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Fresnel diffractograms from pure-
phase wave fields under perfect 
spatio-temporal coherence: Non-
linear/non-local aspects and far-
field behavior
F. Trost1, S. Hahn1, Y. Müller1, S. Gasilov2, R. Hofmann2 & T. Baumbach1,2

Recently, the diffractogram, that is, the Fourier transform of the intensity contrast induced by Fresnel 
free-space propagation of a given (exit) wave field, was investigated non-perturbatively in the phase-
scaling factor S (controlling the strength of phase variation) for the special case of a Gaussian phase of 
width w . Surprisingly, an additional low-frequency zero σ* = σ*(S, F) >0 emerges critically at small 
Fresnel number F (σ proportional to square of 2D spatial frequency). Here, we study the S-scaling 
behavior of the entire diffractogram. We identify a valley of maximum S-scaling linearity in the F − σ 
plane corresponding to a nearly universal physical frequency ξml = (0:143 ± 0.001)w−1/2. Large values of 
F (near field) are shown to imply S-scaling linearity for low σ but nowhere else (overdamped non-
oscillatory). In contrast, small F values (far field) entail distinct, sizable s-bands of good S-scaling 
linearity (damped oscillatory). These bands also occur in simulated diffractograms induced by a complex 
phase map (Lena). The transition from damped oscillatory to overdamped non-oscillatory 
diffractograms is shown to be a critical phenomenon for the Gaussian case. We also give evidence for the 
occurrence of this transition in an X-ray imaging experiment. Finally, we show that the extreme far-field 
limit generates a σ-universal diffractogram under certain requirements on the phase map: information 
on phase shape then is solely encoded in S-scaling behavior.

The emergence of intensity contrast through free-space propagation of a phase modulated paraxial wave field1,2 
is exploited in many imaging modalities including neutron scattering, transmission electron microscopy, and 
X-ray phase-contrast imaging. When the exit wave field is dominated by phase modulations, e.g. for hard X-rays 
and samples composed of low-Z elements3–9, propagation based phase contrast (PBPC) essentially is nearly pure 
(very little absorption of the impinging beam by the sample) and therefore dose efficient. In the context of X-ray 
PBPC, this implies that e.g. 4D in vivo imaging of early-stage vertebrate-model embryos can be performed over 
several hours at time lapses of about ten minutes10. In11–13 quasi-particle (QP) phase retrieval from single-distance 
intensity contrast was proposed for projected multi-scale objects of a broad spectrum (MOBS). This method 
appeals to an overall linear S-scaling of the intensity contrast gz ≡ (Iz−I0)/I0 where I0, Iz denote the intensities at 
object exit and at a downstream-propagation distance z. For 0 ≤ S ≤ Sc exceptional thin spectral regions in the 
diffractogram, which violate this linear behavior, can justifiably be neglected. Here Sc denotes a critical value of 
S where non-linear S-scaling starts to become a global spectral feature. In practice Sc rarely is reached. The term 
S-scaling refers to the response of the diffractogram under a scaling of the phase map, φ → Sφ (S > 0), and the 
virtue of diffractograms is that they allow for simple phase retrieval in models with linearized phase-to-intensity 
contrast transfer due to certain linear differential position-space operators acting purely algebraically.
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It was shown in13 that quasi-particle phase retrieval, which still is algebraic, boosts spatial resolution and dose 
efficiency if employed at large propagation distances z. The latter are feasible experimentally with, e.g., highly 
coherent hard X-rays produced by 3rd-generation synchrotron sources and free-electron lasers14.

The present work continues to pursue an investigation initiated in15. There, the diffractograms, induced 
by phase maps representing projected single-scale objects of a broad spectrum (SOBS), were analysed by 
semi-analytical continuum methods (no appeal to a pixelization). Even though these phase maps may seem to 
be an over-simplification of realistic object projections their investigation allows for certain fundamental and 
generic insights into non-linear effects in Fresnel theory. Concerning direct applications, the far-field diffracto-
grams induced by SOBS phase maps could be of interest to self-interferometrically infer the sizes of astronomical 
objects. In15 the low-frequency regime in such diffractograms was investigated for a perfectly spatio-temporally 
coherent beam of wavelength λ. Based on the well-controlled non-locality expansion15 an unexpected occurrence 
of a zero σ* in addition to the zeros predicted by the linear order in S was found. Here

σ πλ ξ≡ z , (1)2

and ξ denotes the vector of 2D of spatial frequency. This non-linearly generated zero σ* rises critically from 0 to 
finite values with increasing S or decreasing F ≡ w/(λz). Here, w  denotes the width of the Gaussian exit phase 
map
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where x ≡ (x, y)T indicates the 2D position-space vector in the plane perpendicular to the optical axis. One goal 
of the present work is to identify the spectral location of maximal S-scaling linearity throughout the entire spec-
trum. Moreover, we address, in dependence of F, a critical phenomenon describing a sharp transition between 
two alternative “states” of the diffractogram: damped oscillatory vs. overdamped non-oscillatory. In addition, 
we investigate σ-universal behavior of diffractograms in the extreme far-field limit in the sense that phase-shape 
information transmutes into S-scaling behavior. We mainly base this analysis on the Gaussian phase map (2) since 
it grants a semi-analytic, continuum treatment. However, certain spectral features turn out to be generalizable 
to the case of more complex phase maps. Exemplarily, we demonstrate this by also analysing pixelated simulated 
and experimental data.

This paper is organized as follows. Sec. 1 reviews the low-σ results on Gaussian-SOBS induced diffractograms 
obtained in15 to lay the basis for the present work and to provide useful benchmarks. For the phase map of Eq. (2)  
and at a given value of σ we determine in Sec. 2 the value of F such that the diffractogram exhibits maximal 
S-scaling linearity (ml) within a prescribed scaling window 0 ≤ S ≤ Su. It turns out that the associated frequency 
modulus |ξ|ml is nearly independent of F: It only depends on w. In Sec. 2.2 we also analyse σ-bands of approx-
imately linear S-scaling and notice that their widths depend on F: In the near field (large F) only a single such 
band, including σ = 0, exists whereas the far-field situation (small F) exhibits several bands, excluding the point 
σ = 0. This motivated the characterization of a global spectral and critical transition from a damped oscillatory to 
an overdamped non-oscillatory diffractogram under an increase of F. In Sec. 2.4 we investigate bands of S-scaling 
linearity in simulated (pixelated) diffractograms, induced by a more complex phase map. Also, we demonstrate 
the transition from a damped oscillatory to an overdamped non-oscillatory diffractogram in experimentally 
generated diffractograms. Sec. 3 addresses the extreme far-field limit. First, we investigate the diffractograms 
induced by three different SOBS phase maps which become re-scaled Dirac delta functions for w → 0. While the 
σ dependence of these diffractograms universally resides in cosine and sine functions, phase-shape specific infor-
mation exclusively is encoded in their S-scaling behavior, see Sec. 3.1. These results have motivated an according 
investigation of all those MOBS phase maps which become re-scaled delta functions in the limit where their spa-
tial scales {wi} homogeneously approach zero. Again, phase maps in this class induce σ-universal diffractograms. 
Sec. 3.2 presents a brief summary of our results.

State of the art: SOBS diffractograms at low frequencies
In15 the non-locality expansion of the diffractogram as a useful approximation scheme for localized phase maps 
was developed. Namely, it considers the phase-overlap product

φ φ φ φ≡+ − ⊥ + ⊥ −x x( ) ( ), (3), ,

where x± ≡ x ± λzξ/2, to be considerably smaller than S2. This suggests the expansion of the mutual intensity in 
the exit plane into powers (φ+φ−)l (l = 0, 1, 2, …), see right-hand side of Eq. (4). Notice that no assumption on the 
smallness of S is being made. Truncating this expansion at higher and higher values of l allows for improved con-
trol of lower and lower σ-values in the diffractogram which then increasingly represent non-local effects. That is, 
the zeroth order in this expansion (zeroth “onion shell”) is purely local and dominates the far-field diffractogram 
for all σ > 0. Technically, the non-locality expansion is based on Guigay’s important representation of the induced 
intensity’s Fourier transform ( ) in terms of the “Fourier transform” of the exit wave field’s mutual intensity16:

 ∫ ψ ψ π ξ= − ⋅− +
⁎I x x x xd ( ) ( )exp( 2 i ), (4)z

2
0 0

where ψ φ= Ix x( ) exp[i ( )]0 0  denotes the (pure-phase) exit wave field, and perfect spatio-temporal coherence is 
assumed. For the Gaussian phase of Eq. (2) the normalized diffractogram reads



www.nature.com/scientificreports/

3ScIentIfIc RepoRTS |  (2017) 7:17706  | DOI:10.1038/s41598-017-17493-w

∑ ∑∑π
σ σ σ≡ ≡ =

−
−=

∞

=

∞

=

ˆ ˆ
g
w

g F S g F S S
n l n l

D F
4

( , , ) ( , , ) 1
2

(i ) ( 1)
!( )!

exp[ ( , )],
(5)

z

l
l

n l

n n l

n l
0 1 0

,


where

π
π

σ σ≡ −





+




 −












−
−

.D F
n

n
F

l
n

l
n

n l
n

2
2

i 2

(6)
n l,

2

2

For F → 0 the sum over l in Eq. (5) reduces to the contribution of l = 0 and l = n, σ=ĝ F S( , , )l 0  (zeroth onion 
shell), if σ > 0. Then one has15
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It is clear that with increasing σ the approximation σ σ∼ˆ ˆg F S g F S( , , ) ( , , )0  is increasingly accurate at finite F, 
compare with Eq. (5).

Flux conservation as implied by free-space propagation demands that σ = =ĝ F S( 0, , ) 0 for any value of F 
and S. Compared to the contrast-transfer-function (CTF) model, obtained by linearization of gz  w.r.t. S9, an 
additional zero σ*(S) = σs(S) exists for F → 0 which is located in between σ = 0 and σ = π. At finite F the addi-
tional zero σ*(S) may or may not be vanishing, depending on whether the point (S, F) is to the left (subcritical) or 
right (overcritical) of the line

π
=F S

16 (10)

in the S-F plane15, see Fig. 1a,b: traversing the line of Eq. (10) from left to right (S-transition) or top to bottom 
(F-transition), σ* opens up critically like an order parameter in a second-order phase transition. The respective 
critical exponents neither depend on F nor S15. We have noted that in Appendix D of15 four typos have occurred. 
One should replace in → (−i)n in Eq. (D2), − → −( 1) ( 1)n l in Eq. (D3) and − → −+ + +( 1) ( 1)k l k l 1 in Eq. (D8).

SOBS: S-scaling linearity and global spectral transition
In this section we investigate additional spectral aspects of S-scaling within Gaussian SOBS diffractograms. 
Namely, in Sec. 2.1 we design a quantity D(σ, F) to measure deviations from linear S-scaling at prescribed values 
of σ and F within a window ≤ ≤ =S S0 (1)max  . It turns out that D(σ, F) possesses a line of almost degenerate 
minima (floor of a valley) in the σ-F plane. This function can be inverted and fits well to a power-law model 

Figure 1. Low-frequency region of normalized diffractogram σĝ F S( , , ) as induced by the Gaussian phase of 
Eq. (2). (a) σĝ F S( , , ) for F = 0.001 (solid, overcritical) and F = 0.03 (dashed, subcritical) at S = 1. Note the 
additional low-frequency zero σ* in the overcritical case. (b) S-dependence of σ*(S, F = 0) = σs(S) (solid) and 
σ*(S, F = 0.02) (dashed). Note the non-differentiability of the latter curve at π= ∼ .S F16 1 0.
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σ(F) = AFB. Since B ≈ −1 we infer from the definition σ ≡ πwξ2F−1, compare with Eq. (1), that the physical fre-
quency modulus, ξml, where maximal S-scaling linearity occurs, is independent of F. This result could be of rele-
vance in applications because it allows to extract the width w  by identifying one and the same point ξml in 
non-locally dominated diffractograms corresponding to a range of propagation distances. In Sec. 2.2 the concept 
of spectral bands of approximate S-scaling linearity is introduced and applied to diffractograms in dependence on 
F. Again, an emergent linearity at low frequencies and large F can be pinned down which arises due to non-local 
effects. Moreover, in Sec. 2.3 we investigate a global and sharp spectral transition in the diffractogram from 
damped oscillatory to overdamped non-oscillatory. The order parameter kmax for this transition–the (pseudo) 
frequency of oscillation–drops critically at the value F(S) like the one in a second-order phase transition. Finally, 
in Sec. 2.4 we verify the usefulness of spectral bands of approximate S-scaling linearity in analysing simulated 
diffractograms as induced by more complex phase maps. Also, we provide experimental evidence for the transi-
tion from damped oscillatory to overdamped non-oscillatory as identified in Sec. 2.3 for the case of Gaussian 
SOBS diffractograms.

Scaling properties of low-frequency diffractogram in dependence of F. To design a measure for 
the linearity in S-scaling of σĝ F S( , , ) at given values of σ and F (Gaussian phase map of Eq. (2)), we define the 
function D(Su, σ, F) as

∫
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Function D(Su, σ, F) can be interpreted as the weighted “standard deviation” of the S-derivative of the diffrac-
togram at given values of σ and F. Therefore, decreasing values of function D(Su, σ, F) in dependence of σ and F 
signal increasing S-scaling linearity of σĝ F S( , , ) for 0 ≤ S ≤ Su.

The relative error of D(Su, σ, F) in Fig. 2b never exceeds 10−6. Figure 2a shows a variety of S-scaling curves, 
σĝ F S( , , ), for F = 0.1, 0.2, 0.3, 0.7 and at σ/π = 0.255. Note the transition from convex to concave S-scaling at 

F = 0.3 where linearity in S persists longest. In Fig. 2b function D(Su, σ, F) is depicted in dependence of σ and F. 
Note the occurrence of a valley of S-scaling linearity in F and σ. The floor of this valley defines a function σ(F−1) 
which is shown in Fig. 3a together with the best-fit to the following power-law (PL) model

= .− −F A B A FPL( , , ) ( ) (12)B1 1

Interestingly, parameter B shows little deviation from unity for a rather large range of Su values, see Table 1. 
Exploiting that σ π ξ= −w F2 1 and setting B = 1, we infer that the physical frequency modulus

ξ ξ≡ | | , (13)ml ml

where maximal S-scaling linearity occurs, is nearly independent of F. Note that, due to isotropy, φ(x) = φ(r), only 
the modulus of ξ is relevant when searching the region of maximal S-scaling linearity. This is expressed by Eq. (13).  
For example, the value A = (6.44 ± 0.07)·10−2 at Su = 1.4 implies

ξ
π

= ∼ . ± . .−A
w

w(0 143 0 001)
(14)ml

1/2

Figure 2. S-scaling and valley of linearity. (a) Variety of S-scaling curves at σ/π = 0.255 and for F = 0.1,0.2,0.3,0.7. 
Note the transition between convex and concave S-scaling at ∼ .F 0 3. (b) D(Su, σ, F) of Eq. (11) as a function of F 
and σ/π at Su = 1.5. Note the uniqueness of the “floor of the valley” for σ/π ≤ 0.5.
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Eq. (14) states that, independently of propagation “distance” λz, there exists a single physical frequency mod-
ulus ξml at which the diffractogram S-scales in a maximally linear way. The quantitiy ξml exhibits both the SOBS 
scale w as well as a (presumably shape specific) prefactor. For phase maps controlled by the scaling variable S this 
can be exploited to characterize the according SOBS without the need for phase retrieval: in analogy to the case of 
Riemannian manifolds of positive sectional curvature the diffractogram possesses a “soul” at ξml

17.
Figure 3b shows, for various values of F, that the spectral locations σ(F, Smax = 1.5) in σ =ĝ F S( , , 1) do not 

appear to be particularily singled out in the diffractogram. One notes, however, that the oscillatory behavior, 
encountered in Fig. 1a or Fig. 4a for small values of F, no longer is realized in Fig. 3b which is based on compara-
bly large values of F. Is the transition from the former to the latter situation a critical phenomenon? This question 
is addressed in Sec. 2.3.

Scaling properties of entire diffractogram in dependence of F. After having identified an isolated 
point of maximum S-scaling linearity at low frequencies in Sec. (2.1) we now turn to an investigation of the entire 
spectrum. In anticipating diffractograms induced by more complex phase maps, see Sec. (2.4), we now under-
stand S-scaling linearity collectively in terms of σ-bands Bn (n = 1, 2, 3, …). These bands are defined as

σ σ≡ −B F S( , ) [ , ] (15)n u n n1

such that

σ σ σ σ≤ ≤ ≤−D S F K( , , ) , ( ), (16)u n n1

were K > 0. For our subsequent analysis we set K = 0.25 and Su = 1.5. In Fig. 4a a damped oscillatory diffracto-
gram (F = 0.01) with S = 1 together with the function D(Su = 1.5, σ, F = 0.01) are shown for 0 ≤ σ ≤ 4. Also, we 
depict the line K = 0.25. In this situation, we can identify four bands where D(Su = 1.5, σ, F = 0.01) ≤ K, B1, …, 
B4. Notice the absence of approximate S-scaling linearity near σ = 0 due to the existence of the additional zero 
σ*, discussed in Sec. 1. Figure 4b shows the well-damped case at F = 0.1. Notice that only the band B1 survives 
under the change F = 0.01 to F = 0.1 and now includes σ = 0. This process is characterized by Fig. 4c where the 
bandwidth DB,n, defined as

Figure 3. Function σ(F−1) associated with the floor of the valley in Fig. 2b) and location of σ(F−1) in the 
normalized diffractogram ĝ . (a) Plots of σ(F−1) (dots) and the best-fit to the model (12) (solid line) for Su = 1.4, 
compare with Table 1. (b) Location of the points σ(F) in their respective normalized diffractograms 

σ =ĝ F S( , , 1). Note that, in contrast to the normalized diffractograms in Fig. 1a, non-oscillatory behavior 
occurs for these comparably large values of F.

Su A B

1.7 (6.20 ± 0.06) ⋅ 10−2 1.091 ± 0.006

1.6 (6.30 ± 0.07) ⋅ 10−2 1.064 ± 0.007

1.5 (6.37 ± 0.07) ⋅ 10−2 1.037 ± 0.008

1.4 (6.44 ± 0.08) ⋅ 10−2 1.011 ± 0.007

1.35 (6.48 ± 0.08) ⋅ 10−2 0.997 ± 0.007

1.3 (6.53 ± 0.08) ⋅ 10−2 0.983 ± 0.007

1.25 (6.55 ± 0.09) ⋅ 10−2 0.970 ± 0.008

1 (6.81 ± 0.10) ⋅ 10−2 0.900 ± 0.008

Table 1. Best-fit parameters A and B for model (12) representing σ(F−1) in dependence of 1 ≤ Su ≤ 1.7 and for 
0.1 ≤ F ≤ 1.5.
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σ σ≡ − −D , (17)B n n n, 1

is depicted as a function of F. For F → 0 the DB,n are universal, DB,n ≡ DB. On the other hand, monotonic shrinkage 
and eventual disappearance of B2, B3, … as well as the non-monotonic behavior of DB,1 occur for increasing F. 
Indeed, DB,1 increases for F > 0.025 which implies that the diffractogram S-scales most linearly at low frequencies. 
This linearity, however, is not to be confused with CTF-like linear phase-to-intensity contrast transfer: it emerges 
due to strong non-local contributions in the onion-shell expansion, see Sec. 3.1.

Transition from damped oscillatory to non-oscillatory diffractogram. We would now like to dis-
cuss an F-dependent transition affecting the entire diffractogram. Figure 5a indicates the nature of this transition: 
a damped oscillatory diffractogram converts into an overdamped non-oscillatory one under an increase of F at 
S = 1. Notice that the (pseudo) frequency k or the period of the damped oscillation (inverse of twice the distance 
between adjacent zero crossings in σĝ F S( , , )) is constant throughout the entire diffractogram. To judge whether 
this transition is a critical phenomenon, we define kmax(F, S) to be the peak position in the positive-k branch of the 
1D Fourier transform g k F S( , , ) of σĝ F S( , , ) w.r.t. σ:

∫ σ π σ σ≡
−∞

∞


ˆg k F S k g F S( , , ) d exp(2 i ) ( , , ), (18)

see Fig. 5b. Figure 5c indicates that kmax(F, S = 1) behaves like an order parameter of a second-order phase tran-
sition with the critical drop at F (S = 1) = 0.12, exhibiting an exponent of v (S = 1) = 0.37. We mention in passing 
that F (S = 0.5) = 0.13, v (S = 0.5) = 0.51 and F (S = 1.5) = 0.11, v (S = 1.5) = 0.27. Therefore, the transition occurs 
at decreasing F for increasing S, and an according critical phenomenon occurs at fixed F in dependence on S, for 
more details see18.

Outlook on selected multi-scale objects of a broad spectrum (MOBS). The case of a Gaussian 
SOBS phase map obviously is a strong simplification, and the question naturally arises whether certain aspects 
of the observations made in Secs. 2.2 and 2.3 are generic. Here, we perform an analysis of the scaling behav-
ior of a simulated diffractogram, based on the Lena phase map, where bands of approximate S-scaling linear-
ity are observed whose width evolution does not behave in the same ordered way seen in Fig. 4c. Moreover, 
the non-linearity at small σ and small F in the case of the Gaussian SOBS phase map no longer occurs in the 

Figure 4. F dependence of approximate S-scaling linearity (D ≤ K). (a) Damped oscillatory diffractogram 
(F = 0.01, arbitrary units) together with function D(Su = 1.5, σ, F = 0.01) and K = 0.25. Notice the σ-bands 
B1, …, B4 where D ≤ K and the non-linear behavior near σ = 0 due to the existence of σ*. (b) Well-damped 
diffractogram (F = 0.1, arbitrary units) together with function D(Su = 1.5, σ, F = 0.1) and K = 0.25. Notice that 
only band B1 exists and now includes σ = 0. (c) band widths DB,n (n = 1, …, 4), see Eq. (17). In contradistinction 
to DB,2, …, DB,4 notice the increase of DB,1 near F = 0.1.
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simulated diffractograms at large z. This is expressed by a considerably larger band width DB,1 compared to DB,n>1 
for all z. Moreover, we give experimental evidence for the transition seen in Sec. 2.3 from a damped oscillatory to 
an overdamped non-oscillatory diffractogram, as induced by a test sample, depending on propagation distance z.

Figure 6a depicts the 2D diffractogram as induced by the (positive definite) Lena phase map, normalized to a 
maximum of unity, Fig. 6b shows the angular average of the diffractogramm together with a discretized version 
of function D (see Eq. (11)), measuring σ dependent S-scaling linearity, and Fig. 6c indicates an approximate z 
independence of the widths of linearity bands in contrast to the behavior shown in Fig. 4c.

Figure 7a is a photograph of the (nearly) pure-phase sample: a 3D printed rectangular solid with a scratched 
surface (region 1). In Fig. 7b diffractograms induced by the X-ray projection of this sample and subsequent 
parallel-beam free-space propagation are depicted for two propagation distances. Both the maximum phase shift 
and the Fresnel number associated with the resolution limit are comparable to the values used in Fig. 5 for the 
Gaussian SOBS case. Notice a qualitative structural difference between the two diffractograms. Figure 7c shows a 
family of normalized, angular-averaged diffractograms. Here, the transition from damped oscillatory diffracto-
grams ( ≥ .z 0 550  m) and to the overdamped non-oscillatory diffractogram at z = 0.525 m is clearly seen. This 
sharp transition is excluded to be due to imperfect temporal coherence15 and thus resembles the transition seen 
in Fig. 5 for the Gaussian SOBS case.

The extreme far-field
SOBS: Examples for σ–universality of diffractograms. Here, we isolate universal aspects of the 
extreme far-field behavior within SOBS induced diffractograms. Recall, that in this regime the diffractogram is 
well-dominated by the zeroth onion-shell contribution (l = 0). To make the point exemplarily, let us consider 
normalized diffractograms as induced by three different SOBS phase maps: (i) circular-disk, (ii) exponential, and 
(iii) Gaussian phase. For a given phase map φ the zeroth onion-shell contribution gz ,0 reads15

∑ ∑σ φ σ φ
=

−
+

+
−

.
=

∞ +

=

∞
g

k k
2 sin( ) ( 1)

(2 1)!
2 cos( ) ( 1)

(2 )! (19)z
k

k k

k

k k

,0
0

2 1

1

2
  

Concerning case (i), the phase map φ is defined as

φ θ= −r S w r( ) ( ), (20)

where θ(x) denotes the Heaviside step function and r ≡ |x⊥|. In the limit F ≡ w/(λz) → 0 and for σ > 0 Eq. (19) 
represents the diffractogram is exactly. In substituting Eq. (20) into Eq. (19), one arrives at

Figure 5. Global transition in normalized diffractogram as a function of F at S = 1. (a) Damped oscillatory 
(F = 0.01) and overdamped non-oscillatory (F = 0.25) behavior. (b) Positive-k branch of g , for definition see Eq. 
(18). (c) Normalized kmax(F, S = 1), for definition see text. Note the critical drop at F (S = 1) = 0.12 (associated 
with a critical exponent ν(S = 1) = 0.37).
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In deriving Eqs (21) and (22) we have used that θn(x) = θ(x) (n = 1, 2, …) with the exception of point x = 0 
which has measure zero in the Fourier-transform integral. In Eqs (21) and (22) the Bessel function J1 of the first 
kind occurs. It is defined via the power series

∑≡
−

Γ +








=

∞ +

J x
m m

x( ) ( 1)
! ( 2) 2

,
(23)m

m m

1
0

2 1

where Γ denotes the gamma function. Therefore, we have

Figure 6. Simulated diffractogram as induced by Lena phase map for E = 1 keV and a pixel size Δx = 1.6μm 
(1024 × 1024 pixel). (a) Lena phase-map and 2D “diffractogram” ln(1 + |Fgz|) at z = 1 m. The first minima is at 
|ξ| = ξ1. (b) Angular-averaged diffractogram (arbitrary units) at z = 0.2 m and (discretized version of) function 
D in Eq. (11). (c) Widths of linearity bands, DB,n (n = 1, …, 4), for definition see Eq. (17, in dependence of z. 
Shaded error bands indicate uncertainties due to discretization, see18.
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Case (ii) is based on the following phase map

φ =



−



.r S r

w
( ) exp

(25)

According to Eq. (19) the contributions to the zeroth onion shell read

Figure 7. ESRF experiment at beamline ID1915 with E = 19.4 keV, ΔE/E = 0.03, and effective pixel size 
Δx = 1.6μ m. The physical pixel size was 6.4 μ m, necessitating a 4x magnifying lense system for visible light. 
Assuming a maximum structure thickness of Δz = 0.02 mm of the scratched region 1, see (a) below, and a real 
decrement δ = 5.66 × 10−7 (refractive index of propylene at E = 19.4 keV), we estimate the maximal phase shifts 

Δπδ
λ

z2  to be of order unity as in Fig. 5. On the other hand, assuming the smallest spatial scale in region 1 to be 
given by the resolution limit 2Δx, the associated Fresnel number is 0.27 which is comparable to the transition 
value of F in Fig. 5. The camera employed was a pco.edge behind a 10 μ m thick GGG:Eu scintillator. The 
exposure time of τ = 50 ms corresponded to a mean count number of ∼9500. (a) 3D printed pure-phase sample. 
Only data associated with region 1 is analyzed here, for details see15. (b) Diffractograms at z = 0.525 m (upper) 
and z = 0.825 m (lower), (c) Normalized, angular-averaged diffractogram as induced by region 1 for various 
values of z.
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Adding Eqs (26) and (27), one obtains
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Finally, case (iii) can be inferred from Eq. (D12) in15. One obtains
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Let us now introduce the normalization Nw such that
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→
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where δ(2)(x) denotes the 2D Dirac delta function. For (i), (ii), and (iii) one obtains Nw = πw, Nw = 2πw, and 
Nw = 2πw, respectively. Defining the general, normalized SOBS-diffractogram in the extreme far-field limit as
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we read off from the last lines in Eqs (24), (28), and (29) that

π
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C j j
j
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2 circular disk, case (i),

exponential, case (ii) ,
Gaussian, case (iii) (32)

2

1

According to Eq. (32), we may state that the phase-shape information, which is different for cases (i), (ii), and 
(iii), transmutes into information residing in the scaling functions S( )c ,  S( )s  of Eq. (31): Their coefficients C(j) 
in Eq. (32) are specific for each of the three cases. Except for this specifity in S-scaling the diffractogram is 
σ-universal in the extreme far-field: its σ dependence is represented by sine and cosine functions. This 
σ-universality was noticed already in16.

MOBS: Transmutation of phase-shape to S–scaling information. The observation made in the last 
section that SOBS-phase shape information transmutes into S-scaling information in the extreme far-field limit 
can be generalized to those MOBS phase maps φ w{ }i

, carrying spatial scales {wi}, for which the following condition 
holds: There exists a normalization N w{ }i

 such that
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Obviously, (33) generalizes (30). To show far-field σ-universality under condition (33), we write
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Eq. (19) demands the evaluation of φ κw
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  for j = 1, 2, …. Recall that, except for σ = 0, the zeroth onion-shell 

approximation  ∼g gz z ,0 is exact for κ → 0. Appealing to the Fourier convolution theorem, we have
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Let us define the dimensionless quantity κ−W j w( 1, { })i  as
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By comparison with the analogue of Eq. (31) we identify

κ= − .
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0

In Eq. (38) the dependence of C(j) on the dimensionless ratios > ′′w w i i/ ( )i i  is notationally suppressed. Thus, 
the extreme far-field limit of the normalized diffractogram reads
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In the extreme far-field limit Eq. (39) represents the generalization of certain SOBS-phase induced diffracto-
grams to certain MOBS-phase induced diffractograms. Again, the limit →κF 0wi

 transmutes phase-shape infor-
mation into scaling information captured by functions S S( ), ( )c s  . That this transmutation is not injective is 
demonstrated by two example diffractograms induced by

φ

φ

=




−

+ Ω 




=












−






+




−

Ω 











.

S x y
w

S
w w

x x

(i): exp
2

,

(ii):
2

exp
2

exp
2 (40)

2 2

2 2

Accordingly, we derive from Eqs. (37) and (38):
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Note that in Eq. (41) the case (i) yields the same coefficient C(j) = j−1 as in case (iii) of Eq. (32). It is conceivable 
that Eq. (39) has practical implications if phase maps can be scaled physically, e.g. by increase of the refractive 
index along the direction of projection through a phase sample by virtue of external electromagnetic fields.

Discussion
In this work we have investigated the S-scaling properties of diffractograms induced by free-space propagation of 
wave fields subject to a Gaussian phase map of width w . In particular, a value of the (dimensionful) frequency 
modulus, ξml = (0.143 ± 0.001)w−1/2, was found to exist where S-scaling is maximally linear. Moreover, for small 
values of F (far-field situation) we have observed the occurrence of several σ-bands of approximate S-scaling 
linearity, none of which includes the point σ = 0. On the contrary, the near-field case (large values of F) exhibits a 
single σ-band only which now contains the point σ = 0. We also have analyzed a simulated diffractogram, based 
on a Lena phase map, to compare results on S-scaling linearity. The Gaussian-phase diffractogram was also shown 
to critically undergo a change of its behavior in dependence of Fresnel number F. Namely, a sharp transition from 
damped oscillatory to overdamped non-oscillatory was identified for increasing F. As a function of propagation 
distance z such a transition is also observed in experimental diffractograms induced by a more complex test sam-
ple. Finally, we have noticed a transmutation of phase-shape to S-scaling information in the extreme far-field 
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situation for diffractograms induced by three different SOBS phase maps. This result is generalizable to extreme 
far-field diffractograms as induced by certain multi-scale phase maps.

Practical exploitations of our far-field results for SOBS phases would determine the shape and the scale w  of the 
SOBS by directly fitting the coefficients C(j) and w to the far-field expression of Eq. (31) at convenient values of σ. 
This presumes the S-scalability of the pure phase object, e.g. in terms of a homogeneous electric field19 or an astro-
physically induced scaling of the object to be analyzed (e.g. time-dependent gravitational lensing, pulsating sources).

The physics implications of our present work are two-fold. First, for the single-scale case we characterize 
diffractograms in dependence of S and F towards the identification of linear regions (points) such that the induc-
ing phase is already revealed in the diffractogram. Second, there should be interesting (critical) diffractive phe-
nomena in dependence of the phase maps’s complexity. For few-scale objects the definition of complexity is 
straight-forward: a counting of and a classification of the hierarchy of the spatial scales involved. For many-scale 
objects the notion of an entropy of the phase map is in order. Based on our present results, our expectation is that 
with increased complexity there are critical transitions such that diffractograms are more and more dominated 
by linear bands (emergent linearity). The constancy of the band widths suggest a physical regularization of CTF 
based phase retrieval, so-called QP phase retrieval13. To investigate this in detail is important to identify the limits 
of linear approximations as phase-map complexity decreases, thereby allowing experimental or observational 
conditions to be tuned towards genuinely quantitative phase retrieval.

References
 1. Born, M. & Wolf, E. Principles of Optics (Cambridge University Press, 1999).
 2. Paganin, D. M. Coherent X-Ray Optics (Oxford University, 2006).
 3. Snigirev, A., Snigireva, I., Kohn, V., Kuznetsov, S. & Schelokov, I. On the possibilities of ray phase contrast microimaging by coherent 

highenergy synchrotron radiation. Review of Scientific Instruments 66, 5486–5492 (1995).
 4. Wilkins, S. W., Gureyev, T. E., Gao, D., Pogany, A. & Stevenson, A. W. Phase-contrast imaging using polychromatic hard x-rays. 

Nature 384, 335–338 (1996).
 5. Cloetens, P., Barrett, R., Baruchel, J., Guigay, J.-P. & Schlenker, M. Phase objects in synchrotron radiation hard x-ray imaging. Journal 

of Physics D: Applied Physics 29, 133 (1996).
 6. Nugent, K. A., Gureyev, T. E., Cookson, D. F., Paganin, D. & Barnea, Z. Quantitative phase imaging using hard x rays. Phys. Rev. Lett. 

77, 2961–2964 (1996).
 7. Gureyev, T. E., Pogany, A., Paganin, D. & Wilkins, S. W. Linear algorithms for phase retrieval in the fresnel region. Optics 

Communications 231, 53–70 (2004).
 8. Gureyev, T. E., Nesterets, Y. I., Paganin, D., Pogany, A. & Wilkins, S. W. Linear algorithms for phase retrieval in the fresnel region. 2. 

partially coherent illumination. Optics Communications 259, 569–580 (2006).
 9. Cloetens, P. Contribution to phase contrast imaging, reconstruction and tomography with hard synchrotron radiation: Principles, 

Implementation and Applications. Ph.D. thesis, Vrije Universiteit Brussel (1999).
 10. Moosmann, J. et al. X-ray phase-contrast in vivo microtomography probes new aspects of xenopus gastrulation. Nature 497, 

374–377 (2013).
 11. Moosmann, J., Hofmann, R. & Baumbach, T. Single-distance phase retrieval at large phase shifts. Opt. Express 19, 12066–12073 

(2011).
 12. Hofmann, R., Moosmann, J. & Baumbach, T. Criticality in single-distance phase retrieval. Opt. Express 19, 25881–25890 (2011).
 13. Hofmann, R. et al. Gauging low-dose x-ray phase-contrast imaging at a single and large propagationdistance. Opt. Express 24, 

4331–4348 (2016).
 14. Singer, A. et al. Hanbury brown-twiss interferometry at a free-electron laser. Phys. Rev. Lett. 111, 034802 (2013).
 15. Hahn, S. et al. Spectral transfer from phase to intensity in fresnel diffraction. Phys. Rev. A 93, 053834 (2016).
 16. Guigay, J.-P. Fourier-transform analysis of fresnel diffraction patterns and in-line holograms (1977).
 17. Perelman, G. et al. Proof of the soul conjecture of cheeger and gromoll. J. Differential Geom 40, 209–212 (1994).
 18. Trost, F. Non-local and non-linear aspects of Fresnel diffractograms (Master Thesis, KIT faculty of physics, 2017).
 19. Barsi, C. & Fleischer, J. W. Model of anisotropic nonlinearity in self-defocusing photorefractive media. Optics Express 23, 

24426–24432 (2015).

Acknowledgements
We acknowledge funding by COST action MP-1207 “Enhanced X-ray Tomographic Reconstruction: Experiment, 
Modeling, and Algorithms” of the European Commission.

Author Contributions
F.T., S.H., Y.M. and R.H. developed the concepts, performed the calculations, and wrote the paper. T.B. and S.G. 
participated in the discussions and provided critical review.

Additional Information
Competing Interests: The authors declare that they have no competing interests.
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2017

http://creativecommons.org/licenses/by/4.0/

	Fresnel diffractograms from pure-phase wave fields under perfect spatio-temporal coherence: Non-linear/non-local aspects an ...
	State of the art: SOBS diffractograms at low frequencies
	SOBS: S-scaling linearity and global spectral transition
	Scaling properties of low-frequency diffractogram in dependence of F. 
	Scaling properties of entire diffractogram in dependence of F. 
	Transition from damped oscillatory to non-oscillatory diffractogram. 
	Outlook on selected multi-scale objects of a broad spectrum (MOBS). 

	The extreme far-field
	SOBS: Examples for σ–universality of diffractograms. 
	MOBS: Transmutation of phase-shape to S–scaling information. 

	Discussion
	Acknowledgements
	Figure 1 Low-frequency region of normalized diffractogram as induced by the Gaussian phase of Eq.
	Figure 2 S-scaling and valley of linearity.
	Figure 3 Function σ(F−1) associated with the floor of the valley in Fig.
	Figure 4 F dependence of approximate S-scaling linearity (D ≤ K).
	Figure 5 Global transition in normalized diffractogram as a function of F at S = 1.
	Figure 6 Simulated diffractogram as induced by Lena phase map for E = 1 keV and a pixel size Δx = 1.
	Figure 7 ESRF experiment at beamline ID1915 with E = 19.
	Table 1 Best-fit parameters A and B for model (12) representing σ(F−1) in dependence of 1 ≤ Su ≤ 1.




