� br

ebN

�
(Equation 2)

Similarly, the probability of observing this pattern in Tree B is given by the product of the probability of having one SCE event in the

first cell division, and no SCE events within the original DNA strands in both cells in the second cell division

Pðk11; k22jtBÞ = PtB =

�
br

ebN

�0@ r

eb
e

�
ð1�k11ÞðN+ 1Þ

N

�
b

1
A
0
@ r

eb
e

�
ð1�k22ÞðN+1Þ

N

�
b

1
A (Equation 3)

which leads to

PtA

PtB

=
2

e
b
N

(Equation 4)

Detailed analytical expressions for the probability of observing different SCE patters are provided in the Quantification and Statis-

tical Analysis section ‘‘Analytical expressions for the probability of observing the three most common SCE patterns’’.

Subsequently, we assume that the SCE patterns on each chromosome are independent and compute the overall probability of

observing SCE events over thewhole genome for each tree topology. Moreover, as a 4-cell subtree has only three distinct topologies,

we get

PðtAjDÞ + PðtBjDÞ+PðtCjDÞ= 1 (Equation 5)

where D represents the genome-wide SCE patterns in all cells of the embryo. Rearrangement gives us the probability of observing

different tree topologies given the SCE patterns over the whole genome

PðtAjDÞ = 1

1+ PðDjtBÞ
PðDjtAÞ+

PðDjtCÞ
PðDjtAÞ

(Equation 6)

Finally, the probability of observing the topology of a particular 8-cell tree is a product of the probabilities of the two corresponding

4-cell subtrees (For details on implementing scPECLR computationally, see Methods S1: Matlab scripts for scPECLR implementa-

tion, related to STAR methods).

In 8- and 16-cell predictions, after the probabilities of all tree topologies are estimated, scPECLR assigns the topology with the

highest probability as the predicted tree. Then, starting with this predicted tree, b values specific to each cell division are estimated.

A second iteration with cell division-specific bvalues is then performed to obtain a new predicted tree. If the new predicted tree is not

the same tree as that inferred in the first iteration, another iteration is performed starting from the predicted tree in the current iteration.

This iterative process is carried out till the predicted tree is the same as that obtained in the previous iteration or until 10 iterations have

been performed. In all in vivo mouse embryos and almost all simulated embryos, the predicted tree converges by the 3rd iteration.

Since we know that the iterative prediction is mostly useful when the rates of SCE events generating the simulated embryos are

different for each cell division (see Quantification and Statistical Analysis section ‘‘scPECLR is robust to initial estimates of the

SCE rate and to varying SCE rates at each cell division’’), iterative prediction was not performed in 32-cell tree predictions to conserve

computational resources.

Single-cell hydroxymethylation & genomic DNA sequencing (scH&G-seq)
384-well plates containing 4 mL of Vapor-Lock (Qiagen) and 200 nL of lysis buffer (0.0875% IGEPAL CA-630) are prepared and single

cells are FACS sorted into each reaction well. After sorting, plates are stored at -80�C until use. The cells were lysed at 65�C for 3 mi-

nutes, and reaction wells receive 500 nL of either 1.4x Buffer4 (NEB) [negative control, scAba-Seq only], BseRImix [1.4x Buffer 4, 0.25

units BseRI (NEB)], AluI mix [1.4x Buffer 4, 0.25 units AluI (NEB)], or a combinedmixture containing both BseRI and AluI (1.4x Buffer 4,

0.125 units BseRI, 0.125 units AluI). BseRI was selected because it yields the same 2 nucleotide 3’ overhang as AbaSI, while AluI was

selected because we have previously used it successfully to digest gDNA (Rooijers et al., 2019). The plate is incubated for 1 hour at

37�C followed by heat inactivation at 80�C for 20 minutes. Next, 1.8 mL of protease mix (1x Buffer 4, 6 mg Qiagen protease) is added,

and the plate is heated to 50�C for 16 hours, 75�C for 20 minutes, and 80�C for 5 minutes. Then 5hmC sites in the genome are glu-

cosylated by adding 500 nL of glucosylation mix [1x Buffer 4, 1x UDP-Glucose (NEB), 1 unit T4-BGT (NEB)] and incubated at 37�C for

16 hours. Afterwards, 500 nL of proteasemix (1x Buffer 4, 2 mgQiagen protease) is added, and the plate is heated to 50�C for 3 hours,

75�C for 20minutes, and 80�C for 5minutes. To detect 5hmC, 500 nL of AbaSI reactionmix (1x Buffer 4, 1 unit AbaSI) is added and the

plate is incubated at 25�C for 1.5 hours, and 65�C for 25minutes. Cells receiving the AluI mix or the combined BseRI and AluI mix have

200 mL of 64 nM blunt end adapter added as described previously (Rooijers et al., 2019). All cell also receive 200 mL of 75 nM scAba-

seq adapters as described inMooijman et al. (2016). Ligationmix [1x T4 DNA Ligase reaction buffer (NEB), 4mMATP (NEB), 140 units
e3 Cell Reports Methods 1, 100060, August 23, 2021
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T4 DNA Ligase (NEB)] is then added to bring the total volume of each reaction well to 5 mL. Subsequently, the plate is incubated at

16�C for 16 hours. Excluding the Vapor-Lock, all reagents are dispensed using the Nanodrop II liquid handling robot. After ligation, the

reaction wells are pooled and the downstream steps are performed as described previously (Gell et al., 2020; Sen et al., 2021).

QUANTIFICATION AND STATISTICAL ANALYSIS

Analytical expressions for the probability of observing the three most common SCE patterns
Case I: The most common SCE pattern that we observed in mouse embryos is one SCE transition shared between two cells (cells 1

and 2 in Figures 2A and S1). This pattern alone cannot discriminate between sister (Tree A) or cousin (Trees B and C) cell configu-

rations as all three topologies are consistent with the SCEpattern. Therefore, we developed amodel to rigorously determine the prob-

ability of observing any SCE pattern given a tree topology. For Tree A, the probability of observing one shared SCE transition is given

by the product of the probability of having no SCE events in the first cell division and the probability of having one SCE event in the

second cell division. Further, there is a 1
=N chance that the observed SCE event occurs at a specific discretized genomic position. The

probability that the original DNA strand is inherited by the mother of cells 1 and 2 is r, and the probability of inheriting the observed

SCE pattern between cells 1 and 2 is given by r.

Pðk11; k22jtAÞ = PtA =
� r

eb

�� br

ebN

�
(Equation 7)

Similarly, for Tree B,

Pðk11; k22jtBÞ = PtB =

�
br

ebN

�� r

eb
+ m

�� r

eb
+ m

�
(Equation 8)

Here,m represents the probability that the SCE events during the second cell division occur within newly synthesized DNA strands

that contain undetectable levels of 5hmC. To estimatem on the left branch of the lineage tree that gives rise to cells 1 and 3, we can

show that

Probability of 1 undetectable SCE transition = br
eb
ð1 � k11Þ

�
N+1
N

�

Probability of 2 undetectable SCE transitions = b2r
eb2!

�
ð1� k11Þ

�
N+ 1
N

��2

Probability of n undetectable SCE transitions = bnr
ebn!

�
ð1� k11Þ

�
N+ 1
N

��n

Therefore, m is given by

m =
br

eb
KN +

b2r

eb2!
ðKNÞ2 + b3r

eb3!
ðKNÞ3 +.=

r

eb

�ðKNbÞ1
1!

+
ðKNbÞ2

2!
+
ðKNbÞ3

3!
+ .

�
=

r

eb

�
eKNb � 1

	
(Equation 9)

where

KN = ð1� k11Þ
�
N+ 1

N

�

.

Thus, (Equation 8) becomes

Pðk11; k22jtBÞ = PtB =

�
br

ebN

�0@ r

eb
e

�
ð1�k11ÞðN+1Þ

N

�
b

1
A
0
@ r

eb
e

�
ð1�k22ÞðN+1Þ

N

�
b

1
A (Equation 10)

Further, it is trivial to show that the probability of observing the SCE pattern given Tree B or C is equal, that is
PtB = Pðk11; k22jtBÞ = Pðk11; k22jtCÞ=PtC (Equation 11)

Therefore, the ratio of the probability of cells 1 and 2 being sisters (Tree A) versus cousins (Trees B or C) is given by

PtA

PtB

=
PtA

PtC

=
Ptsisters

Ptcousins

=
2

e
b
N

(Equation 12)
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Note that the probability ratio is a function of only the SCE rate and the number of bins, and is not dependent on the location of the

SCE event in this case.

Case II: Another common SCE pattern is the observation of two SCE transitions that are shared between two cells (Figures 2C, S1,

and S2). For the original DNA strand to be observed in only two cells, SCE transitions must occur in the same cell cycle. Thus, the

probability of observing this SCE pattern in Tree A is given by

Pðk11; k22; k13jtAÞ = PtA =
� r

eb

�� b2r

eb2!

2

N2

�
(Equation 13)

The first term is the probability that no SCE event occurs in the first cell division, and the second term is the probability of having two

SCE transitions during the second cell division.

Similarly, for Tree B

Pðk11; k22; k13jtBÞ = PtB =

�
b2r

eb2!

2

N2

�� r

eb
+ q

�0@ r

eb
e

�
ðk11 + k13ÞðN+1Þ

N

�
b

1
A (Equation 14)

where q is the probability that undetectable SCE events occur within the 5hmC-depleted genomic region between k11 and k13, whose

length is equal to k22. Note that the observed SCE pattern is possible for an even number of SCE events occurring within this region.

To estimate q, we can show that

Probability of 2 undetectable SCE transitions = b2r
eb2!

�
k22ðN+1Þ+1

N

�2

Probability of 4 undetectable SCE transitions = b4r
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Therefore, (Equation 14) becomes
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and the ratio of the probability of cells 1 and 2 being sisters (Tree A) versus cousins (Trees B or C) is given by

PtA
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In this case, the probability ratio is a function of the genomic location of the SCE events, in addition to the SCE rate and the number

of bins.

Case III: The second most common and more complicated SCE pattern occurs when an original DNA strand is shared between

three cells (Figure 2C). Intuitively, Tree B with cells 1 and 3 as sisters is the least likely configuration as it requires one additional

SCE transition compared to the other two trees. The probability of observing this SCE pattern in Trees A and C are given by

Pðk11; k22; k33jtAÞ = PtA =
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In (Equation 18), the first term accounts for one SCE event between k22 and k33. The second term includes one SCE event between

k11and k22 and undetectable SCE events within the right-most genomic region, whose length is equal to k33. The third term accounts

for no SCE event within k33 and undetectable SCE events within the left region, whose length is equal to (k11 + k22Þ. Similarly, in (Equa-

tion 19), the first term accounts for one SCE event between k11 and k22. The second term includes no SCE events within k11 and un-

detectable SCE events within the rest of the chromosome, equivalent in length to ðk22 + k33Þ. The third term includes one SCE event

between k22 and k33 and undetectable SCE events within the left-most genomic region. Note that Trees A and C are mirror images of

each other and the probability of observing this SCE pattern is equal for these two tree configurations. For Tree B,

Pðk11; k22; k33jtBÞ = PtB =

�
b2r

ebN2

�
ðsÞ

0
@ r

eb
eb

ðk11 + k33ÞðN+ 1Þ
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1
A (Equation 20)

The first term is for two SCE events in the first cell division. The second term accounts for an odd number of undetectable SCE

transitions within the genomic region between k11 and k33, such that both cells 1 and 3 contain parts of the original DNA strand.

The third term includes undetectable SCE events within both left and right genomic regions, whose combined length is

ðk11 + k33Þ. Further, s is given by
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Therefore, (Equation 20) becomes
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and the ratio of the probability of Tree A versus B is given by
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Consistent with our intuition, Tree B is less likely than the other two tree topologies, and depending on the values of N; b, and k22,

Tree B can be anywhere between 2 to 100 times less likely (Figure 2C).

The approach described above can be applied to any SCE pattern. The probability of observing different SCE patterns are esti-

mated for all chromosomes. Next, we assume that each chromosome strand is independent and compute the overall probability

of observing the SCE patterns over the whole genome (D) for each Tree i (ti). To determine the most likely tree, we compute and

compare PðtAjDÞ, PðtBjDÞ, and PðtCjDÞ using Bayes’ theorem

PðtijDÞ = PðDjtiÞ � PðtiÞ
PðDÞ (Equation 24)

wherePðtiÞ andPðDÞ are the probabilities of observing Tree i and the genome-wide SCE pattern data, respectively.PðtiÞ reflects prior
belief of the likelihood that Tree i is the correct topology. As there are 3 possible topologies for any 4-cell tree, we get

PðtAjDÞ + PðtBjDÞ+PðtCjDÞ= 1 (Equation 25)

Further, the ratio of the probability of observing Tree i versus Tree j is given by
PðtijDÞ
Pðtj



DÞ =
PðDjtiÞ � PðtiÞ
PðDjtjÞ � PðtjÞ=

PðDjtiÞ
PðDjtjÞ (Equation 26)

where Tree i or j is either Tree A, B, or C. The prior probabilities PðtiÞ are assumed to be equal to one another, a common practice in

Bayesian analysis (Huelsenbeck and Ronquist, 2001). After rearrangement, we get

PðtAjDÞ = 1

1+ PðDjtBÞ
PðDjtAÞ+

PðDjtCÞ
PðDjtAÞ

(Equation 27)
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Similarly, the probability of all tree topologies can be calculated. Finally, the probability of a particular 8-cell tree is given by the

product of the probabilities of the two corresponding 4-cell subtrees.

Simulating stand-specific 5hmC distributions
To validate the analytical expressions for the probability of observing different SCE patterns in Figures 2B and 2C, we simulated 8-cell

trees where the occurrence of SCE events were modeled as a Poisson process with b= 0:3 and chromosome strands were assumed

to segregate randomly (r = 0:5). Simulations were performed on chromosome 1 (N= 97 for 2 Mb bins). These simulations were then

used to estimate the probability of observing Tree A versus Tree B as a function of the position of the SCE event.

To test the accuracy of scPECLR in predicting lineage trees in Figures 3B and 4A, 8-, 16- or 32-cell embryos with 19 or 38 chro-

mosomes were simulated as described above. All bins in the original DNA strandswere hydroxymethylated whereas all subsequently

synthesized DNA strands contained no 5hmC, mimicking in vivo experimental observations. 5,000 and 2,000 simulated trees were

generated for each condition shown in Figures 3B and 4A, respectively. The trees were subsequently inputted into scPECLR to es-

timate the percentage of trees that are accurately predicted by the algorithm. For 16-cell trees, we also estimated the prediction ac-

curacy of 2-, 4- and 8-cell subtrees within the full tree, and for 32-cell trees, the 16-cell subtree prediction accuracy was additionally

estimated. In the 4-cell embryos in Figure 3B, asOSS accurately separates the four cells into two groups of two cells each, the lineage

reconstruction problem becomes deterministic, and thus the trees are predicted with 100% accuracy. Similarly, in Figure 3C, OSS

was assumed to successfully separate the two 8-cell subtrees from 16-cell trees. However, in 32-cell trees (Figure 4A), OSS could not

separate cells into two groups in all embryos. Such cases would not continue forward with the calculation and would be classified as

incorrect for all level of subtrees. Additionally, the prediction accuracy in 8- and 16-cell trees (Figures 3A and 3B) were bootstrapped

1000 times. The bootstrap statistics are plotted along with the prediction accuracy.

In the 32-cell tree case where half of the sister pairs are known, 8 out of the 16 sister pairs were randomly selected and became

known information about the cells in each simulation. In the 32-cell tree scH&G-seq cases, the genomic variants were also modeled

with a Poisson process to occur at a certain rate v per chromosome per cell division. The process starts with the first cell division (n =

1, from one to two cells), which has two division actions, generating cells that are the ancestor of cells 1-16 or 17-32. If within a di-

vision action, at least one variant emerges, we would assume that we know all cells derived from that particular division action are

clustered with one another. For example, if the first division action at n= 1 has a variant, wewould assume that we know cells 1-16 are

clustered together for that simulation. Next, the step proceeds to the two cells dividing at n = 2, which has four division actions. Simi-

larly, if the third division action has a variant at n = 2, cells 17-24would be assumed to cluster together. The process continues till n =

4, where there are sixteen division actions generating sister pairs. Each cell division action is treated independently. The additional

information received fromeither half the sister pairs or the genomic variants were used to helpOSS separate the cells into two groups.

If cells are separated into two groups, that simulation trial would continue to the 8-cell grouping step (see ‘‘Criteria to determine 32-

cell topologies to be evaluated’’).

Consensus tree analysis
This analysis was performed on 16-cell trees to identify parts of the lineage tree that can be predicted with high confidence. The two

8-cell subtrees obtained from OSS are treated independently. The first step is to use a desired relative threshold (RT) to identify all

trees that have predicted probabilities within a threshold level of the highest probability tree and include such trees for downstream

analysis. All included trees are subsequently weighed equally. The second step is to examine the 4-cell subtrees of each included

tree. If all trees consistently predict the same 4-cell subtree, the consensus tree includes the 4-cell subtree. This is true for most data-

sets as scPECLR largely predicts the 4-cell subtrees accurately in 16-cell trees (Figure 3C).When disagreement arises, if the percent-

age of included trees that have the same 4-cell subtree exceeds a threshold (t8), ranging from 0.55 to 1.0, the consensus tree includes

the 4-cell subtree, and tree topologies that conflict with this 4-cell subtree are excluded from further analysis. If the percentage is

below t8, the consensus tree does not include the exact 4-cell subtree but instead attempts to identify as many pairs of cells as

possible that appear in different 4-cell subtrees of all included trees, and the consensus analysis terminates. After the 4-cell subtrees

are determined, the topology predictedwithin each of these subtrees is then considered. Again, if all of the remaining trees predict the

same topology or if the percentage of remaining trees that predict a consistent topology exceeds a threshold (t4), ranging from0.55 to

1.0, the consensus tree also includes that topology. Otherwise, it does not predict a specific topology within the 4-cell subtree but

attempts to identify one cousin pair that appears in the 4-cell topology.

The consensus tree has different levels of specificity, ranging from predicting a full 16-cell tree, where the relationships between all

cells are exact, to predicting only two 8-cell subtrees. In general, each consensus tree is constrained to contain a certain number of

tree topologies, which provides information about how specific each consensus tree is. For example, in Figure 3D, the consensus tree

contains six possible topologies, as there are two topologies arising from uncertainty in the subtree containing cells 5-8 and three

topologies arising from uncertainty in the subtree containing cells 13-16. The lower the number of topologies contained within the

consensus tree, the more specific and informative it is.

There are three parameters in the consensus tree analysis: RT, t8, and t4. RT has the largest influence on the structure of the

consensus tree, while varying t8 and t4 leaves the consensus tree largely unchanged (Figures 3E, 3F, and S3) (Note: In Figure 3E,

t8 and t4 are kept constant at 0.75 and 1, respectively). When the RT increases, the consensus tree becomes more specific but suf-

fers from a higher false discovery rate (FDR). In contrast, although the effects are small, increasing t8 and t4 leads to a very modest
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decrease in the specificity of the consensus tree and reduction in FDR. Thus, using different parameter values allows us to tune the

competing goals of specificity and accuracy of the consensus tree. In fact, for a specific FDR, there is an optimal set of parameters

that gives the most specific consensus tree for a dataset. We performed a consensus tree analysis on the dataset in Figure 3B (solid

blue lines), with different combinations of RT ranging from 0.05 to 0.50, and t8 and t4 ranging from 0.55 to 1.0. Each parameter set

provides a consensus tree with a different level of specificity, measured by the median number of trees contained in the consensus

tree, and the FDR. For any level of FDR tolerated, there is at least one parameter combination that yields the lowestmedian number of

trees. For example, when b= 0:3 and the FDR is chosen to be 30%, the optimal parameter set has RT, t8, and t4 as 0.05, 0.75, and 1,

respectively, yielding themedian number of trees contained within the consensus tree to be 36. Thus, for any dataset, the rate of SCE

events can be estimated using MLE, and with a user-selected FDR, an optimal parameter set can be estimated to give the most spe-

cific consensus tree.

Consensus tree analysis improves the accuracy of lineage prediction in all scenarios. When the SCE rate is low (b = 0:1) and the

iterative prediction alone performs poorly for 16-cell trees, an error rate of greater than 99% in the iterative prediction decreases to a

FDR between 30-75%. When the iterative prediction alone performs moderately (b = 0:5), an error rate of �60% improves to a FDR

between 10-45% (Figures 3B and 3E). Lastly, when the iterative prediction alone performs well (b = 1:0), an error rate of �25% de-

creases to a FDR between 5-20% (Figures 3B and 3E). When b = 1:0, there are only 1 to 2 median topologies contained in each

consensus tree, indicating that the consensus analysis increases the accuracy of the prediction without compromising its specificity.

This result shows that scPECLR and the consensus tree analysis provides a significant amount of lineage information with reasonable

accuracy for 16-cell trees (Figures 3E and 3F).

To generate the consensus tree for the 16-cell embryo in Figure 3G, 1000 16-cell embryos were simulated with the same SCE rates

estimated from the in vivo 16-cell embryo. Next, different parameter combinations of RT, t8 and t4 were used to generate consensus

trees. The consensus trees were evaluated against the true tree to calculate FDR rate for each parameter combination. The lowest

possible FDR rate of 15%was selected. Subsequently, the parameter combination (RT = 0.05, t8 = 0.85, t4 = 0.8) that yields themost

specific consensus tree with a FDR rate under 15% was chosen for the consensus tree for the in vivo 16-cell embryo. There are 180

topologies contained within the consensus tree: 90 from the left 8-cell subtree and 2 from the right 8-cell subtree.

Criteria to determine 32-cell topologies to be evaluated
When the cells are successfully separated into two groups of 16 cells, the number of topologies to be considered reduces frommore

than 1026 to�4*1017. We then perform ‘‘8-cell grouping’’, which attempts to further split each 16-cell group into two groups of 8 cells,

reducing the number of possible topologies further to fewer than 1010. The first step of 8-cell grouping is to consider all the possible

combinations of 16 choose 8 (6435 groupings in total as cells 1-8 grouping and cells 9-16 grouping are considered one grouping). In

the case where additional information about the embryos are known, the groupings that conflict with the clonal information were dis-

carded. Next, in each grouping, the 5hmC in all cells within the two 8-cell sets were combined to generate hypothetical 5hmC data of

the two cells at the 2-cell stage for that grouping. Then, the number of SCE events present in the hypothetical two cells were calcu-

lated. Only the groupings that generate the hypothetical two cells with the fewest number of SCE events were kept. The rationale is

that cells accumulate SCE events on their original chromosome strands as they undergo cell division. Therefore, the fewer the SCE

events present at the 2-cell stage, the more likely the 8-cell grouping is correct. The left side (cells 1-16) and right side (cells 17-32)

undergo the process independently. If there are more than 30 groupings remaining in total, the process is stopped and we would

conclude that tree is incorrect for 2-, 4-, and 8-cell subtree levels. The number of remaining groupings, 30, was chosen as there would

be about 10000 topologies left after a successful 8-cell grouping. Then scPECLR is used calculate the probabilities of all possible

topologies within the four 8-cell sets independently. The topologies that conflict with known information about the embryo are

removed. Then the 8-cell sets for each grouping are combined to generate the full 32-cell tree. The grouping combination that pre-

dicts lineage of any cell more than once (i.e. one ormore cell is missing from the full tree) is discarded. The probability of the full 32-cell

tree is the product of the four probabilities from the 8-cell sets. The full 32-cell tree with the highest probability is the predicted tree.

scH&G-seq analysis pipeline
Readswere separated by their molecule type barcodes andmapped to hg19 using Burrows-Wheeler Aligner (BWA). AluI based reads

were identified as described in Rooijers et al. (2019). 5hmC based reads were identified as described in Mooijman et al. (2016), with

the following modification. A custom Perl script was written to identify if a read also contained a BseRI recognition site. If a read con-

tained recognition sites for both BseRI and AbaSI, it was discarded.

SNP calling and processing
Variant calling was done via bcftools in a custom shell script. Briefly, the sam file was sorted and only relevant chromosomes

(genomic and mitochondria chromosomes) were retained. Next, bcftools called the SNPs with default parameters. SNP calls with

quality of at least 20 were kept. A custom Perl script was then used to count the occurrences of SNPs and non-SNPs for each

cell at each SNP location in the sam file.
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CNV calling and clustering
For each library, cells with fewer than 10000 readswere filtered out. 34, 50, and 31 cells passed the cut-off in the AluI, BseRI, and dual

enzyme libraries, respectively. Data from autosomes were discretized into 5 Mb bins. Each bin was subsequently normalized by the

number of enzyme recognition sites present within that bin. The normalized raw reads were scaled such that the median of the total

data is 100. In the dual enzyme library, the normalized raw reads of AluI and BseRI were combined before scaling. The circular binary

segmentation (CBS) algorithm was used to call different read count sections in each chromosome. The read count in each bin was

then replaced by its mean value from the CBS algorithm. Copy number for each bin was determined by normalizing the mean read

count of each cell to two copies and rounding to the nearest integer. To remove outlier bins, the bins that showed more than four

copies in any cell were retroactively removed from the normalized raw read data, which was again inputted into the CBS algorithm.

The read count in each bin was once again replaced by its mean value from the CBS algorithm. The copy number of each bin in each

cell was subsequently recalculated. The steps were performed independently in each library. All steps of the CBS algorithm have a

significance level of 0.01. All cells from the three libraries were combined, with only bins that were present in all libraries retained.

The clValid package in R was used to decide between hierarchical, k-means, and pam clustering algorithms and the hierarchical

algorithm was recommended. The agglomerative coefficient was then used to determine the appropriate method to calculate dis-

tances between cells. Among the options: average, single, complete, and ward, the ward method was recommended. Subse-

quently, the NbClust package was used to determine the number of clusters based on the ward method and Euclidean distance.

Two clusters were recommended for the combined data. A dendrogram was created based on the ward method and Euclidean

distance.

scPECLR is robust to initial estimates of the SCE rate and to varying SCE rates at each cell division
We explored the robustness of scPECLR to initial estimates of the SCE rate by simulating strand-specific 5hmC data in 8-cell trees

with a constant SCE rate (b = 0:3). We then used different values of SCE rates – ranging from 0.1 to 2.0 – in scPECLR to predict the

lineage tree (instead of estimating the SCE rate from the observed SCE pattern using MLE). We found that the percentage of trees

that were accurately predicted did not change over the range of SCE rates, suggesting that scPECLR is robust to uncertainty in

SCE rate estimation and the prediction accuracy mainly depends on the SCE rates used to generate the 5hmC data (Figures S5A

and S5B).

As the 8-cell mouse embryos have varying rates of SCE events across cell divisions, we explored the robustness of

scPECLR when the rates are different for each cell division. Because prediction accuracy of scPECLR is dependent on

the rate of SCE events, in this analysis, we fixed the combined SCE rate (B) over 3 (or 4) cell divisions, but allowed indi-

vidual cell divisions to have different rates. For 8-cell trees, the model is largely robust against varying rates of SCE events

across cell divisions, with higher B and larger number of chromosomes resulting in better prediction accuracy (Figure S5C).

For example, when the SCE rates are low for the first and second cell division (b1 and b2) and high for the third cell division

(b3), similar to the experimental observation in 8-cell mouse embryos, scPECLR predicts the lineage tree with very high ac-

curacy (Figure S5C, H3). One case where the prediction accuracy drops modestly is when the SCE rates of the first and

third cell divisions (b1 and b3) are low and the SCE rate of the second cell division (b2) is high (Figure S5C, H2). In this

case, the data has a large number of SCE events that are shared between cousin cells. As the SCE rate at each cell di-

vision is assumed constant during the first iteration of scPECLR, the algorithm predicts that cells sharing more SCE events

are more likely to be sisters. This misidentification results in a large percentage of simulations not predicting the true tree

after the first iteration. However, the prediction improves significantly after a few iterations because starting from the second

iteration, the model accounts for different SCE rates at each cell division. Consequently, the varying SCE rates at each cell

division has minimal impact on the accuracy of 8-cell tree prediction.

For 16-cell trees, there are a few cases where the prediction accuracy is worse than when the rates are uniformly distributed; these

include situations where b4 is low (Figure S5D, H2, H3, H13, H23, and L4). In these cases, the prediction accuracy is lower because

scPECLR inaccurately infers a pair of cousin or second cousin cells as sister cells due to a large number of SCE events shared be-

tween such pairs. In contrast, cases with high b4 values result in better prediction accuracy because scPECLR correctly identifies

sister cell pairs (Figure S5D, H4, H14, H24, and H34). Finally, scPECLR also performs well when b2 and b3 are low as it does not

misidentify cousin or second cousin pairs as sister pairs. These results suggest that in addition to the combined SCE rate, how

the individual SCE rates are distributed over each cell division impacts the accuracy of reconstructing 16-cell trees.

Statistical test to identify non-random DNA segregation
To test the segregation pattern of DNA strands at the 4-cell stage, the 5hmC profile of 8-cell mouse embryos were combined using

the lineages predicted by scPECLR to obtain the distribution of 5hmC on the original DNA strands at the 4-cell stage, while the in vivo

experimental 4-cell mouse embryo data could be used without prior processing. If a majority of an original chromosome strand is

present in one cell at the 4-cell stage, that cell is considered to inherit the entire chromosome strand. This is to account for the limited

number of original strands that undergo a few SCE events during cell division. A binomial two-tailed test was conducted with a null

hypothesis of random segregation (p = 0.5) and an alternative hypothesis of non-random segregation (p s 0.5). Two pairs of sister

cells from 27 embryos were considered to display statistically significant non-random DNA segregation for p-values lower than 0.05,

one pair from the 4-cell embryo dataset and the other from the 8-cell embryo dataset.
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To test whether the two events of non-random segregation can be explained by chance alone, we randomly sampled 27 embryos

from a pool of 100000 simulated 4-cell randomly-segregating embryos, generated with a constant SCE rate of b = 0:3, and counted

how many events of non-random segregation with p<0:05 were found. The random sampling was conducted 10000 times. The cu-

mulative distribution of the number of non-random segregation events foundwas plotted in Figure 5D. Despite amedian of one event,

we failed to reject the null hypothesis that two events of non-random segregation could be explained by chance alone.

scPECLR implementation in MATLAB
scPECLRwas implemented inMATLAB to perform iterative probabilistic reconstruction of 8- and 16-cell lineage trees. The script first

uses single-cell strand-specific 5hmC data to perform OSS analysis to eliminate a majority of tree topologies. Next, it calculates the

SCE rate and estimates the probabilities of all tree topologies given the genome-wide SCE pattern to predict the tree with the highest

probability. Using this predicted tree, the program estimates the SCE rate for each cell division and re-calculates the probabilities of

all tree topologies. The program performs iterations until the predicted tree does not change or until 10 iterations are reached. The

scripts implementing scPECLR in MATLAB, along with test files, are provided as Methods S1.
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