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Abstract
Background Identifying therapeutic inhibitors of crucial enzymes involved in the peptidoglycan biosynthesis 
pathway is pivotal for developing new treatments against multidrug-resistant Enterococcus faecalis V583. MurM, an 
essential enzyme in this pathway, plays a significant role in the bacterium’s cell wall synthesis, making it an attractive 
druggable target for novel antimicrobial strategies. This study explored the potential of natural compounds as 
inhibitors of MurM, aiming to discover promising drug candidates that could serve as the foundation for future 
therapeutic development.

Methods The three-dimensional structure of MurM was predicted, optimized, and its binding pocket was analyzed 
by comparing it with related structures. Over 4,70,000 natural compounds from the COCONUT database were 
subjected to virtual high-throughput screening (vHTS). The top lead candidates were selected based on their 
Lipinski’s profile, ADME profile, toxicity profile, estimated binding free energy (ΔG) and estimated inhibition constant 
(Ki). Interaction pattern analysis was used to evaluate the non-covalent interactions between the inhibitors and 
key residues in MurM’s binding pocket. Molecular dynamics simulations were performed over 300 ns to assess the 
structural stability and impact of these inhibitors on MurM’s enzyme.

Results Three lead compounds—CNP0056520, CNP0126952, and CNP0248480—were identified and prioritized 
with estimated ΔG ranging from − 9.35 to -7.9 kcal/mol. Molecular dynamics simulations revealed minimal impact on 
MurM’s overall structure and dynamics, with the candidate inhibitors forming stable protein-ligand complexes. These 
interactions were supported by several non-covalent interactions between the candidate inhibitors and key residues 
within MurM’s binding pocket.

Conclusion These findings suggest that the identified natural product candidates could serve as promising inhibitors 
of MurM, potentially leading to novel therapeutics targeting cell wall biosynthesis in multidrug-resistant E. faecalis.
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Introduction
Enterococci are commonly found in the gastrointestinal 
tracts of both humans and animals. While most entero-
cocci are non-pathogenic, some are frequently present in 
artisan fermented foods, which contribute to extending 
shelf life, enhancing flavor, and improving texture. Nota-
bly, enterococci exhibit intrinsic antibiotic resistance and 
are recognized as opportunistic pathogens in nosocomial 
or hospital-acquired infections [1–3]. They are often iso-
lated from patients with prolonged hospitalization and 
extensive antibiotic usage. Some Enterococcus strains 
cause severe infections in humans, including urinary 
tract infections, surgical wound infections, pneumonia, 
bacteremia, and bacterial endocarditis [1]. Enterococci 
commonly show innate resistance to diverse classes of 
antibiotics [2]. They also acquire antibiotic resistance 
determinants, including vancomycin resistance, from 
their environment [3].

E. faecalis and E. faecium are the two most well-known 
species that cause numerous infections in humans and 
animals [4]. The bacterium under study is E. faeca-
lis V583, the first vancomycin-resistant clinical isolate 
reported in the USA [5], whose genome sequencing was 
already reported [6, 7]. E. faecalis accounts for up to 80% 
of enterococcal nosocomial infections [8], making it a 
leading cause of nosocomial infections in Europe and the 
USA. The increased reports of these bacterial infections 
are mainly due to the bacterium’s acquired and intrinsic 
resistance to generally used antibiotics (including vanco-
mycin) and the production of virulence factors involved 
in adhesion, colonization, resistance, and immune system 
evasion.

Enterococcal cell walls are primarily composed of pep-
tidoglycan (P.G.), wall teichoic acid (WTA), and lipo-
teichoic acid (LTA), similar to other Gram-positive 
bacteria [9]. The P.G. layers form a lattice structure above 
the phospholipid bilayer, shielding the cell from osmotic 
stress and pressure. The P.G. structure in E. faecalis fea-
tures a stem peptide comprising L-alanine, D-glutamine, 
L-lysine, D-alanine, and D-alanine. Additionally, an 
L-alanine-L-alanine bridge connects to the ε-nitrogen 
of the L-lysine side chain in the stem [11, 12]. MurM 
belongs to the FemXAB family and plays a crucial role in 
P.G. biosynthesis. MurM is a tRNA-dependent ligase that 
adds L-alanine to lipid II substrates during cell wall syn-
thesis. This addition is pivotal for properly assembling the 
peptidoglycan layer, contributing to the structural integ-
rity of the bacterial cell wall [11, 12]. Targeting MurM is 
a strategic approach in combating antibiotic resistance, 

as it disrupts cell wall formation and potentially provides 
selective antimicrobial activity.

Natural compounds have gained significant attention 
for their diverse and potent biological activities, offering 
a promising avenue for developing novel therapeutics. 
The COCONUT database [13] is a pivotal computational 
resource comprising natural products from a wide range 
of sources, making it an ideal tool for the comprehen-
sive screening of potential bioactive compounds against 
various druggable target proteins. In our previous study 
[14], we explored the structure of MurM and identified 
potential binding site residues crucial for intermolecular 
interactions with substrate and ligand molecules. Using 
the extensive natural compound collection in the COCO-
NUT database, we aim to identify natural candidate 
inhibitors that target the MurM enzyme. Addressing this 
research gap could lead to the discovery of novel thera-
peutics from natural sources targeting cell wall biosyn-
thesis in E. faecalis, providing a new strategy in the fight 
against antibiotic resistance.

Methodology
Selection of drug target – MurM and structure analysis
The drug target selected for this study is MurM, an 
enzyme from E. faecalis (strain V583), which plays a 
crucial role in peptidoglycan biosynthesis. The amino 
acid sequence of MurM (UniProt Accession Number: 
Q830W0) [15] was retrieved from the UniProt database. 
The three-dimensional model of MurM was predicted 
using a consensus approach and optimized using YAS-
ARA [16], as reported previously [14]. Structure analysis 
was subsequently performed utilizing PyMOL [17] for 
visualization and PDBsum [18] for detailed structural 
insights concerning fold, architecture, topology, second-
ary structural class and secondary structural composi-
tions. The possible binding pocket of MurM was analyzed 
by comparing its related structures. We have performed 
comparative protein sequence alignment and structural 
superposition of MurM and its related proteins using the 
Multalin (https:/ /multal in.toul ouse .inra.fr/multalin/) and 
PyMOL (https://www.pymol.org/) programs to identify 
and prioritize the binding site residues.

In house library preparation from the COCONUT database 
and virtual high throughput screening
To identify potential natural therapeutics targeting 
MurM, we utilized the COCONUT database [13], which 
comprises natural products from diverse sources. The 
molecules downloaded from COCONUT were initially 
filtered using the DataWarrior [19] program by applying 
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Lipinski’s rule of five. This rule assesses drug-likeness 
based on various physiochemical parameters, includ-
ing hydrogen bond donors (HBD) and hydrogen bond 
acceptors (HBA), lipophilicity (LogP), molecular weight 
(M.W.), and the number of rotational bonds. Addition-
ally, toxicological properties, including carcinogenicity, 
mutagenicity, reproductive toxicity, and irritation poten-
tial, were evaluated. The filtered compounds were further 
analyzed using SwissADME [20] to predict absorption, 
distribution, metabolism, and excretion (ADME) profiles. 
Parameters such as aqueous solubility (AS), blood-brain 
barrier penetration (BBB), CYP2D6 inhibition, topo-
logical polar surface area (TPSA), and human intestinal 
absorption (HIA) were considered. The promising lead 
or drug-like candidates from natural sources were pri-
oritized based on their binding orientation within the 
MurM’s active site, key interacting residues, and the 
number of intermolecular hydrogen bonds (H-bonds) or 
other non-covalent interactions formed with active site 
residues. To identify and prioritize potential lead can-
didates against the MurM protein from E. faecalis, we 
conducted virtual high-throughput screening (vHTS) in 
triplicates using AutoDock Vina [21] against an in-house 
library of natural compounds from the COCONUT 
database. The docking parameters for the virtual high-
throughput screening (vHTS) were configured as follows: 
the center coordinates were set at X = 8.6 Å, Y = 29.3 Å, 
and Z = 20.6 Å. The grid box was defined based on the 
binding site residues of MurM (Trp31, Lys35, Trp38, 
Arg215, Tyr219, and Tyr315), with dimensions of 30.9 Å 
along the X-axis, 26 Å along the Y-axis, and 34 Å along 
the Z-axis. The exhaustiveness parameter was set to 10, 
and the energy range was adjusted to 4.

Molecular docking studies of prioritized lead candidates 
with MurM
We have additionally conducted molecular docking 
calculations of MurM against specific prioritized lead 
candidates to cross validate the vHTS results. We used 
molecular graphics laboratory (MGL) tools to prepare 
protein and ligand molecules. The ligands were in the 
PDBQT format, which contains XYZ coordinates (PDB), 
partial charges  (Q), and atom types  (T). One of the 
ligands, called Control, as Deoxyribofuranosephosphate, 
was chosen as an inhibitor based on prior study [8]. The 
AutoDock [22] was used to conduct molecular docking 
calculations by leveraging the possible binding sites of 
MurM. The molecular docking calculations (site-specific) 
enable an understanding of the binding orientation, bind-
ing mode, ∆G, Ki, and various intermolecular interac-
tions between protein and ligand molecules. The grid box 
was defined based on the binding site residues of MurM 
(Trp31, Lys35, Trp38, Arg215, Tyr219, and Tyr315), with 
dimensions (npts) set to X = 74, Y = 68, and Z = 62. The 

center coordinates were X = 10.86 Å, Y = 27.53 Å, and Z = 
-20.60 Å. The Lamarckian Genetic Algorithm (LGA) was 
employed for the MurM-ligand docking, with each ligand 
undergoing 1000 docking runs and a population size of 
300. The maximum number of generations and energy 
evaluations were 27,000 and 2,500,000, respectively, 
while the mutation and crossover rates were maintained 
at 0.02 and 0.8. After analyzing the MurM-ligand com-
plexes using MGLTools 1.5.7 and PyMOL [17] programs, 
we selected those with favorable estimated free energy 
of binding values for further molecular dynamics (MD) 
simulations. BIOVIA Discovery Studio was also utilized 
to analyze and visualize the protein-ligand complexes, 
enabling us to investigate the intermolecular interactions, 
interaction patterns, interacting residues, and types of 
intermolecular interactions in detail.

Molecular dynamics simulations
The MD simulations provided critical insights into the 
structural stability and dynamic behavior of the MurM-
ligand complexes and the unbound form of MurM, facili-
tating the identification of potential lead molecules for 
further experimental studies. These simulations were 
conducted using GROMACS (GROningenMAchine 
for Chemical Simulations) Version 2021.3 [23]. Initially, 
the input files in GROMACS format (GRO), along with 
the topology (TOP) and positional restraint (POSRE) 
files, were generated from the MurM’s PDB file. A cubic 
box was created around both the unbound MurM and 
its ligand-bound complexes (System Size: 9.241  nm, 
6.042 nm, 5.882, Diameter: 9.957 nm, Center: 2.182 nm, 
2.357 nm, -2.351 nm, Distance (distance between centre 
of the protein and edge of the box): 1.0 nm). The TIP4P 
water model was employed to solvate the systems by add-
ing water molecules to the simulation box. In the present 
study, we chose the CHARMM27 [31] force field due to 
its well-established accuracy in modeling protein struc-
tural dynamics, making it particularly suitable for the 
MurM protein from E. faecalis. CHARMM27 is specifi-
cally optimized for protein-ligand interactions, which is 
essential for studying binding mechanisms in MurM. 
The TIP4P water model [32] was selected for its ability 
to accurately reproduce water’s physical properties, such 
as hydrogen bonding and dielectric behavior, which are 
critical for simulating realistic solvation effects. Thus, the 
CHARMM27 force field combined with the TIP4P water 
model provides a well-suited and validated framework 
to explore the structural and dynamic properties of the 
MurM protein from E. faecalis, as well as its interactions 
with ligands. Counter ions were added when necessary to 
ensure charge neutrality, except when the systems were 
already neutral. Since GROMACS could not generate 
topology files for the ligand molecules, so we used the 
SwissParam web server [24] to construct the selected 
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ligands’ topology (ITP) and provide PDB files. The gmx 
editconf tool was then used to convert the ligand PDB files 
to GRO files. Subsequently, the MurM systems (unbound 
and ligand-bound complexes) underwent energy minimi-
zation using the steepest descent algorithm to stabilize 
them and remove the larger strains or other geometri-
cal errors. The systems were then equilibrated in two 
phases: the NVT equilibration (constant volume and 
temperature) and the NPT equilibration (constant pres-
sure and temperature), each for 3 ns with aid of POSRE 
files, which are generated during the gmx pdb2gmx step. 
A velocity-rescaling thermostat and a Parrinello-Rahman 
barostat were used to maintain the desired temperature 
and pressure. Following equilibration, production MD 
simulations were carried out for 300 ns for all MurM sys-
tems. During the production MD steps, we removed the 
positional restraints to observe the natural dynamics of 
the proteins and ligand-bound complexes. The molecular 
dynamics parameters (MDP) files were adjusted for the 
ligand-bound MurM systems during energy minimiza-
tion, NVT equilibration, NPT equilibration, and produc-
tion MD steps. The resulting MD simulation trajectories 
were corrected by removing periodic boundary condi-
tions (PBC). These corrected trajectories of the unbound 
and ligand-bound MurM complexes were then analyzed 
using various pivotal structural parameters, includ-
ing RMSD, RMSF, Rg, SASA, intermolecular hydrogen 
bonds, and Principal Component Analysis (PCA). Spe-
cific GROMACS commands such as gmx rms, gmx rmsf, 
gmx gyrate, gmx sas, gmx hbonds, gmx covar, and gmx 
anaeig were used for comparative structural analysis of 
MurM and ligand-bound MurM systems. In addition to 
stability analysis, we conducted MM/PBSA-based bind-
ing free energy and individual residue energy decompo-
sition analysis for ligand-bound MurM complexes. We 
used the converged trajectories ranging from 1 to 150 ns, 

with snapshots taken at 250 ps intervals. The g_mmpbsa 
tool [33] calculated the binding free energy values of 
the selected ligand-bound MurM complexes. The bind-
ing free energies were calculated using the following 
equation:

∆Gbinding = ∆vdw + ∆ele + ∆pol + ∆np.
Where ∆vdw, ∆ele, ∆pol and ∆np represent the contribu-

tions of van der Waals energy, electrostatic energy, polar 
solvation energy, and non-polar solvation energy to the 
binding free energy (∆Gbinding).

Results
MurM structure and its binding pocket
MurM from E. faecalis does not have its three-dimen-
sional structure in the Protein Data Bank. Therefore, the 
structure of MurM (Fig.  1) was predicted using a con-
sensus approach with the aid of multiple in silico tools 
and was optimized and reported previously [14]. The 
structure validation results of MurM were presented in 
Supplementary Data. The MurM model is structured as 
a compact unit with a globular domain comprising two 
sub-domains. The binding site for the substrate is situ-
ated at the interface between these two sub-domains of 
MurM. Each sub-domain is characterized by two twisted 
β-sheet cores surrounded by α-helices. Subdomain 1A 
encompasses amino acid residues 1–153 and 382–401, 
while sub-domain 1B consists of amino acid residues 
154–241 and 294–381. In addition, the coiled-coil heli-
cal arm spans residues 242–293. A central mixed polar-
ity sheet comprises five strands within each sub-domain, 
accompanied by four α-helices. Specifically, two α-helices 
are positioned above the sheet, parallel to the β strands. 
Overall, as per the results of the PDBSum [18] generate 
tool, the 3D structure of MurM contains 16 strands, 18 
α-helices, 18 β turns, and two βαβ units. A core mixed 

Fig. 1 Three-dimensional structure of MurM with colors representing different domains of the MurM protein
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polarity sheet comprising five strands and four α-helices 
is present in every sub-domain.

Using the Position Specific Iterative - Basic Local Align-
ment Search Tool (PSI-BLAST) [25] to compare MurM 
against the PDB database, we identified the structures 
of seven closely related proteins: (a) 6SNR, (b) 1XE4, (c) 
1XF8, (d) 1LRZ, (e) 4II9, (f ) 1NE9 and (g) 3GKR. Subse-
quently, comparative sequence alignment and structural 
superposition were carried out on MurM and its related 
proteins. Both MurM and its homologs exhibit simi-
larities in substrate-binding site residues. The predicted 
model of MurM highlights potential binding site resi-
dues, including Trp31, Lys35, Trp38, Arg215, Tyr219, and 
Tyr315, which are highly conserved for MurM and its 
related proteins (Fig. 2). The comprehensive results of the 
comparative sequence alignment and structural superpo-
sition are provided in the Supplementary Data.

Virtual high throughput screening, physicochemical 
properties and ADMET analysis
To identify possible natural candidate inhibitors against 
MurM, a vHTS was performed on the COCONUT 
Database, which comprised 4,72,270 natural molecules. 
Molecular docking attempts to anticipate the optimal 
binding orientation of candidate inhibitors into the bind-
ing pocket of the druggable target proteins. In the current 
study, we employed the structure-based virtual screening 
(SBVS) technique, a vital tool for elucidating protein-
ligand interactions and identifying potential drug-like 
candidates. To inhibit the function of the target protein 
- MurM, the molecules obtained using vHTS should be 
oriented in the aforementioned binding pocket (interface 
between two domains). We chose Deoxyribosefuranose-
phoaphate as the control molecule, based on the previous 

study [8], with an IC50 value of 100 µM. The systematic 
workflow for identifying promising candidate inhibitors 
is shown in Fig. 3.

After retrieving 4,72,270 molecules from the COCO-
NUT database, we further obtained 98,782 lead mole-
cules with significant drug-like properties. These ligands 
were assessed based on criteria where drug-likeness 
(M.W. ≤ 500 Da, HBD ≤ 5, HBA ≤ 10 and LogP ≤ 5), rotat-
able bonds (≤ 10), and toxicity (none) were required and 
among the initial set comprising 98,782 molecules, only 
3,285 molecules exhibited favorable ADME profiles, sig-
nificant pharmacokinetic properties, and no detectable 
side or adverse effects. For SwissADME pharmacokinetic 
analysis, we selected ligands with the following charac-
teristics: HIA + and BBB+ (able to penetrate the blood-
brain barrier), solubility in aqueous medium, TPSA 
value less than 100 Å², and non-inhibition of CYP2D6 
(drug-metabolizing enzyme) isoforms. Subsequently, the 
top three ligand molecules were chosen based on their 
orientation in the MurM binding site. From the vHTS 
technique, we selected three ligands (CNP0056520, 
CNP0126952, and CNP0248480) positioned within the 
MurM binding site for further molecular docking and 
MD simulations studies. These compounds exhibit esti-
mated free energy of binding values (ΔG) obtained from 
AutoDock of -8.5 kcal/mol, -7.93 kcal/mol, and-9.35 kcal/
mol, whereas the control molecule exhibited − 6.44 kcal/
mol. Tables 1, 2, 3 and 4 provide details on the estimated 
binding affinity, drug-likeness, ADME, and toxicity pro-
files of prioritized lead candidates against MurM.

Fig. 2 Three-dimensional structure of MurM highlighting the potential active site residues identified through structural comparison technique with 
related proteins
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Interaction studies and interaction pattern analysis of 
MurM-ligand complexes
The three prioritized lead candidates and control mol-
ecule were docked against the MurM protein using 
AutoDock software. The docking orientation of the pro-
posed lead candidates along with control molecules is 
illustrated in Fig. 4. CNP0056520 exhibited an estimated 
inhibition constant (Ki) of 590.43 nM and an estimated 
free energy of binding (ΔG) of -8.5 kcal/mol with MurM. 
As illustrated in Figs.  5 and 6, analysis of MurM-ligand 
interactions revealed that the ligand formed hydrogen 
bonds, pi interactions, and Van der Waals interactions 
with key residues within the MurM binding site (Table 5). 
Specifically, the ligand displayed hydrogen bond inter-
actions with Ile313 (2.39 Å), Leu314 (2.85 Å), pi-alkyl 
interaction with Trp31 (4.77 Å), and Ala316 (5.37 Å). 
Furthermore, the molecule exhibited Van der Waals 
interactions with Leu26, Lys35, Gln153, Pro154, Tyr219, 
Glu312, Tyr315, Trp332, Met349, Gly350, Gly351, and 
Leu360, contributing to the stabilization of the MurM-
ligand complex. To visually represent MurM-ligand 
interactions, two-dimensional and three-dimensional 
ligand interaction diagrams were generated using Dis-
covery Studio and PyMOL tools, respectively, providing a 

graphical illustration of MurM’s spatial organization and 
interactions with the CNP0056520, enhancing under-
standing of the interaction pattern and its binding mech-
anism towards the binding pocket of MurM.

The MurM_CNP0126952 complex showed an esti-
mated ΔG of -7.93  kcal/mol and a Ki value of 1.53 µM. 
The ligand formed specific interactions with distinct 
residues in this complex, detailed in Table  5. Hydrogen 
bonding interactions were observed with the Leu314 
(2.73 Å) residue of MurM. Additionally, pi-alkyl inter-
actions with Leu26 (4.01 Å) and Tyr315 (4.59 Å, 5.30 
Å) were observed. Furthermore, Van der Waals interac-
tions with Trp31, Lys35, Leu214, Tyr219, Ile313, Ala316, 
Trp332, Met349, Gly350, Gly351, Lys360, and Lys364 
amino acid residues contributed to the binding stability 
of the complex.

The MurM_CNP0248480 complex exhibited a calcu-
lated ΔG of -9.35  kcal/mol, with an estimated Ki value 
of 140.06 nM. Hydrogen bonding interactions were 
observed between the ligand and Gly351(2.98 Å) residue, 
crucial for the MurM-ligand interaction. The ligand’s pi-
alkyl interaction with Leu214, Tyr315, Ala316 and Trp332 
residues further stabilized the MurM_CNP0248480 
complex. Additionally, Van der Waals contacts were 

Fig. 3 Workflow outlining the systematic process to identify and prioritize natural lead candidates against MurM using the COCONUT database
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Table 2 Toxicity profiles of prioritized lead candidates along with 
control molecule
S.No Accession 

No.
Carcinogenic Mutagenesis Repro-

ducibil-
ity

Irri-
tant

1 CNP0056520 Non-carcino-
gens

None None None

2 CNP0126952 Non-carcino-
gens

None None None

3 CNP0248480 Non-carcino-
gens

None None None

4 Control Non-carcino-
gens

None None None

Table 3 ADME profiles of prioritized lead candidates along 
with control molecule (HIA Human Intestinal Absorption, BBB 
blood-brain barrier, TPSA Total Polar Surface Area and CYP2D6 
Cytochrome)
S. No Molecule name HIA BBB TPSA CYP450 2D6 inhibitors
1 CNP0056520 High Yes 65.72 No
2 CNP0126952 High Yes 95.86 No
3 CNP0248480 High Yes 92.7 No
4 Control Low No 181.44 No

Table 1 Prioritized lead candidates and control molecule with ΔG, Ki, molecular formula, and chemical structure 
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identified with Trp31, Met148, Gln153, Pro154, Ile212, 
Ser213, Glu312, Ile313, Leu314, Met349, Glu350, Leu360, 
and Lys364 residues, enhancing the overall stability of the 
MurM complex.

In contrast, the MurM-Control complex exhibited an 
estimated ΔG value of -6.44  kcal/mol and a Ki value of 
19.03 µM. This compound interacted with several key 
amino acid residues, including Lys35, Trp38, Arg215, and 
Tyr219, catalytically conserved in MurM and present in 
related structures. Hydrogen bonding interactions were 
observed between the ligand and MurM residues Asn37 
and Lys60 (Table 5), significantly influencing the ligand’s 
binding affinity to the target protein. Additionally, pi 
interactions were detected with MurM’s Lys35 residue, 
contributing to the stabilization of the MurM-Control 
complex. Furthermore, Van der Waals interactions with 
Pro61, Arg215, and Tyr219 amino acid residues further 
enhanced the overall stability of the complex.

The investigation of MurM binding with the priori-
tized natural candidate inhibitors revealed that all three 
compounds engaged in intermolecular interactions 

with binding site residues, exhibiting ΔG values below 
− 6.44  kcal/mol. Moreover, aromatic rings increased 
hydrophobic interactions for these ligands, interacting 
with MurM’s binding site residues such as Trp31, Lys35, 
Tyr219, and Gly351. These interactions, including pi 
and Van der Waals contacts with conserved amino acid 
residues, underscored their strong binding affinity with 
MurM. Such intermolecular interactions are crucial in 
identifying promising lead candidates for the drug design 
and development process. Additionally, electrostatic 
surface potential map analysis (Fig.  6) demonstrated 
that MurM’s substrate-binding pocket predominantly 
comprises positively charged amino acid residues. Fur-
thermore, all four ligands, including the Control, were 
appropriately oriented within the MurM substrate-bind-
ing cleft, as depicted in Fig. 6.

Molecular dynamics simulations of MurM and its 
complexes
The molecular dynamics (MD) simulations were per-
formed to evaluate the structural impact of several ligand 

Table 4 Lipinski’s profiles of prioritized lead candidates along with control molecule (M.W. molecular weight, clogP Consensus log P 
octanol-water partition coefficient, LogP lipophilicity, HBA Hydrogen Bond Acceptor, HBD HydrogenBond Donor
S.No Molecule name M.W. (Da) Consensus LogP Aqueous solubility (AS) HBA HBD
1 CNP0056520 394.47 1.28 Very soluble 2 2
2 CNP0126952 427.53 1.83 Very soluble 5 3
3 CNP0248480 463.57 1.23 Very soluble 5 2
4 Control 358.29 -1.88 Highly Soluble 9 4

Fig. 4 Molecular docking orientation of prioritized lead candidates and control molecule towards the substrate binding site of MurM
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molecules on MurM protein, such as stability, flexibility, 
integrity, compactness, and folding behavior. These sim-
ulations used the unbound MurM protein and MurM-
ligand complexes, including a control molecule and 
three potential and prioritized natural candidate inhibi-
tors: CNP0056520, CNP0126952, and CNP0248480. The 
results of these MD simulations are illustrated in Figs. 7, 
8 and 9 and average values obtained from MD simula-
tions in Table  6 providing a comprehensive view of the 
protein’s behavior under the influence of various lead 
molecules.

The RMSD analysis, shown in the top-left panel of 
Fig. 7, was used to assess the structural stability of MurM 

and its complexes throughout the 300 ns simulation 
period. The RMSD plot reveals that the unbound MurM 
protein, represented by the black line, stabilized quickly 
and maintained a relatively low average RMSD value of 
0.34 nm. This indicates that the native MurM structure is 
inherently stable under the MD simulation conditions. In 
contrast, the MurM-ligand complexes exhibited slightly 
higher average RMSD values, suggesting that ligand 
binding induces some degree of structural perturbation 
or changes. Among the complexes, MurM_CNP0126952 
(blue line) showed the highest average RMSD of 0.49 nm, 
indicating that this ligand caused the most significant 
structural changes in MurM. The MurM_CNP0248480 

Fig. 5 Electrostatic surface potential map analysis of prioritized lead candidates and control molecule towards substrate binding cleft of MurM

 

Table 5 Various intermolecular interactions of prioritized lead candidates and control molecule towards MurM
S. No Ligands ID HB D(Å) Pi-SR D(Å) vdWISR
1. CNP0056520 Ile313,

Leu314
2.39,
2.85

Trp31,
Ala316

4.77,
5.37

Leu26, Lys35, Gln153,
Pro154, Tyr219, Glu312,
Tyr315, Trp332, Met349,
Gly 350, Gly 351, Leu 360

2. CNP0126952 Leu314 2.73 Leu26
Tyr315

4.01,
4.59, 5.30

Trp31, Lys35, Leu214, Tyr219, 
Ile313, Ala316, Trp332, Met349, 
Gly350, Gly351,Lys360, Lys364

3. CNP0248480 Gly351 2.98 Leu214
Tyr315
Ala316
Trp332

4.79
4.67
3.53
4.79

Trp31, Met148, Gln153, Pro154, 
Ile212, Ser213,
Glu312, Ile313, Leu314,
Met349, Glu350, Leu360, Lys364

4. Control
(Deoxyribofuranosephosphonate)

Asn37,
Lys60

2.76,
3.07

Lys35,
Trp38

4.28,
4.56

Pro61,Arg215,Tyr219
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complex (yellow line) followed closely with an average 
RMSD of 0.48  nm. The MurM_CNP0056520 complex 
(green line) and the control complex (red line) showed 
intermediate RMSD values of 0.46  nm and 0.40  nm, 
respectively. These results suggest that while ligand bind-
ing significantly affects MurM’s structure, the changes 
are relatively modest, with all average RMSD values 
remaining below 0.5 nm. This implies that the overall fold 

of the protein is primarily maintained upon ligand bind-
ing despite some local structural adjustments.

The RMSF analysis, presented in Fig.  8, provides 
insights into the flexibility of different regions of MurM 
protein and its complexes. The RMSF plot reveals that 
the C-terminus of MurM, approximately residues 350–
400, displays the highest degree of flexibility across all 
systems, with fluctuations reaching 1–1.2 nm. This high 
flexibility in the C-terminal region could be significant for 

Fig. 6 Two-dimensional schematic ligand interactions depicting prioritized lead candidates and control molecule binding to MurM
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the MurM function, possibly allowing for conformational 
or structural changes necessary for the substrate bind-
ing or catalytic activity. Additionally, notable fluctuations 
were observed in the amino acid residues 100–150 and 
250–275 of the MurM systems. These regions likely cor-
respond to loop structures in the MurM protein, which 
often exhibit higher flexibility. The increased flexibility 
in these regions could be vital for the protein’s dynamics 
and potentially for its interaction with substrate or other 
ligand molecules. Generally, the RMSF patterns of the 
MurM-ligand complexes showed varying degrees of fluc-
tuation. Among all the systems, the MurM_CNP0126952 
complex exhibited the highest average RMSF of 0.24 nm, 
indicating that this ligand increases the overall flexibil-
ity of MurM. In contrast, the unbound MurM and the 
MurM_CNP0056520 complex showed the lowest aver-
age RMSF of 0.18 nm, suggesting these two systems are 
the least flexible. The control and MurM_CNP0248480 
complexes showed intermediate flexibility with average 
RMSF values of 0.21 nm and 0.23 nm, respectively. These 

differences in RMSF patterns indicate that ligand binding 
can modulate the flexibility of specific regions in MurM, 
which could affect the protein’s function and its interac-
tions with substrate and ligand molecules.

The Rg analysis, illustrated in the top-right panel of 
Fig.  7, provides information about the overall compact-
ness, folding properties and shape of the MurM protein 
and its complexes. The Rg plot shows that the binding of 
the chosen ligands had minimal influence on the com-
pactness of the MurM structure. The average Rg val-
ues for all MurM systems fell within a narrow range of 
2.65–2.73 nm, indicating that the overall shape and pack-
ing of the protein remained largely unchanged upon the 
influence of ligand binding. Specifically, the control com-
plex showed the lowest average Rg of 2.65 nm, suggest-
ing it might induce a slightly more compact structure. 
On the other hand, the MurM_CNP0248480 complex 
exhibited the highest average Rg of 2.73  nm, indicat-
ing a marginally looser packing. The unbound MurM, 
MurM_CNP0056520 complex, and MurM_CNP0126952 

Fig. 8 Root mean square fluctuation (RMSF) analysis of MurM and its complexes (Color codes: Black–MurM, Red–Control, Green–MurM_CNP0056520 
complex, Blue–MurM_CNP0126952, Yellow–MurM_CNP0248480)

 

Fig. 7 Root mean square deviation (RMSD), Radius of Gyration (Rg), Hydrogen Bonds, and Solvent Accessible Surface Area (SASA) analyses for 
MurM and its ligand-bound complexes (Color codes: Black–MurM, Red–Control, Green–MurM_CNP0056520 complex, Blue–MurM_CNP0126952, 
Yellow–MurM_CNP0248480)
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complex showed intermediate Rg values of 2.67  nm, 
2.68  nm, and 2.71  nm, respectively. These slight varia-
tions in Rg values suggest that while ligand binding may 
cause subtle changes in the protein’s compactness, it 
does not significantly alter the overall shape and folding 
behavior of MurM.

The SASA analysis, presented in the bottom-right 
panel of Fig. 7, was used to determine the surface area of 
MurM exposed to the solvent in its free form and ligand-
bound complexes. The results confirmed that ligand 
binding did not significantly alter the overall structure 
or solvent exposure of the MurM complexes. The aver-
age SASA values ranged from 224.0 nm² to 229.629 nm², 
indicating only minor changes in solvent exposure upon 
the influence of ligand binding. The unbound MurM 
and the control complex showed the lowest SASA val-
ues of 224.6 nm² and 224.0 nm², respectively, suggesting 

these structures have the least exposed surface area. 
The MurM_CNP0126952 complex exhibited the high-
est SASA of 229.629  nm², indicating that this ligand 
might induce a slight expansion of the protein surface. 
The MurM_CNP0056520 and MurM_CNP0248480 
complexes showed intermediate average SASA val-
ues of 228.89  nm² and 228.012  nm², respectively. These 
results suggest that ligand binding causes slight changes 
in MurM’s surface exposure, potentially affecting its 
interactions with the solvent and other molecules in its 
environment.

The analysis of intermolecular hydrogen bonds, shown 
in the bottom-left panel of Fig. 7, provided valuable infor-
mation about the nature and strength of the interactions 
between the ligand molecules and MurM protein. Inter-
estingly, the MurM_CNP0126952 complex and the con-
trol molecule formed the most stable hydrogen bonds, 

Table 6 Time-averaged structural properties obtained from MD simulations of MurM and its complexes
Systems RMSD (nm) RMSF (nm) Rg (nm) SASA (nm²) HBonds (Number) Trace of Covariance Matrix (nm²)
MurM 0.34 0.18 2.67 224.6 NA 345.85
MurM_Control 0.40 0.21 2.65 224.0 2 492.971
MurM_CNP0056520 0.46 0.18 2.68 228.89 0.42

(rounded to 0)
361.351

MurM_CNP0126952 0.49 0.24 2.71 229.629 2 584.863
MurM_ CNP0248480 0.48 0.23 2.73 228.012 1.25

(rounded to 1)
557.531

Fig. 9 Essential dynamics analysis of MurM and its complexes (Color codes: Black–MurM, Red-Control, Green- MurM_CNP0056520 complex, Blue-MurM_
CNP0126952, Yellow-MurM_ CNP0248480)
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with an average of 2 hydrogen bonds each throughout 
the MD simulation. This suggests that these ligands 
form specific and relatively strong interactions with the 
MurM protein via hydrogen bonding interactions. In 
contrast, the MurM_CNP0056520 complex formed the 
fewest hydrogen bonds, with an average of 0.42 (rounded 
to 0), indicating weaker hydrogen bonding interactions. 
The MurM_CNP0248480 complex showed an inter-
mediate level of hydrogen bonding, with an average of 
1.25 (rounded to 1) hydrogen bonds. These differences 
in hydrogen bonding patterns suggest varying modes of 
intermolecular interaction between MurM and the differ-
ent ligands, which could affect their binding affinity and 
potential inhibitory activity.

The Principal Component Analysis (PCA), illustrated in 
Fig. 9, provides insights into the essential motions of the 
MurM systems. The 2D projection of the trajectory plot 
shows distinct cluster distributions for each system, rep-
resented by different colors. Notably, the ligand-bound 
complexes, especially those represented by yellow, blue, 
and red clusters, occupy larger areas in the projection of 
conformational space than the unbound MurM (black 
cluster). This indicates that ligand binding increases the 
conformational and essential dynamics of MurM.This 
observation is further supported by the trace of covari-
ance matrix values presented in Table  6. The ligand-
bound complexes show higher trace values (361.351 to 
584.863  nm²) than the unbound MurM (345.85  nm²). 
Among the complexes, MurM_CNP0126952 exhibits the 
highest trace value of 584.863  nm², indicating that this 
ligand induces the most significant changes in the essen-
tial motion of the MurM structure. These results sug-
gest that ligand binding affects local structural features 
and influences the essential dynamics of MurM protein, 
potentially altering its functional behavior.

In addition to global and essential dynamics analyses, 
we conducted MM/PBSA-based binding free energy cal-
culations and individual residue energy decomposition 
analysis on the ligand-bound MurM complexes. This 
allowed us to gain deeper insights into the binding affin-
ity behavior and to identify the key residues responsible 
for interactions with the MurM protein. These results 
provide a deeper understanding of the binding affinity 
between MurM and the proposed lead compounds, offer-
ing valuable insights into their potential as inhibitors. 
The control complex, with a positive binding energy of 
45.34 kcal/mol, indicates a weak or unfavorable interac-
tion with MurM, suggesting that it may not be an ideal 
candidate for binding under the conditions analyzed. 
Among the tested ligands, CNP0126952 exhibited the 
most favorable binding energy of -19.29  kcal/mol, indi-
cating a strong and energetically favorable interaction 
with the MurM protein. This significant negative bind-
ing energy highlights its potential as a potent ligand with 

promising inhibitory effects. CNP0056520, with a bind-
ing energy of -17.24 kcal/mol, also demonstrated a strong 
interaction, although slightly weaker than CNP0126952. 
This suggests it could still be a viable candidate, offer-
ing a reasonable binding affinity to MurM. CNP0248480, 
with a binding energy of -14.77  kcal/mol, displayed the 
weakest interaction among the three ligands. While its 
binding energy is still negative, indicating a favorable 
interaction overall, its lower value suggests that its bind-
ing affinity to MurM is comparatively less potent than the 
other two ligands. The ranking of these ligands based on 
their binding affinities is as follows: CNP0126952 > CNP
0056520 > CNP0248480. These quantitative insights help 
prioritize these lead compounds and provide a rational 
basis for further experimental validation. Such findings 
could drive the next steps in drug development efforts 
to inhibit MurM, a critical protein in bacterial cell wall 
biosynthesis.

The individual residue energy decomposition analy-
sis for the active site residues of MurM across three 
complexes indicates varying binding affinity effects. 
Trp31 shows consistently stabilizing contributions with 
values of -0.4358, -0.8003, and − 0.2076 for all three 
complexes, suggesting it plays a positive role in ligand 
interaction. In contrast, Lys35 exhibits highly destabi-
lizing effects, particularly in the MurM_CNP0056520 
complex with a value of 13.1327, alongside mildly desta-
bilizing values in the MurM_CNP0126952 complex and 
MurM_CNP0248480 complex (0.6016 and 0.3271), indi-
cating it may inhibit binding. Residue Trp38 has minimal 
impact, with values close to neutral across all complexes 
(0.1283, -0.0236, and 0.0062), suggesting it does not sig-
nificantly influence ligand interactions. Residue Arg215 
shows a notable destabilizing effect in the MurM_
CNP0056520 complex (12.435) but stabilizing contribu-
tions in MurM_CNP0126952 and MurM_CNP0248480 
(-0.2140 and 0.1817) complexes, implying its role varies 
significantly depending on the environment. Similarly, 
Tyr219 presents a mix of effects, being mildly destabi-
lizing in MurM_CNP0056520 (0.2058) but stabilizing 
in MurM_CNP0126952 (-0.3253), while remaining neu-
tral in MurM_CNP0248480 complex (-0.0638). Finally, 
Tyr315 is predominantly stabilizing, especially in MurM_
CNP0126952 with a significant value of -1.9576, while 
it shows mild destabilizing contributions in MurM_
CNP0056520 and MurM_CNP0248480 (0.2360 and 
− 0.7112) complexes. The detailed results of individual 
residue energy decomposition analysis were given in sup-
plementary data.

Discussion
The comparative analysis of the three natural can-
didate inhibitors (CNP0056520, CNP0126952, and 
CNP0248480) with the control molecule [8] reveals 
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interesting structural insights into their potential as 
prioritized lead candidates. All three compounds dem-
onstrated significantly improved binding affinities com-
pared to the control, as indicated by their more negative 
estimated ΔG values and lower Ki values. This enhanced 
binding affinity is a promising sign of their potential 
effectiveness as candidate inhibitors.

CNP0126952 has the strongest binding free energy 
among the three candidates, exhibiting a binding energy 
of -19.29  kcal/mol (Table  7). This compound also dis-
plays the highest flexibility, with elevated average RMSD, 
RMSF, and covariance matrix trace values, suggesting its 
adaptability to different binding modes and conforma-
tions. Moreover, it forms two hydrogen bonds with the 
MurM protein, which could contribute to its binding 
stability.

CNP0056520 also has significant binding free energy 
at -17.24 kcal/mol, demonstrating the most stable behav-
iour in molecular dynamics attributes. Its lower average 
RMSF and covariance matrix trace values indicate a more 
rigid interaction with the MurM protein. It could be 
advantageous for maintaining a consistent binding pose 
but may limit adaptability to conformational changes in 
the protein structure. This compound forms one hydro-
gen bond with the target MurM protein, contributing to 
its structural stability.

CNP0248480 has a binding free energy of -14.77 kcal/
mol, still presents a promising combination of strong 
binding affinity and balanced molecular dynamics prop-
erties. The moderate increases in RMSD, RMSF, and Rg 
values suggest that this compound may undergo slight 
conformational changes in the MurM structure upon 
binding, which could enhance its molecular mechanism. 
It also forms one hydrogen bond with MurM, which may 
contribute to its binding stability.

In addition to performing global and essential dynam-
ics analyses, MM/PBSA-based binding free energy cal-
culations and individual residue energy decomposition 
analyses were conducted on the ligand-bound MurM 
complexes. These analyses helped identify the key resi-
dues involved in binding interactions and provided 
insights into the binding affinities of various ligands. 
Among the ligands, CNP0126952 showed the most favor-
able binding free energy, suggesting its strong inhibitory 
potential, while CNP0056520 and CNP0248480 also 

demonstrated promising interactions, although with 
slightly lower binding affinities. The individual residue 
energy decomposition analysis highlighted key residues 
like Trp31 and Tyr315 as stabilizing factors, while Lys35 
and Arg215 were found to have variable, often destabiliz-
ing effects.

When considering the overall profile of prioritized 
natural candidate inhibitors, CNP0248480 appears to 
offer the most promising combination of good binding 
affinity and balanced molecular dynamics attributes. Its 
ability to form a hydrogen bond while maintaining flex-
ibility suggests that it could effectively bind to the MurM 
protein while also accommodating potential molecular 
mechanisms. However, the selection of the best natural 
candidate inhibitors may ultimately depend on the spe-
cific requirements of drug design and discovery. If the 
target protein requires a more flexible ligand for optimal 
interaction, CNP0126952 might be the ideal choice. Con-
versely, if protein-ligand complex stability is a priority, 
CNP0056520 could be more suitable.

Therefore, the combined results from virtual high-
throughput screening, molecular docking, and MD 
simulations suggest that these three natural candidate 
inhibitors are exceptionally well-suited for drug design 
and discovery targeting the MurM protein from E. fae-
calis. This organism is responsible for nosocomial infec-
tions and demonstrates resistance to diverse classes of 
antibiotics, making these findings particularly significant 
in the fight against antibiotic resistance [26–30]. Previous 
studies have effectively utilized structure-based virtual 
screening and molecular dynamics approaches to identify 
inhibitors for essential proteins in Staphylococcus aureus 
[34–37], providing a solid foundation for our investiga-
tion into the MurM protein. It is important to note that 
while these computational hypotheses provide valuable 
structural insights, they should be validated through fur-
ther experimental methods. Further investigations, such 
as in vitro binding assays, functional assays, and X-ray 
crystallography studies, would be crucial to confirm the 
predicted interactions and effects on the target MurM 
protein. These additional studies would provide a more 
comprehensive understanding of how these three natural 
candidate inhibitors interact with the target MurM pro-
tein in a biological context, ultimately guiding the selec-
tion of the most promising candidates for further clinical 
trials.

Conclusion
The present computational study successfully identi-
fied three natural lead candidates as potential inhibitors 
of the MurM enzyme in E. faecalis through virtual high 
throughput screening, molecular docking, and MD simu-
lations. The lead compounds demonstrated strong bind-
ing affinities and stable interactions with catalytically 

Table 7 MM/PBSA-based binding free energy results of various 
MurM-ligand complexes (only the three prsomising lead 
candidates that exhibited negative binding energy values were 
presented here)
S.No. Protein-Ligand complex Binding energy (kcal/mol)
1 MurM_CNP0056520 -17.24
2 MurM_CNP0126952 -19.29
3 MurM_CNP0248480 -14.77
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important residues in MurM’s structure. Notably, the 
binding of these compounds did not significantly alter 
the overall structure, flexibility, or dynamics of MurM, 
suggesting they may hinder enzyme function without 
disrupting its structural integrity. The consistent perfor-
mance of these three compounds across multiple analy-
ses, including RMSD, RMSF, Rg, SASA, and hydrogen 
bonding, further supports their promise as lead can-
didates. While experimental validation is needed, this 
study provides a strong foundation for developing poten-
tial molecules targeting cell wall synthesis in multidrug-
resistant E. faecalis. Using natural compounds may offer 
advantages in terms of reduced toxicity and novel mecha-
nisms of action. Future work should optimise these lead 
compounds and evaluate their binding efficacy against 
resistant E. faecalis strains in vitro and in vivo.

Abbreviations
ADME  Absorption, Distribution, Metabolism, and Excretion
BBB  Blood-Brain Barrier
COCONUT  COlleCtion of Open Natural Products
E. faecalis  Enterococcus faecalis
GROMACS  GROningen MAchine for Chemical Simulations
HIA  Human Intestinal Absorption
MurM  UDP-N-acetylmuramoyl-L-alanyl-D-glutamate: L-lysine ligase
PCA  Principal Component Analysis
PG  Peptidoglycan
RMSD  Root Mean Square Deviation
RMSF  Root Mean Square Fluctuation
Rg  Radius of Gyration
SASA  Solvent Accessible Surface Area
vHTS  Virtual High-Throughput Screening
MM/PBSA  Molecular Mechanics/Poisson-Boltzmann Surface Area

Supplementary Information
The online version contains supplementary material available at  h t t  p s : /  / d o  i .  o r 
g / 1 0 . 1 1 8 6 / s 1 3 0 6 2 - 0 2 4 - 0 0 5 3 8 - 2     .  

Supplementary Material 1

Acknowledgements
The authors thank Sharda University, Greater Noida, India, for their support. 
The authors acknowledge the financial support through the Researchers 
Supporting Project number (RSPD2024R724), King Saud University, Riyadh, 
Saudi Arabia.

Author contributions
Km.Rakhi: Data curation, Formal analysis, Methodology, Software, Visualization, 
Writing – original draft, Writing – review and editing. Monika Jain: Writing 
– review & editing, Amit Kumar Singh: Writing – review and editing, Mohd 
Sajid Ali: Writing – review and editing, Hamad A. Al-Lohedan: Writing – review 
and editing, Jayaraman Muthukumaran: Conceptualization, Investigation, 
Supervision, Validation, Writing – review & editing.

Funding
The authors acknowledge the financial support through the Researchers 
Supporting Project number (RSPD2024R724), King Saud University, Riyadh, 
Saudi Arabia.

Data availability
No datasets were generated or analysed during the current study.

Declarations

Ethical approval
Not applicable.

Competing interests
The authors declare no competing interests.

Author details
1Department of Biotechnology, Sharda School of Engineering and 
Technology, Sharda University, Greater Noida, India
2Department of Chemistry, College of Science, King Saud University, 
P.O.Box 2455, Riyadh 11451, Saudi Arabia

Received: 29 August 2024 / Accepted: 1 October 2024

References
1. Rice LB, Carias L, Rudin S, Vael C, Goossens H, Konstabel C, Klare I, Nallapa-

reddy SR, Huang W, Murray BE. A potential virulence gene, hylEfm, predomi-
nates in Enterococcus faecium of clinical origin. J Infect Dis. 2003;187(3):508–
12. https:/ /doi.or g/10.10 86/3 67711.

2. Fiser A, Filipe SR, Tomasz A. Cell wall branches, penicillin resistance and the 
secrets of the MurM protein. Trends Microbiol. 2003;11(12):547–53.  h t t  p s : /  / d o  
i .  o r g / 1 0 . 1 0 1 6 / j . t i m . 2 0 0 3 . 1 0 . 0 0 3     .   

3. Miller WR, Murray BE, Rice LB, Arias CA. Resistance in vancomycin-resistant 
Enterococci. Infect Dis Clin N Am. 2020;34(4):751–71.  h t t  p s : /  / d o  i .  o r g / 1 0 . 1 0 1 6 / 
j . i d c . 2 0 2 0 . 0 8 . 0 0 4     .   

4. Facklam RR, Carvalho MGS, Teixeira LM. History, taxonomy, biochemical 
characteristics and antibiotic susceptibility testing of enterococci. In: Gilmore 
MS, Clewell DB, Courvalin P, Dunny GM, Murray BE, Rice LB, editors. The 
enterococci: pathogenesis, molecular biology, and antibiotic resistance. 
Washington, D.C.: ASM; 2002. pp. 1–54. In.

5. Navarre WW, Schneewind O. Surface proteins of gram-positive bacteria and 
mechanisms of their targeting to the cell wall envelope. Microbiol Mol Biol-
ogy Reviews: MMBR. 1999;63(1):174–229.  h t t  p s : /  / d o  i .  o r g / 1 0 . 1 1 2 8 / M M B R . 6 3 . 1 . 
1 7 4 - 2 2 9 . 1 9 9 9     .   

6. Aakra A, Vebø H, Snipen L, Hirt H, Aastveit A, Kapur V, Dunny G, Murray BE, 
Nes IF. Transcriptional response of Enterococcus faecalis V583 to erythromy-
cin. Antimicrob Agents Chemother. 2005;49(6):2246–59.  h t t  p s : /  / d o  i .  o r g / 1 0 . 1 1 
2 8 / A A C . 4 9 . 6 . 2 2 4 6 - 2 2 5 9 . 2 0 0 5     .   

7. Sahm DF, Kissinger J, Gilmore MS, Murray PR, Mulder R, Solliday J, Clarke B. 
In vitro susceptibility studies of Vancomycin-resistant Enterococcus faecalis. 
Antimicrob Agents Chemother. 1989;33(9):1588–91.  h t t  p s : /  / d o  i .  o r g / 1 0 . 1 1 2 8 / 
A A C . 3 3 . 9 . 1 5 8 8     .   

8. Cressina E, Lloyd AJ, De Pascale G, James Mok B, Caddick S, Roper DI, Dowson 
CG, Bugg TD. Inhibition of tRNA-dependent ligase MurM from Streptococcus 
pneumoniae by phosphonate and sulfonamide inhibitors. Bioorg Med Chem. 
2009;17(9):3443–55. https:/ /doi.or g/10.10 16/j .bmc.2009.03.028.

9. Murray BE. The life and times of the Enterococcus. Clin Microbiol Rev. 
1990;3(1):46–65. https:/ /doi.or g/10.11 28/C MR.3.1.46.

10. Benson TE, Prince DB, Mutchler VT, Curry KA, Ho AM, Sarver RW, Hagadorn JC, 
Choi GH, Garlick RL. X-ray crystal structure of Staphylococcus aureus FemA. 
Struct (London England: 1993). 2002;10(8):1107–15.  h t t  p s : /  / d o  i .  o r g / 1 0 . 1 0 1 6 / s 
0 9 6 9 - 2 1 2 6 ( 0 2 ) 0 0 8 0 7 - 9     .   

11. York A, Lloyd AJ, Genio D, Shearer CI, Hinxman J, Fritz KJ, Fulop K, Dowson V, 
Khalid CG, S., Roper DI. (2021). Structure-based modeling and dynamics of 
MurM, a Streptococcus pneumoniae penicillin resistance determinant pres-
ent at the cytoplasmic membrane. Structure (London, England: 1993), 29(7), 
731–742.e6. https:/ /doi.or g/10.10 16/j .str.2021.03.001

12. Bui NK, Eberhardt A, Vollmer D, Kern T, Bougault C, Tomasz A, Simorre JP, 
Vollmer W. Isolation and analysis of cell wall components from Streptococcus 
pneumoniae. Anal Biochem. 2012;421(2):657–66.  h t t  p s : /  / d o  i .  o r g / 1 0 . 1 0 1 6 / j . a b . 
2 0 1 1 . 1 1 . 0 2 6     .   

13. Sorokina M, Merseburger P, Rajan K, Yirik MA, Steinbeck C. COCONUT online: 
Collection of Open Natural products database. J Cheminform. 2021;13(1):2. 
https:/ /doi.or g/10.11 86/s 13321-020-00478-9.

14. Km.Rakhi, Bhati R, Jain M, Singh AK, Muthukumaran J. Unveiling MurM inhibi-
tors in Enterococcus faecalis V583: a promising approach to tackle antibiotic 

https://doi.org/10.1186/s13062-024-00538-2
https://doi.org/10.1186/s13062-024-00538-2
https://doi.org/10.1086/367711
https://doi.org/10.1016/j.tim.2003.10.003
https://doi.org/10.1016/j.tim.2003.10.003
https://doi.org/10.1016/j.idc.2020.08.004
https://doi.org/10.1016/j.idc.2020.08.004
https://doi.org/10.1128/MMBR.63.1.174-229.1999
https://doi.org/10.1128/MMBR.63.1.174-229.1999
https://doi.org/10.1128/AAC.49.6.2246-2259.2005
https://doi.org/10.1128/AAC.49.6.2246-2259.2005
https://doi.org/10.1128/AAC.33.9.1588
https://doi.org/10.1128/AAC.33.9.1588
https://doi.org/10.1016/j.bmc.2009.03.028
https://doi.org/10.1128/CMR.3.1.46
https://doi.org/10.1016/s0969-2126(02)00807-9
https://doi.org/10.1016/s0969-2126(02)00807-9
https://doi.org/10.1016/j.str.2021.03.001
https://doi.org/10.1016/j.ab.2011.11.026
https://doi.org/10.1016/j.ab.2011.11.026
https://doi.org/10.1186/s13321-020-00478-9


Page 16 of 16Km.Rakhi et al. Biology Direct          (2024) 19:101 

resistance. J Biomol Struct Dyn. 2024:1–17.  h t t  p s : /  / d o  i .  o r g / 1 0 . 1 0 8 0 / 0 7 3 9 1 1 0 2 . 
2 0 2 4 . 2 4 1 5 6 8 6     .   

15. UniProt Consortium. UniProt: the Universal protein knowledgebase in 2023. 
Nucleic Acids Res. 2023;51(D1):D523–31.  h t t  p s : /  / d o  i .  o r g / 1 0 . 1 0 9 3 / n a r / g k a c 1 0 
5 2     .   

16. Krieger E, Joo K, Lee J, Lee J, Raman S, Thompson J, Tyka M, Baker D, Karplus 
K. Improving physical realism, stereochemistry, and side-chain accuracy 
in homology modeling: four approaches that performed well in CASP8. 
Proteins. 2009;77(Suppl 9):114–22. https:/ /doi.or g/10.10 02/p rot.22570. Suppl 
9.

17. Seeliger D, de Groot BL. Ligand docking and binding site analysis with PyMOL 
and Autodock/Vina. J Comput Aided Mol Des. 2010;24(5):417–22.  h t t  p s : /  / d o  i .  
o r g / 1 0 . 1 0 0 7 / s 1 0 8 2 2 - 0 1 0 - 9 3 5 2 - 6     .   

18. Laskowski RA. PDBsum: summaries and analyses of PDB structures. Nucleic 
Acids Res. 2001;29(1):221–2. https:/ /doi.or g/10.10 93/n ar/29.1.221\.

19. Sander T, Freyss J, von Korff M, Rufener C. DataWarrior: an open-source pro-
gram for chemistry aware data visualization and analysis. J Chem Inf Model. 
2015;55(2):460–73. https:/ /doi.or g/10.10 21/c i500588j.

20. Daina A, Michielin O, Zoete V. SwissADME: a free web tool to evaluate phar-
macokinetics, drug-likeness and medicinal chemistry friendliness of small 
molecules. Sci Rep. 2017;7:42717. https:/ /doi.or g/10.10 38/s rep42717.

21. Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of dock-
ing with a new scoring function, efficient optimization, and multithreading. J 
Comput Chem. 2010;31(2):455–61. https:/ /doi.or g/10.10 02/j cc.21334.

22. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ. 
AutoDock4 and AutoDockTools4: automated docking with selective receptor 
flexibility. J Comput Chem. 2009;30(16):2785–91.  h t t  p s : /  / d o  i .  o r g / 1 0 . 1 0 0 2 / j c c . 
2 1 2 5 6     .   

23. Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJ. 
GROMACS: fast, flexible, and free. J Comput Chem. 2005;26(16):1701–18.  h t t  p 
s : /  / d o  i .  o r g / 1 0 . 1 0 0 2 / j c c . 2 0 2 9 1     .   

24. Zoete V, Cuendet MA, Grosdidier A, Michielin O. SwissParam: a fast force 
field generation tool for small organic molecules. J Comput Chem. 
2011;32(11):2359–68. https:/ /doi.or g/10.10 02/j cc.21816.

25. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. 
Gapped BLAST and PSI-BLAST: a new generation of protein database search 
programs. Nucleic Acids Res. 1997;25(17):3389–402.  h t t  p s : /  / d o  i .  o r g / 1 0 . 1 0 9 3 / 
n a r / 2 5 . 1 7 . 3 3 8 9     .   

26. Hunt CP. The emergence of enterococci as a cause of nosocomial infection. 
Br J Biomed Sci. 1998;55(2):149–56.

27. Paulsen IT, Banerjei L, Myers GS, Nelson KE, Seshadri R, Read TD, Fouts DE, 
Eisen JA, Gill SR, Heidelberg JF, Tettelin H, Dodson RJ, Umayam L, Brinkac L, 

Beanan M, Daugherty S, DeBoy RT, Durkin S, Kolonay J, Madupu R, …, Fraser 
CM. Role of mobile DNA in the evolution of Vancomycin-resistant Enterococ-
cus faecalis. Sci (New York N Y). 2003;299(5615):2071–4.  h t t  p s : /  / d o  i .  o r g / 1 0 . 1 1 
2 6 / s c i e n c e . 1 0 8 0 6 1 3     .   

28. Rajagopal M, Walker S. Envelope structures of Gram-positive Bacteria. Curr 
Top Microbiol Immunol. 2017;404:1–44.  h t t  p s : /  / d o  i .  o r g / 1 0 . 1 0 0 7 / 8 2 _ 2 0 1 5 _ 5 0 
2 1     .   

29. Rich RL, Kreikemeyer B, Owens RT, LaBrenz S, Narayana SV, Weinstock GM, 
Murray BE, Höök M. Ace is a collagen-binding MSCRAMM from Enterococcus 
faecalis. J Biol Chem. 1999;274(38):26939–45.  h t t  p s : /  / d o  i .  o r g / 1 0 . 1 0 7 4 / j b c . 2 7 4 . 
3 8 . 2 6 9 3 9     .   

30. Vollmer W, Blanot D, de Pedro MA. Peptidoglycan structure and architecture. 
FEMS Microbiol Rev. 2008;32(2):149–67.  h t t  p s : /  / d o  i .  o r g / 1 0 . 1 1 1 1 / j . 1 5 7 4 - 6 9 7 6 . 2 
0 0 7 . 0 0 0 9 4 . x     .   

31. MacKerell AD, Banavali N, Foloppe N. Development of a CHARMM force field 
for nucleic acids. Biopolymers. 2000;56(4):257–65.

32. Abascal JLF, Vega C. A general purpose model for the condensed phases of 
water: TIP4P/2005. J Chem Phys. 2005;123(23):234505.

33. Kumari R, Kumar R, Lynn AM, Open Source Drug Discovery Consortium. 
g_mmpbsa—A GROMACS tool for high-throughput MM-PBSA calculations. J 
Chem Inf Model. 2014;54(7):1951–62.

34. Kumari R, Rathi R, Pathak SR, Dalal V. Structural-based virtual screening and 
identification of novel potent antimicrobial compounds against YsxC of 
Staphylococcus aureus. J Mol Struct. 2022;1255:132476.  h t t  p s : /  / d o  i .  o r g / 1 0 . 1 0 
1 6 / j . m o l s t r u c . 2 0 2 2 . 1 3 2 4 7 6     .   

35. Dalal V, Kumari R. Screening and identification of natural product-like com-
pounds as potential antibacterial agents targeting FemC of Staphylococcus 
aureus: an in-silico approach. ChemistrySelect. 2022;7(44):e202201728. https:/ 
/doi.or g/10.10 02/s lct.202201728.

36. Kumari R, Dalal V. Identification of potential inhibitors for LLM of Staphy-
lococcus aureus: structure-based pharmacophore modeling, molecular 
dynamics, and binding free energy studies. J Biomol Struct Dynamics. 
2021;39(15):9833–47.

37. Dalal V, Dhankhar P, Singh V& others. Structure-based identification of 
potential drugs against FmtA of Staphylococcus aureus: virtual screening, 
molecular dynamics, MM-GBSA, and QM/MM. Protein J. 2021;40(2):148–65.

Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations. 

https://doi.org/10.1080/07391102.2024.2415686
https://doi.org/10.1080/07391102.2024.2415686
https://doi.org/10.1093/nar/gkac1052
https://doi.org/10.1093/nar/gkac1052
https://doi.org/10.1002/prot.22570
https://doi.org/10.1007/s10822-010-9352-6
https://doi.org/10.1007/s10822-010-9352-6
https://doi.org/10.1093/nar/29.1.221\
https://doi.org/10.1021/ci500588j
https://doi.org/10.1038/srep42717
https://doi.org/10.1002/jcc.21334
https://doi.org/10.1002/jcc.21256
https://doi.org/10.1002/jcc.21256
https://doi.org/10.1002/jcc.20291
https://doi.org/10.1002/jcc.20291
https://doi.org/10.1002/jcc.21816
https://doi.org/10.1093/nar/25.17.3389
https://doi.org/10.1093/nar/25.17.3389
https://doi.org/10.1126/science.1080613
https://doi.org/10.1126/science.1080613
https://doi.org/10.1007/82_2015_5021
https://doi.org/10.1007/82_2015_5021
https://doi.org/10.1074/jbc.274.38.26939
https://doi.org/10.1074/jbc.274.38.26939
https://doi.org/10.1111/j.1574-6976.2007.00094.x
https://doi.org/10.1111/j.1574-6976.2007.00094.x
https://doi.org/10.1016/j.molstruc.2022.132476
https://doi.org/10.1016/j.molstruc.2022.132476
https://doi.org/10.1002/slct.202201728
https://doi.org/10.1002/slct.202201728

	Discovery of potential natural therapeutics targeting cell wall biosynthesis in multidrug-resistant Enterococcus faecalis: a computational perspective
	Abstract
	Introduction
	Methodology
	Selection of drug target – MurM and structure analysis
	In house library preparation from the COCONUT database and virtual high throughput screening
	Molecular docking studies of prioritized lead candidates with MurM
	Molecular dynamics simulations

	Results
	MurM structure and its binding pocket
	Virtual high throughput screening, physicochemical properties and ADMET analysis
	Interaction studies and interaction pattern analysis of MurM-ligand complexes
	Molecular dynamics simulations of MurM and its complexes

	Discussion
	Conclusion
	References


