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Abstract

Existing methods for predicting protein crystallization obtain high accuracy using various types of complemented features
and complex ensemble classifiers, such as support vector machine (SVM) and Random Forest classifiers. It is desirable to
develop a simple and easily interpretable prediction method with informative sequence features to provide insights into
protein crystallization. This study proposes an ensemble method, SCMCRYS, to predict protein crystallization, for which each
classifier is built by using a scoring card method (SCM) with estimating propensity scores of p-collocated amino acid (AA)
pairs (p = 0 for a dipeptide). The SCM classifier determines the crystallization of a sequence according to a weighted-sum
score. The weights are the composition of the p-collocated AA pairs, and the propensity scores of these AA pairs are
estimated using a statistic with optimization approach. SCMCRYS predicts the crystallization using a simple voting method
from a number of SCM classifiers. The experimental results show that the single SCM classifier utilizing dipeptide
composition with accuracy of 73.90% is comparable to the best previously-developed SVM-based classifier, SVM_POLY
(74.6%), and our proposed SVM-based classifier utilizing the same dipeptide composition (77.55%). The SCMCRYS method
with accuracy of 76.1% is comparable to the state-of-the-art ensemble methods PPCpred (76.8%) and RFCRYS (80.0%),
which used the SVM and Random Forest classifiers, respectively. This study also investigates mutagenesis analysis based on
SCM and the result reveals the hypothesis that the mutagenesis of surface residues Ala and Cys has large and small
probabilities of enhancing protein crystallizability considering the estimated scores of crystallizability and solubility, melting
point, molecular weight and conformational entropy of amino acids in a generalized condition. The propensity scores of
amino acids and dipeptides for estimating the protein crystallizability can aid biologists in designing mutation of surface
residues to enhance protein crystallizability. The source code of SCMCRYS is available at http://iclab.life.nctu.edu.tw/
SCMCRYS/.
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Introduction

Knowledge of three-dimensional protein structures is crucial

when investigating protein functions. The structural knowledge is

considered to be important when designing drugs involving the

protein functions [1]. In general, X-ray crystallography and

nuclear magnetic resonance spectroscopy are commonly used for

determining the structures of proteins. Approximately 80% of the

protein structures in Protein Data Bank (PDB) were obtained by

using the X-ray crystallography method [2]. In fact, these two

approaches involve very complex, time-consuming, laborious and

expensive processes. Because of the difficulties in determining the

crystal structures, the current protocol yields only a 30% success

rate [3]. Thus, many researchers take advantage of computational

approaches to directly predicting protein crystallization.

Canaves et al. [4] and Goh et al. [5] have proposed methods for

extracting informative features to predict protein crystallization.

Many sequence-based computational methods, including OB-

Score [6], SECRET [7], CRYSTALP [8], XtalPred [9], ParCrys

[10], CRYSTALP2 [11], SVMCRYS [12], PPCpred [13] and

RFCRYS [14], predict protein crystallization, as shown in Table 1.

Both support vector machine (SVM) [7,12,13] and the ensemble

mechanism [13,14] are well-known techniques to enhance

prediction accuracy. Because of the different design aims and

benchmarks used, it is not easy to assess which method and

features are the most effective. From the study in [14] and Table 1,

we can see that the SVM_POLY method (see the work [13]) using

SVM has the highest accuracy among the non-ensemble methods.

This method is one of the four SVM predictors that are integrated

into PPCpred [13]. The state-of-the-art ensemble methods
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PPCpred and RFCRYS have high prediction accuracies using the

SVM and Random Forest classifiers, respectively. PPCpred

utilizes a comprehensive set of inputs that are based on energy

and hydrophobicity indices, the composition of certain amino acid

types, predicted disorder, secondary structure, solvent accessibility,

and the content of certain buried and exposed residues [13].

RFCRYS predicts the protein crystallization by utilizing the

mono-, di- and tri-peptide compositions; the frequencies of amino

acids in different physicochemical groups; the isoelectric point; the

molecular weight; and the length of the protein sequences [14].

However, the mechanism of these two ensemble classifiers suffers

from low interpretability for biologists. It is not clear which

sequence features provide the essential contribution to the high

prediction accuracy.

Rather than increasing both the complexity of prediction

methods and the number of feature types while pursuing high

accuracy, the motivation of this study is to provide a simple and

highly interpretable method with a comparable accuracy from the

viewpoint of biologists. The p-collocated AA pairs (p = 0 for a

dipeptide) are shown to be significant in influencing or enhancing

protein crystallization because of the impact of folding corre-

sponding to the interaction between local AA pairs [8,11]. The p-

collocated AA pairs provide the additional information on which

the interaction between local AA pairs reflects besides the simple

AA composition. This study proposes an ensemble method,

SCMCRYS, to predict protein crystallization in which each

classifier is built by using a scoring card method (SCM) [15] with

estimating propensity scores of p-collocated AA pairs to be

crystallizable. Compared to SCM using dipeptide composition in

[15], the ensemble classifier of SCMCRYS makes the best use of

p-collocated AA pairs. The rules for deciding whether a protein is

crystallizable in the SCM classifier and SCMCRYS are very

simple according to a weighted-sum score and a voting method

from a number of SCM classifiers, respectively. However, the

experimental results show that the SCM classifier is comparable to

SVM_POLY and the SVM-based classifiers with p-collocated AA

pairs. The SCMCRYS method is comparable to the state-of-the-

art ensemble methods PPCpred and RFCRYS.

The propensity scores of dipeptides and amino acids to be

crystallizable are highly correlated with the crystallization ability of

sequences and can provide insights into protein crystallization.

Furthermore, the propensity scores of amino acids can also reveal

the relationship between crystallizability and physicochemical

properties such as solubility, molecular weight, melting point and

conformational entropy of amino acids. This study also proposes a

mutagenesis analysis method for illustrating the additional

advantage of SCM. We investigate the mutagenesis analysis for

enhancing protein crystallizability based on the estimated crystal-

lizability scores, solubility scores [15], and physicochemical

properties of amino acids. The analysis result reveals the

hypothesis that the mutagenesis of surface residues Ala and Cys

has large and small probabilities of enhancing protein crystal-

lizability in applying protein engineering approaches.

Table 1. Some existing methods for predicting protein crystallization from sequences.

Method Classifier Sequence Features (no. of feature types) Single/Ensemble Year

OB-Score [6] Single Threshold PCP (1) Single 2006

SECERT [7] SVM AAC, DPC, TPC (3) Single 2006

CRYSTALP [8] Naı̈ve Bayes AAC, PAAC (2) Single 2007

XtalPred [9] Logarithm Method AAC, PCP, SS (3) Single 2007

ParCrys [10] Parzen Window Density Estimator AAC, PCP, Low complexity region (3) Single 2008

CRYSTALP2 [11] Gaussian radial basis function network AAC, DPC, TPC, PAAC, PCP (5) Single 2009

SVMCRYS [12] SVM AAC, TPC, PCP, SS (4) Single 2010

PPCpred [13] SVM PCP, AAC, SS, Disorder, Solvent accessibility (5) Ensemble 2011

RFCRYS [14] Random Forest AAC, DPC, TPC, PCP, Sequence Length (5) Ensemble 2012

SCMCRYS SCM PAAC (1) Ensemble This
study

SS is defined as secondary structure.
AAC is defined as amino acid composition.
DPC is defined as dipeptide composition.
TPC is defined as tripeptide composition.
PCP is defined as physicochemical properties.
PAAC is defined as p-collocated amino acid pair composition.
PseAAC is defined as Pseudo amino acid composition.
doi:10.1371/journal.pone.0072368.t001

Table 2. Performance of the Init-SCM method using the p-
collocated AA pairs.

p-collocated Test Accuracy (%) MCC Sensitivity Specificity

p = 0 71.47 0.30 0.33 0.91

p = 1 71.72 0.30 0.32 0.92

p = 2 71.05 0.29 0.32 0.91

p = 3 71.42 0.30 0.37 0.89

p = 4 71.02 0.29 0.33 0.90

p = 5 71.14 0.28 0.27 0.93

p = 6 70.74 0.27 0.29 0.92

p = 7 70.21 0.25 0.19 0.96

p = 8 70.77 0.27 0.21 0.96

p = 9 70.13 0.26 0.31 0.90

Mean 70.9760.52 0.2860.02 0.2960.05 0.9160.02

doi:10.1371/journal.pone.0072368.t002

SCMCRYS: Predicting Protein Crystallization
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Results and Discussion

In this study, the crystallizable and non-crystallizable proteins

are predicted by the SCM-based ensemble method SCMCRYS.

We utilize training and test datasets called CRYS-TRN and

CRYS-TEST, respectively, derived from the work [13]. The

SCM, SVM and SCMCRYS classifiers using the features of p-

collocated AA pair information were constructed using CRYS-

TRN for predicting each protein in CRYS-TEST. The prediction

performances are evaluated in terms of the test accuracy,

Mathew’s correlation coefficient (MCC), Specificity and Sensitiv-

ity. In the experiments of evaluation and performance compar-

isons, we first establish the SCM classifiers to predict protein

crystallization by utilizing the p-collocated AA pairs. Then, these

SCM classifiers are further integrated into the proposed SCM-

based ensemble method SCMCRYS. We also propose the SVM

classifiers based on the same p-collocated AA pair composition for

performance comparisons. To compare with existing prediction

methods, the SCM and SCMCRYS are regarded as a single

classifier and ensemble method, respectively. Finally, the propen-

sity scores of p-collocated AA pairs to be crystallizable derived

from the SCM classifier are utilized to investigate factors for

enhancing the crystallization of proteins based on knowledge of

protein engineering.

Performance of SCM using p-collocated AA pairs
The SCM method consists of two stages. The first is the

initiation stage using a statistical approach to obtaining the initial

propensity scores of p-collocated AA pairs. The second is the

optimization stage optimizing the initial propensity scores by

utilizing an intelligent genetic algorithm [16]. The SCM method

without using the optimization stage is named Init-SCM.

The prediction performances of Init-SCM using the p-collocat-

ed AA pairs where p varies from 0 to 9 are shown in Table 2. The

mean performance of a single SCM classifier is the test accuracy of

70.97%, MCC = 0.28, Sensitivity = 0.29, and Specificity = 0.91.

The best classifiers are the SCMs using relative small values of p,

but the difference of accuracies is very small. For performance

Figure 1. Heat map of the propensity scores of dipeptides obtained from the SCM method.
doi:10.1371/journal.pone.0072368.g001

Table 3. Mean performance of the SCM method using the p-
collocated AA pairs.

p-collocated Test Accuracy (%) MCC Sensitivity Specificity

p = 0 73.9060.57 0.3860.02 0.4560.03 0.8860.01

p = 1 72.6360.77 0.3560.02 0.4660.03 0.8660.02

p = 2 71.2860.90 0.3260.01 0.4660.03 0.8460.03

p = 3 73.3060.59 0.3760.01 0.4960.03 0.8660.02

p = 4 73.1460.47 0.3760.01 0.4860.02 0.8660.01

p = 5 71.1060.48 0.3260.01 0.4760.02 0.8360.02

p = 6 72.7860.47 0.3660.01 0.4960.03 0.8560.02

p = 7 71.7360.59 0.3360.01 0.4760.03 0.8460.02

p = 8 72.8560.40 0.3660.01 0.4660.04 0.8660.02

p = 9 72.5560.84 0.3660.01 0.4960.03 0.8560.03

doi:10.1371/journal.pone.0072368.t003
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comparisons with existing prediction methods, the used bench-

mark dataset is not balanced that the number of positive samples

(crystallizable) is smaller than that of negative samples (non-

crystallizable). Therefore, the sensitivity accuracy is much lower

than the specificity accuracy. The threshold value of determining

the predicted class can be used to adjust the sensitivity and

specificity accuracies if one prefers Sensitivity to Specificity.

Due to the non-deterministic characteristic of genetic algorithms

which use randomicity mechanism resulting in non-constant

results, 10 independent runs were conducted to generate 10

SCM classifiers for each value of p where p = 0, 1, …, 9. The mean

performances of SCM using the p-collocated AA pairs are shown

in Table 3. The best SCM classifier is the one using dipeptide

composition (p = 0) that the test performance is 73.9060.57%,

MCC = 0.3860.02, Sensitivity = 0.4560.03, and Specificity

= 0.8860.01. The optimization stage improves SCM with

dipeptide composition that the test accuracy increases from

71.47% to 73.90%, and the MCC value increases from 0.30 to

0.38. In the following analysis, the propensity scores of dipeptides

obtained from the best result of SCM are adopted, as shown in

Figure 1.

To investigate the possibility that the top-ranked dipeptides with

high crystallizability scores tend to cluster in a certain region, we

conducted an experiment for investigating the distribution of

locations of high-score dipeptides in protein sequences. Figure 2

shows the distribution of locations of high-score dipeptides on the

two typical sequences 3K9I and Q4V970 correctly predicted as

crystallizable and non-crystallizable proteins with sequence scores

505.93 and 336.60, respectively. The result shows that both high-

score and low-score dipeptides were uniformly distributed on the

sequences. Furthermore, the number of high-score dipeptides in

the crystallizable protein is more than that of the non-crystallizable

protein. From this result, it might be observed that top-ranked

dipeptides do not tend to cluster in a certain region and

crystallizability is a global property of sequences for general

proteins.

Performance comparisons between SCMCRYS and
existing methods

To make the best use of p-collocated AA pairs, the proposed

SCMCRYS method is designed to be an SCM-based ensemble

classifier consisting of 100 SCM classifiers with p = 0 to 9 where

each value of p corresponds to 10 SCM classifiers. SCMCRYS

yields a test accuracy of 76.1%, MCC = 0.44, Sensitivity = 0.46,

and Specificity = 0.91. The ensemble approach of SCMCRYS

improves the test accuracy from 73.9% to 76.1%, compared with

SCM with dipeptide composition. The performance comparisons

of SCMCRYS with existing prediction methods are shown in

Table 4.

The reported results of existing methods in Table 4 come

directly from the work RFCRYS [14]. The compared non-

ensemble prediction methods with SCM are CRYSTALP2 [11],

SVMCRYS [12], SVM_POLY [13], and SVM with dipeptide

composition (SVM_DPC) presented in this study. The best

published method among these non-ensemble classifiers is the

SVM_POLY method with an accuracy of 74.6%, which uses

SVM with selected physiochemical properties, amino acids

Figure 2. Distribution of locations of high-score dipeptides on
the two typical sequences 3K9I and Q4V970. The distribution of
locations of high-score dipeptides on the two typical sequences 3K9I
and Q4V970 correctly predicted as crystallizable and non-crystallizable
proteins, respectively.
doi:10.1371/journal.pone.0072368.g002

Table 4. Comparisons of the proposed method SCMCRYS
with existing classifiers.

Classifiers Type

Test
Accuracy
(%) MCC

Sensiti
vity

Specifi
city

CRYSTALP2a single 55.3 0.19 0.74 0.46

SVMCRYSa single 56.3 0.21 0.75 0.47

SVM_POLYa single 74.6 0.40 0.48 0.88

SVM_DPC single 77.55 0.47 0.45 0.94

SCM (Dipeptide) single 73.90 0.38 0.45 0.88

PPCpreda ensemble 76.8 0.47 0.61 0.85

RFCRYSa ensemble 80.0 0.53 0.51 0.95

SCMCRYS ensemble 76.1 0.44 0.46 0.91

aResults come from the work RFCRYS [14].
doi:10.1371/journal.pone.0072368.t004

Table 5. Performances of SVM using amino acid composition
(AAC) and p-collocated AA pairs.

Feature Name Test Accuracy (%) MCC Sensitivity Specificity

AAC 73.12 0.35 0.38 0.91

p = 0 77.55 0.47 0.45 0.94

p = 1 77.02 0.46 0.49 0.91

p = 2 76.57 0.44 0.47 0.91

p = 3 76.65 0.44 0.44 0.93

p = 4 77.02 0.45 0.45 0.93

p = 5 76.46 0.44 0.48 0.91

p = 6 77.69 0.47 0.50 0.91

p = 7 76.37 0.44 0.44 0.93

p = 8 76.82 0.45 0.47 0.92

p = 9 77.52 0.47 0.51 0.91

Mean (p = 0,1, …, 9) 76.967 0.453 0.47 0.92

doi:10.1371/journal.pone.0072368.t005

SCMCRYS: Predicting Protein Crystallization
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compositions, and secondary structure information. CRYSTALP2

utilizes the normalized Gaussian radial basis function network with

the features of the p-collocated AA pairs and some physicochem-

ical properties of amino acids. SVMCRYS utilizes SVM with the

116 features of amino acid composition, tripeptide composition,

secondary structure, and physicochemical properties. The highest

accuracy of 77.55% among these non-ensemble classifiers comes

from SVM_DPC. The SCM method with 73.90% is slightly worse

than SVM_POLY and SVM_DPC, and much better than

CRYSTALP2 (55.3%) and SVMCRYS (56.3%).

The best ensemble method is RFCRYS with 80.0% using

Random Forest with several types of complemented features: the

mono-, di- and tri-peptide compositions, the frequencies of amino

acids in different physicochemical groups, the isoelectric point, the

molecular weight, and the length of protein sequences [14]. The

second best method is PPCpred [13] with a test accuracy of 76.8%

using a comprehensive set of features generated using several

information sources. From these results, we can derive the

following findings.

It can be well recognized that SVM_POLY obtains better

results (74.6%) than SCM because the former classifier was

developed using several types of complemented features (without

using dipeptide composition) and SVM having a more complicat-

ed decision boundary. Notably, the SCM classifier (73.9%) uses a

single type of features (i.e., dipeptide composition) and a single

Figure 3. The scatter plot of correlation between solubility
scores and crystallizability. scores where R = 0.52.
doi:10.1371/journal.pone.0072368.g003

Table 6. The propensity scores of amino acids to be crystallizable and related physicochemical properties.

Amino
acid

Crystallizability
Score (rank)

Solubility
Score (rank)

Melting
point (rank)

Molecular
weight (rank)

Conformational
Entropy (rank)

E-Glu 486.38 (1) 570.85 (2) 249 (13) 147.13 (14) 1.81 (17)

G-Gly 454.90 (2) 378.05 (14) 290 (5) 75.07 (1) 0 (1)

A-Ala 451.38 (3) 599.42 (1) 297 (3) 89.09 (2) 0 (1)

H-His 451.23 (4) 406.18 (12) 277 (10) 155.16 (16) 0.96 (9)

V-Val 449.23 (5) 424.17 (6) 293 (4) 117.15 (5) 0.51 (4)

I-Ile 445.63 (6) 414.75 (9) 284 (7) 131.17 (12) 0.89 (8)

Y-Tyr 429.83 (7) 339.80 (19) 344 (1) 181.19 (19) 0.98 (10)

M-Met 423.63 (8) 420.88 (7) 283 (8) 149.21 (6) 1.61 (14)

W-Trp 408.88 (9) 350.00 (18) 282 (9) 204.23 (20) 0.98 (10)

K-Lys 398.30 (10) 445.27 (4) 224 (17) 146.19 (13) 1.94 (18)

L-Leu 395.95 (11) 440.73 (5) 337 (2) 131.17 (8) 0.78 (7)

D-Asp 394.53 (12) 507.95 (3) 270 (11) 133.10 (11) 1.25 (12)

F-Phe 392.83 (13) 420.12 (8) 284 (6) 165.19 (17) 0.58 (6)

T-Thr 392.45 (14) 411.02 (10) 253 (12) 119.12 (15) 1.63 (15)

R-Arg 376.90 (15) 370.58 (16) 238 (14) 174.20 (18) 2.03 (19)

P-Pro 372.28 (16) 406.23 (11) 222 (18) 115.13 (4) 0 (1)

Q-Gln 364.80 (17) 400.02 (13) 185 (19) 146.15 (9) 2.11 (20)

C-Cys 357.43 (18) 363.83 (17) 178 (20) 121.16 (7) 0.55 (5)

N-Asn 346.48 (19) 376.65 (15) 236 (15) 132.12 (10) 1.57 (13)

S-Ser 271.93 (20) 334.10 (20) 228 (16) 105.09 (3) 1.71 (16)

R 1.00 0.52 0.54 0.05 20.32

R1 1.00 0.69 0.61 20.12 20.40

R2 1.00 0.93 0.90 0.30 20.60

R is correlation between crystallizability scores and other physicochemical properties of amino acids.
R1 is correlation between crystallizability scores and other physicochemical properties of sequences in a training dataset.
R2 is correlation between crystallizability scores and other physicochemical properties of sequences belonging to the set consisting of 20 and 20 sequences with the
highest and lowest crystallizability scores, respectively.
doi:10.1371/journal.pone.0072368.t006

SCMCRYS: Predicting Protein Crystallization
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threshold value as a decision boundary. The ensemble classifier

SCMCRYS (76.1%) is also comparable to the two ensemble

classifiers PPCpread (76.8%) and RFCRYS (80.0%). These results

reveal that the proposed SCM method with the propensity scores

of dipeptides performs well considering the two objectives:

maximizing interpretability of both classifier and used features.

Comparison between SCM and SVM using p-collocated
AA pairs

The SVM method is effective in predicting protein crystalliza-

tion [7,12,13]. We examine the performance of SVM with a radial

basis kernel function using the same p-collocated AA pair

composition (PAAC) and the amino acid composition (AAC) for

predicting protein crystallization. We used the LibSVM package

[17] to perform all SVM experiments. The values of cost and

gamma parameters of the SVM classifier are determined by using

a grid search with 10-fold cross-validation (10-CV). From Table 5,

the SVM+ACC classifier obtained a test accuracy of 73.12%,

MCC = 0.35, Sensitivity = 0.38 and Specificity = 0.91. We also

find that all of the SVM+PAAC classifiers outperform the

SVM+AAC classifier. These results emphasize the superiority of

PAAC over ACC in predicting protein crystallizability. The best

classifier of SVM+PAAC is obtained by using p = 6, which yields a

test accuracy of 77.69%, MCC = 0.47, Sensitivity = 0.50 and

Specificity = 0.91. There is no existing method of using the

classifier SVM+PACC in Table 4. The performance of this

classifier SVM+PAAC is also better than previously reported non-

ensemble classifiers such as SVM_POLY. Considering the case of

our interest, i.e., p = 0, the SVM classifier using dipeptide

composition achieves a good test accuracy of 77.55%,

MCC = 0.47, Sensitivity = 0.45 and Specificity = 0.94.

We propose the classifier SVM+PACC achieving the best

accuracy in predicting protein crystallization using the benchmark

dataset. It also reveals that the proposed SCM classifier using

dipeptide (73.90%) is very promising, compared to the SVM

classifier (77.55%) considering the simplicity, interpretability, and

implementation. The SCM classifier is more suitable method for

protein crystallization analysis because the biological meanings

embedded in the propensity score of dipeptides and amino acids

are the most desirable, discussed below.

Table 7. The five top-ranked physiochemical properties in the AAindex database having the highest absolute correlation with
crytalizability scores of amino acids.

Rank AAIndex Correlation R Description

1 AURR980101 0.61 Normalized positional residue frequency at helix termini N49 (Aurora-Rose, 1998)

2 MAXF760106 20.57 Normalized frequency of alpha region (Maxfield-Scheraga, 1976)

3 FASG760102 0.54 Melting point (Fasman, 1976)

4 NAKH900113 0.54 Ratio of average and computed composition (Nakashima et al., 1990)

5 SNEP660104 20.53 Principal component IV (Sneath, 1966)

doi:10.1371/journal.pone.0072368.t007

Figure 4. The three-dimensional structure of Rho GDP-
dissociation inhibitor. (a) The predicted structure of a wild type
Rho GDP-dissociation inhibitor and (b) The structure of a mutant Rho
GDP-dissociation inhibitor (NDelta66: K135,138,141A;L196F mutant;
1fso).
doi:10.1371/journal.pone.0072368.g004

Table 8. The datasets for evaluating the predictors of protein
crystallization, obtained from Mizianty and Kurgan [13].

Dataset
Number
in [13]

Number in
this study Final dataset

Positive Negative

CRYS-TRN 3587 3575 1197 2378

CRYS-TEST 3585 3572 1198 2374

Some sequences of short length and with non-amino acids are removed.
doi:10.1371/journal.pone.0072368.t008

SCMCRYS: Predicting Protein Crystallization
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Propensity scores of amino acids
The 20 propensity scores of amino acids to be crystallizable

derived from the scores of dipeptides (Figure 1) are shown in

Table 6. Glu, Gly, Ala, His and Val are the five top-ranked amino

acids to be crystallizable, and Ser, Asn, Cys, Gln and Pro are the

five top-ranked amino acids to be non-crystallizable. Protein

solubility is strongly correlated with the proteins’ probability of

yielding crystals [11,15,18]. The SCM method has been proposed

to predict protein solubility [15]. The propensity scores of amino

acids to be soluble derived from the optimized solubility scores of

dipeptides [15] are also given in Table 6. Because the solubility is

influenced by various condition factors such as temperature, pH,

buffer concentration, and various additives, the solubility scores of

amino acids are regarded as a set of generic propensities. Figure 3

shows the scatter plot of correlation between solubility and

crystallizability scores of amino acids, and the Pearson’s correla-

tion R = 0.52. The ranks of propensity scores (crystallizability,

solubility) for Glu, Gly and Ala are (1, 2), (2, 14) and (3, 1),

respectively (Table 6). We can find that Glu and Ala are promising

amino acids in applying the protein engineering approach to

enhancing crystallizability considering both solubility and crystal-

lizability scores. Similarly, Cys, Asn and Ser have high propensities

to be non-crystallizable that the ranks of Cys, Asn and Ser are (18,

17), (19, 15) and (20, 20), respectively.

To further understand the relationship between crystallizability

and solubility scores of protein sequences obtained from using

SCM, let R1 be the Pearson’s correlation between two sets of

sequence scores. The sequence scores are the average of

propensity scores or physicochemical properties of amino acids

in a sequence. Additionally, let R2 be the Pearson’s correlation

between two sets of 40 sequence scores. The difference between R1

and R2 is that only 20 and 20 sequences of having the highest and

lowest sequence scores with high confidence of estimation,

respectively, are considered instead of the whole data set. We

calculate the solubility and crystallizability scores of protein

sequences in the training data set CRYS-TRN. The correlations

between the solubility and crystallizability scores of sequences are

R1 = 0.69 and R2 = 0.93. The high correlation agrees that protein

solubility is strongly correlated with the proteins’ probability of

yielding crystals. The high correlation also reveals that SCM is

reliable in producing the solubility and crystallizability scores.

Relationship between crystallization scores and
physicochemical properties

The crystallization behaviours are affected by the biochemical

and biophysical properties of proteins such as conformational

homogeneity, solubility and stability [18]. To further investigate

the relationship between the crystallization scores and physico-

chemical properties of amino acids, we analysed all the 531

physicochemical properties in the AAindex database [15,19]. The

five top-ranked physiochemical properties having the largest

absolute correlation values are given in Table 7. The property

AURR980101 described as ‘‘Normalized positional residue

frequency at helix termini N49’’ is at rank 1 with Pearson’s

correlation R = 0.61. The property MAXF760106 described as

‘‘Normalized frequency of alpha region’’ is at rank 2 with

correlation R = 20.57. These two properties are related to the

Figure 5. The system flowchart of the SCMCRYS method.
doi:10.1371/journal.pone.0072368.g005
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residues in the alpha-helix. Notably, the propensity of residues in

the alpha-helix structure of thermophilic proteins to be soluble is

relatively high [15]. It is often assumed on the basis of somewhat

anecdotal evidence that thermostable proteins are more readily

crystallizable [20]. Remarkably, the property FASG760102

described as ‘‘melting point’’ is at rank 3. All the values of melting

point, molecular weight and conformational entropy for all amino

acids are listed in Table 6.

The Pearson’s correlation between melting point and crystal-

lizability scores of amino acids is R = 0.54. The correlations

between the sequence scores for melting point and crystallizability

scores are R1 = 0.61 and R2 = 0.90. The amino acids with high

melting points are crystalline solids. Consider Glu and Ala with

high propensity scores of crystallizability and solubility mentioned

above. The melting point 249uC of Glu is relatively low ranked at

13, compared with that of Ala (297uC) ranked at 3. Ala with a high

melting point and a small molecular weight (at rank 2) is unusual

for small organic molecules. The side chain conformational

entropy of individual amino acids reported in [21] is also utilized

to give a suggestion of considering the mutation point for

enhancing crystallizability [22].

Smaller amino acids are reasonably selected as candidates in

enhancing crystallizability because they have lower conformation-

al entropy to mediate crystal contact [14,23]. It is desirable to

know whether the role of small molecular weight is important for

enhancing crystallization. The correlations between the molecular

weight and crystallizability scores for amino acids and sequences

are R = 0.05, R1 = 20.12 and R2 = 0.30. The results reveal that

the molecular weight cannot be the individual factor only

considered in the mutagenesis analysis. The correlations between

the conformational entropy and crystallizability scores are

R = 20.32, R1 = 20.4 and R2 = 20.6. The inverse correlation

R2 = 20.6 reveals that the conformational entropy is obviously

relative to crystallizability only for the extreme case of crystalliz-

able and non-crystaliizable proteins.

It is hypothesized that mutagenesis of surface residues such as

Lys and Glu to Ala or other smaller amino acids might

systematically improve protein crystallization, indicated in the

study [24]. Large flexible amino acids on the surface, such as Lys,

Glu and Gln, constitute an impediment to inter-molecular

interaction and consequently to protein crystallization [20]. Glu

has high conformational entropy while Ala has the lowest

conformational entropy. Considering the propensity scores of

crystallizability and solubility, as well as melting point, molecular

weight and conformational entropy, it is feasibly hypothesized that

the mutagenesis of surface residue Ala has large probability of

enhancing crystallizability in a generalized condition for applying

protein engineering approaches.

Cys, Asn and Ser have the lowest propensity scores to be

crystallizable mentioned above. Ser has small molecular weight,

high conformational entropy and a low melting point. Cys has the

lowest melting point (rank 20), moderate molecular weight and low

conformational entropy. Compared with Ser, Asn has a slightly

higher melting point and larger propensity scores of crystal-

lizability and solubility. The mutation of Cys to small molecule can

improve protein solubility helping in crystallization [25]. Consid-

ering the five factors as those in analysing Ala shown in Table 6, it

is hypothesized that Cys has small crystallizability and Ser is

slightly better than Cys considering the lowest melting point 178uC
of Cys.

Surface mutagenesis of using Ala, Cys and Ser
Several approaches have been developed to enhance protein

crystallizability. With the protein engineering approach to

increasing the success rate in crystallization, the substitution of

single-site amino acids can dramatically affect the crystallization of

proteins. However, it is reported that the question of which

substituting residue would perform better than others is more

difficult to answer [23]. Many studies further presented advantages

of single-site mutations for increasing the solubility of proteins and

obtained higher quality of crystals [20].

From the analysis of Table 6, the mutagenesis of surface residue

Ala has large probability of enhancing crystallizability as a

substituted mutant. The most frequently used mutation of XRAla

(replacing amino acid X by Ala) are GluRAla and LysRAla from

the literature survey. It is reasonable that the mutation of AlaRX

in enhancing crystallizability in literature is rare and ineffective.

We found one mutation of AlaRCys which is not effective in

enhancing crystallizability [26]. This result of AlaRCys can be

well recognized from the analysis of Table 6. The conformational

entropy reduction of surface residues in the surface entropy

reduction strategy is considered as a main reason for the XRAla

mutation [23,24,27–34] where Ala has the lowest conformational

entropy. The amino acids Glu and Lys having the (conformational

entropy, rank) equal to (1.81, 17) and (1.94, 18), respectively, are

frequently replaced by Ala. However, the mutation LysRAla in

these studies [23,24,28–33,35] has larger probability than the

mutation GluRAla in these studies [23,27–30,32–36] of success-

fully enhancing crystallizability. This statistic finding can be

explained by analyzing the results of SCM that Glu has the largest

crystallizability score and the second largest solubility score. In

principle, the crystallization of proteins is based on rational

mutagenesis of surface residues to create patches with low overall

conformational entropy in order to facilitate the formation of

crystal contacts [20]. Improving solubility of proteins is another

reason for the mutation of XRAla [37] because of this procedure

is necessary in protein crystallization [20] and Ala has the largest

solubility score.

We would examine the mutations CysRX and XRCys from

literature survey where Cys has the ranks of crytallizabilitty,

solubility and melting point equal to 18, 17 and 20, respectively.

Hence, Cys is possibly the important obstacle for protein

crystallization. Most mutations of CysRX enhanced crystal-

lizability according to the reasons of enhancing protein solubility

and decreasing aggregation and molecular size [37–42]. Ser is a

well-known substituted mutant of Cys because Ser can conserve a

similar protein function of Cys [37,39–42]. The mutation

CysRAla could be the perfect mutation of enhancing crystal-

izability according to our hypothesis in this study, which is

reported as successful enhancement in the study [38]. The

mutations of XRCys are believed to enhance crystallizability for

obtaining useful heavy-atom derivation [26,43–45]. However, all

mutations of XRCys in these studies [26,43–45] could not

successfully improve crystallizability. This scenario is reasonable

according to our hypothesis.

Ser has the lowest crystallizability and solubility scores.

Therefore, the mutations of SerRX should increase the proba-

bility of enhancing protein crystallization for the same reason with

Cys. We found the mutations of SerRCys for obtaining useful

heavy-atom derivatives to enhance crystallizability [43–45].

However, all these mutations of SerRCys in the studies [43–45]

fail to increase the crystallizability. It might be reasonable that the

mutation CysRX demonstrated the high probability of enhancing

protein crystallization [37–42]. Relatively few mutations of

XRSer were conducted to enhance crystallizability. However,

some results of the mutations XRSer demonstrated the successful

enhancement of protein crystallization [23]. From the previous

discussion, the mutations of CysRSer resulted in enhancing
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crystalizability [37,39,41,42]. Furthermore, the replacements of

Glu, Lys and Gln are mostly successful for the reason of reducing

conformational entropy [23]. The ranks of conformational entropy

for Ser, Glu, Lys and Gln are 16, 17, 18 and 20, respectively.

Interestingly, from Table 6, Ser is the only one having high

conformational energy among the top-five amino acids with the

lowest molecular weight (rank 3). The results reported by Cooper

et al. [23] showed that both Ser and His residues performed less

well, but these two amino acids were better than the wild type in

promoting protein crystallization. Further studies are needed to

evaluate effectiveness of the mutation XRSer in increasing the

probability of enhancing protein crystallization for some specific

proteins and conditions.

Discussion of rational mutagenesis of surface residues
The problem of which substituting surface residue would

perform better than others involves many interior and exterior

factors which determine the ability of protein crystallization.

Considering different design aims for specific proteins, it is

desirous but difficult to accurately determine mutations for

enhancing crystallizability. This study investigates mutagenesis

analysis based on the estimated scores of crystallizability and

solubility using SCM and the biophysical properties of amino acids

such as melting point, molecular weight and conformational

entropy. The literature survey and our analysis reveal the

hypothesis that the mutagenesis of surface residues Ala and Cys

has large and small probabilities of enhancing crystallizability

served as substituted mutants in a generalized condition. The

ranks in terms of propensity scores of amino acids to be

crystallizable and related physicochemical properties (Table 6)

provide guide information of mutagenesis.

Longenecker et al. [24] reported that the LysRAla mutations

enhanced the crystallization of human RhoGDI mutants compared

to the wild type (not crystallizable). Figure 4 shows the three-

dimensional structure of Rho GDP-dissociation inhibitor with a) the

predicted structure of its wild type obtained by (PS)2 (Protein

Structure Prediction Server) [46], and b) its NDelta66:

K135,138,141A;L196F mutant, 1fso [24], which are generated

using PyMOL [47]. Mutation of large flexible surface amino acids to

the smaller residues with no conformational entropy might lead to

enhancement of crystallization. Additionally, the ranks of Ala are

higher than those of Lys in all aspects of propensity scores and

biophysical properties. All the results of single and triple mutants

support our hypothesis to enhance proteins’ ability to crystallize

[24].

Conclusions
We have proposed an ensemble method SCMCRYS for

prediction of protein crystallization based on a scoring card

method (SCM) with the sequence features of p-collocated amino

acid pairs. The SCM classifier determines the crystallization of a

sequence based on a weighted-sum score. The weights are the

composition of the p-collocated amino acid pairs, and the

propensity scores of the amino acid pairs are estimated using a

statistic with optimization approach. SCMCRYS predicts the

crystallization using a simple voting method from a number of

SCM classifiers. Not like existing prediction methods in pursuit of

high accuracy, the SCM-based prediction method aims to

maximize both the simplicity and interpretability of used features

and classification method. The experimental results show that the

SCM-based methods are comparable to the SVM-based methods

in terms of accuracy for single and ensemble classifiers.

In this study, we propose the prediction method (SVM_DPC) of

using SVM and the dipeptide composition feature, which has the

highest accuracy, compared with existing SVM-based single-

classifier methods. The result shows that the feature of dipeptide

composition play an important role in the estimation of crystal-

lizability. The proposed SCM-based method makes the best use of

dipeptide composition in achieving high prediction accuracy and

quantifying the dipeptide’s crystallizability using the estimated

propensity scores of dipeptides to be crystallizable. Although the

protein crystallizability is influenced by various condition factors

and not easy to estimate, the weighted-sum score of a sequence for

determining whether it is crystallizable or not can be served as an

index of crystallizability.

Many applications of protein engineering have shown that some

effective single-site mutations could dramatically enhance the

crystallizability of proteins. However, how to determine the

substitution of amino acids for single and multiple mutants is not

clear. The crystallizability scores of amino acids for general

proteins in a generalized condition are helpful to mutagenesis

analysis. Based on the estimated scores of crystallizability and

solubility using SCM, melting point, molecular weight and

conformational entropy of amino acids, the mutagenesis analysis

reveals the hypothesis that the mutagenesis of surface residues Ala

and Cys has large and small probabilities of enhancing crystal-

lizability. The SCM-based method has potential ability to generate

various propensity scores of dipeptides for predicting protein

functions that the features of dipeptide composition play an

important role in the prediction.

Materials and Methods

Dataset
We obtained the training and test sets containing 3587 and

3585 protein sequences, respectively, from the work [13]. The

protein similarity among sequences has been reduced 25% [13].

Two sequences with lengths of 9 and 11 were removed for using

the p-collocated AA pair (p = 0 to 9). We also removed several

protein sequences containing special characters, such as X and U.

In our experiment, we considered the training set CRYS-TRN

and independent test set CRYS-TEST, as summarized in Table 8.

CRYS-TRN consists of 1197 crystallizable and 2378 non-

crystallizable proteins.

Scoring card method
The scoring card method (SCM) is a general-purpose prediction

method for protein functions from primary protein sequences,

especially for the functions that the dipeptide composition plays an

important role in determining the functions. The SCM method

consists of 1) both positive and negative datasets as input, 2) the

statistic method for generating an initial scoring card based on

dipeptide composition, 3) derivation of propensity scores of amino

acids, 4) the optimization method for refining the scoring card,

and 5) establishment of a binary SCM classifier with a threshold

value.

The procedure of the SCM method is briefly described below.

More details about SCM can be found in [15].

N Step 1. Prepare a training dataset CRYS-TRN consisting of

two subsets for positive (crystallizable) and negative (non-

crystallizable) classes.

N Step 2. Generate an initial scoring card consisting of 400

propensity scores of dipeptides by using a statistical approach.

2.1) Calculate the numbers of 400 dipeptides in each class.

SCMCRYS: Predicting Protein Crystallization
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2.2) Normalize the dipeptide composition by dividing the

numbers using the total numbers of dipeptides in each

class.

2.3) Obtain the propensity score of each individual dipeptide

by subtracting the score of the non-crystallizable

sequence from that of the crystallizable sequence.

2.4) Normalize the scores of all dipeptides into the range [0,

1000].

N Step 3. Derive the propensity score of each amino acid B by

averaging the 40 scores of dipeptides BX and XB where B and

X can be any amino acid.

N Step 4. Optimize the dipeptide scoring card (Scard) consisting

of 400 scores by using an intelligent genetic algorithm (IGA)

[16]. In the chromosome representation, the 400 real-valued

variables are encoded in a chromosome of IGA, which is in the

range [0, 1000]. The fitness function of IGA is to maximize the

prediction accuracy in terms the area under the ROC curve

(AUC) [48] and maximize the Pearson’s correlation coefficient

(the R value) between the initial and optimized scores of amino

acids, described as follows (W1 = 0.9 and W2 = 0.1 in this

study). To avoid from overfitting, a 10-CV assessment is

utilized in evaluating the fitness function [15].

MaxFit(Scard)~W1|AUCzW2|R ð1Þ

N Step 5. The prediction of a sequence P bases on the scoring

function S(P), i.e., a weighted-sum score, and a threshold

value determined by maximizing the prediction accuracy of

using the training dataset.

S(P)~
X400

i~1

wiSi ð2Þ

where wi is the frequency of the dipeptide composition of P,

and Si is the score of the i-th dipeptide. P is classified as the

positive class when S(P) is greater than the threshold value;

otherwise, P is the negative class.

Ensemble scoring card method
The use of ensembles is a well-known approach to advancing

performance in the aspects of prediction accuracy and robustness,

especially when the size of the training dataset is not large enough.

The proposed ensemble SCM method SCMCRYS utilizes the p-

collocated amino acid pairs [8] (the collocated dipeptides, as

defined in [11]) to predict protein crystallization. Previously, the p-

collocated AA pairs have been proposed as crucial features for

improving predictive performance [8,11]. For CRYSTALP2, the

largest value of p used is four. In this study, p = 0, 1, …, 9. The

SCM method of utilizing the p-collocated AA pairs (p?0) is similar

to the SCM method using dipeptides (p = 0). The system flowchart

of SCMCRYS is shown in Figure 5.

Due to the use of randomicity mechanism, genetic algorithms

are characterized as a non-deterministic method that the results of

all independent runs are not the same. Therefore, 10 independent

runs were conducted to generate 10 SCM classifiers from

optimizing the scores of the Init-SCM method for each value of

p where p = 0, 1, …, 9. The SCMCRYS method predicts an

unknown protein by taking a majority vote of 100 SCM classifiers.
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