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Abstract Protein polarization underlies differentiation in metazoans and in bacteria. How

symmetric polarization can instate functional asymmetry remains elusive. Here, we show by super-

resolution photo-activated localization microscopy and edgetic mutations that the bitopic zinc-

finger protein ZitP implements specialized developmental functions – pilus biogenesis and

multifactorial swarming motility – while shaping distinct nanoscale (bi)polar architectures in the

asymmetric model bacterium Caulobacter crescentus. Polar assemblage and accumulation of ZitP

and its effector protein CpaM are orchestrated in time and space by conserved components of the

cell cycle circuitry that coordinate polar morphogenesis with cell cycle progression, and also act on

the master cell cycle regulator CtrA. Thus, this novel class of potentially widespread multifunctional

polarity regulators is deeply embedded in the cell cycle circuitry.

DOI: 10.7554/eLife.18647.001

Introduction
Some regulatory proteins that execute important developmental, cytokinetic or morphogenetic func-

tions are localized in monopolar fashion, whereas others are sequestered to both cell poles (Dwor-

kin, 2009; Martin and Goldstein, 2014; Shapiro et al., 2002; St Johnston and Ahringer, 2010). It

is unclear if bipolar proteins can confer specialized functions from each polar site, but examples of

proteins with a bipolar disposition have been reported for eukaryotes and prokaryotes (Davis et al.,

2013; Martin and Berthelot-Grosjean, 2009; Tatebe et al., 2008; Treuner-Lange and Sogaard-

Andersen, 2014).

The synchronizable Gram-negative a-proteobacterium Caulobacter crescentus (henceforth Caulo-

bacter) is a simple model system to study pole-specific organization and cell cycle control

(Tsokos and Laub, 2012). The Caulobacter predivisional cell is overtly polarized and spawns two

morphologically dissimilar and functionally specialized daughter cells, each manifesting characteristic

polar appendages (Figure 1A). The swarmer progeny is a motile and non-replicative dispersal cell

that samples the environment in search of food. It harbours adhesive pili and a single flagellum at

one pole and is microscopically discernible from the stalked cell progeny, a sessile and replicative

cell that features a stalk, a cylindrical extension of the cell envelope, on one cell pole. While the

stalked cell resides in S-phase, the swarmer cell is in a quiescent G1-like state from which it only exits

concomitant with the differentiation into a stalked cell. During this G1fiS transition, the polar flagel-

lum and pili of the swarmer cell are eliminated and replaced by the stalk that elaborates from the

vacated cell pole. Upon sequential transcriptional activation of developmental factors during the cell
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cycle (Panis et al., 2015), the nascent stalked cell re-establishes polarization and ultimately gives rise

to an asymmetric pre-divisional cell that yield a swarmer and a stalked progeny.

The GcrA transcriptional regulator predominates in early S-phase (Holtzendorff et al., 2004)

(Figure 1A–B). It accumulates during the G1fiS transition and activates expression of polarity fac-

tors that are required for pilus or flagellum biogenesis and cytokinetic components (Davis et al.,

2013; Fioravanti et al., 2013; Murray et al., 2013; Quon et al., 1996; Viollier et al., 2002b)

(Figure 1A–B). Among GcrA target promoters, is the promoter controlling expression of the PodJ

polar organizer that localizes to the pole opposite the stalk and directs assembly of the Caulobacter

pilus assembly (cpa) machine at that site. In this cascade, PodJ recruits the cytoplasmic CpaE protein

that then promotes the localization and assembly of CpaC secretin localization (Figure 1B)

(Viollier, 2002a). Another key promoter controlled by GcrA is the one driving expression of the mas-

ter cell cycle regulator CtrA that induces the synthesis of a second wave of polar and morphogenesis

factors in late S-phase including the cpa operon (Figure 1B). The abundance of CtrA and GcrA is

regulated at the level of synthesis and degradation (Collier et al., 2006; Domian et al., 1997)

and as a result, cell division spawns a swarmer and stalked cell progeny containing CtrA and GcrA,

respectively.

An important polarity determinant in the a-proteobacteria is the conserved matrix protein PopZ

(Figure 1A) that organizes poles by forming a molecular lattice that traps polar determinants and

effectors (Bowman et al., 2008; Deghelt et al., 2014; Ebersbach et al., 2008; Grangeon et al.,

2015; Laloux and Jacobs-Wagner, 2013). PopZ is bipolar in the Caulobacter predivisional cell and

it interacts directly with numerous cell cycle kinases, the ParAB chromosome segregation proteins

and cell fate determinants (Holmes et al., 2016). Here, we dissect at the genetic and cytological

level the polar localization and function of two poorly characterized trans-membrane proteins, the

zinc-finger protein ZitP and the CpaM effector protein, that are polarly localized and that execute

eLife digest Living cells become asymmetric for many different reasons and how they do so has

been a long-standing question in biology. In some cells, the asymmetry arises because a given

protein accumulates at one side of the cell. In particular, this process happens before some cells

divide to produce two non-identical daughter cells that then go on to develop in very different ways

– which is vital for the development of almost all multicellular organisms. The single-celled bacterium

Caulobacter crescentus also undergoes this type of asymmetric division. The polarized Caulobacter

cell produces two very different offsprings – a stationary cell and a nomadic cell that swims using a

propeller-like structure, called a flagellum, and has projections called pili on its surface.

Before it divides asymmetrically, the Caulobacter cell must accumulate specific proteins at its

extremities, or poles. Two such proteins are ZitP and CpaM, which appear to have multiple roles

and are thought to interact with other factors that regulate cell division. However, little is known

about how ZitP and CpaM become organized at the poles at the right time and how they interact

with these regulators of cell division.

Mignolet et al. explored how ZitP becomes polarized in Caulobacter crescentus using a

combination of approaches including biochemical and genetic analyses and very high-resolution

microscopy. This revealed that ZitP accumulated via different pathways at the two poles and that it

formed distinct structures at each pole. These structures were associated with different roles for

ZitP. While ZitP recruited proteins, including CpaM, required for assembly of pili to one of the poles,

it acted differently at the opposite pole.

By mutating regions of ZitP, Mignolet et al. went on to show that different regions of the protein

carry out these roles. Further experiments demonstrated that regulators of the cell division cycle

influenced how ZitP and CpaM accumulated and behaved in cells, ensuring that the proteins carry

out their roles at the correct time during division. These findings provide more evidence that

proteins can have different roles at distinct sites within a cell, in this case at opposite poles of a cell.

Future studies will be needed to determine whether this is seen in cells other than Caulobacter

including more complex, non-bacterial cells.

DOI: 10.7554/eLife.18647.002
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Figure 1. Cell cycle profile and phylogeny of ZitP and CpaM. (A) Scheme depicting the polarized factors PopZ, ZitP and CpaM during the cell cycle of

the dimorphic bacterium C. crescentus. (B) Pilus assembly pathways and global dependencies of the two master cell cycle regulators GcrA and CtrA on

the expression of the polar factors PodJ, CpaE, ZitP, CpaM and CpaC that control pilus biogenesis. Red and black dashed lines highlight transcriptional

activation and polar recruitment, respectively. (C) Schematic representation (drawn to scale) of ZitP (blue) and CpaM (yellow). ZnR: zinc finger domain;

Figure 1 continued on next page
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multiple regulatory functions. We unearthed two separate localization pathways for each cell pole,

one PopZ-dependent and another that is PopZ-independent, and we provide evidence by photo-

activated localization microscopy (PALM) and by genetic dissection that each polar cluster has a dis-

tinctive architecture and a specialized function.

Results

ZitP and CpaM are required for pilus biogenesis.
As pili are necessary for infection by the lytic caulophage CbK (jCbK) (Skerker and Shapiro, 2000),

we specifically sought mutants in pilus assembly factors encoded outside of the major pilus assembly

cpa gene locus (pilA-cpaA-K) (Christen et al., 2016; Skerker and Shapiro, 2000). To this end, we

conducted himar1-transposon (Tn) mutagenesis of wild-type (WT) Caulobacter in the presence of

jCbK (see Methods) and recovered mutants with Tninsertions in CCNA_02298, renamed here zitP

(zinc-finger targeting the poles) because of the pleiotropic roles detailed below, or in cpaM

(CCNA_03552) (Figure 1C) (Marks et al., 2010). While both genes have previously been implicated

in polar functions and their transcription is cell cycle-regulated (Christen et al., 2016;

Fioravanti et al., 2013; Fumeaux et al., 2014; Hughes et al., 2010; McGrath et al., 2007), they

are poorly characterized. The zitP gene is predicted to encode a 311-residue bitopic trans-mem-

brane (TM) protein harbouring a CXXC-(X)19-CXXC motif that binds a zinc ion (zinc_ribbon_5 or

PF13719 superfamily, residues 1-37) at the cytoplasmic N-terminus (Bergé et al., 2016) and a con-

served domain-of-unknown function (DUF3426, residues 128-245) in the C-terminal region that is

predicted to reside in the periplasm (Figure 1C). The cpaM gene codes for a 394-residue protein

harbouring a single N-terminal TM domain and a C-terminal CE4_DAC2-like polysaccharide deacety-

lase domain predicted to be periplasmic (Figure 1C). ZitP and CpaM are not restricted to the Caulo-

bacter lineage as BLASTP searches revealed orthologs in many a-proteobacterial clades

(Figure 1D). To confirm the phenoytpes of the Tn insertion mutants, we engineered strains with an

in-frame deletion in zitP (DzitP) or cpaM (DcpaM) and found that the mutants no longer supported

plaque formation (lysis) by the pilus-specific bacteriophage jCbK. By contrast, plaques were still

formed by the S-layer specific caulophage jCr30 (Edwards and Smit, 1991) (Figure 2A), showing

that mutations in cpaM or zitP prevent infection of jCbK, but not all phages. This defect was cor-

rected upon expression of either ZitP or CpaM from an ectopic locus in DzitP or DcpaM cells, respec-

tively (Figure 2A).

Next, we conducted time-course adsorption assays and found the adsorption kinetics of DzitP

and DcpaM cells to be substantially compromised compared to WT cells (Figure 2B). The jCbK

adsorption kinetics of the mutants closely resemble those for DcpaC cells that cannot assemble pili

because they lack the CpaC secretin (Skerker and Shapiro, 2000). Moreover, immunoblotting

revealed that DzitP and DcpaM cells do not accumulate the modified form of CpaC, CpaC*

(Figure 2C–D). A comparable reduction in CpaC* abundance has been previously reported for

DcpaE, DpodJ and DpleA cells that no longer assemble a polar CpaC pilus channel in the outer mem-

brane and cannot be infected by jCbK (Viollier and Shapiro, 2003; Viollier et al., 2002b). How-

ever, CpaC* accumulates in DpilA cells (Figure 2C), suggesting that the CpaC channel forms

independently of PilA. To test whether DzitP and DcpaM cells assemble a pilus filament on the cell

surface, we conducted shearing assays followed by immunoblotting using antibodies to the PilA

pilin, the subunit of the pilus filament (Figure 2E) (Skerker and Shapiro, 2000). Whereas PilA was

efficiently released from WT cells into the supernatant by shearing, no PilA was detectable in the

Figure 1 continued

TM: transmembrane domain, C: cysteine. Arrowheads below each protein pinpoint the site of truncation due to transposon insertion in the coding

sequence. The large triangle on top of ZitP shows the 2 amino acid residues deleted in the ZitPGAP variant and the small triangle depicts the position of

residue 133 where the ZitP coding sequence is truncated in the ZitP1-133 variant. (D) Conservation of ZitP (blue), CpaM (yellow) and CpaC (purple) across

the a-proteobacterial clades. The phylogenetic tree was built in CLC Main Workbench (http://www.clcbio.com/products/clc-main-workbench/) from 16S

RNA alignments based on the Neighbor Joining method (Juke Cantor substitution model) with 100 bootstrap replicates. Empty boxes mean that no

ortholog was found in the genome. Scale bar, 0.15 substitution per site.
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Figure 2. Functional dichotomy in ZitP and effects on polar morphogenesis. (A) Bacteriophage infection assays of WT, DzitP, DzitP;fliGD306G and DcpaM

mutant cells. Cells harbour empty pMT335 or a complementing plasmid (pMT335 backbone) and were grown in the absence of vanillate. No xylose was

added to the agar for the phage assay on DcpaM; Pxyl-dendra2-cpaM cells. The phages jCbK and jCr30 were spotted with serial dilution on C.

crescentus embedded in top agar. Sensitivity to phages is indicated by plaques (lysis). (B) Adsorption kinetics of jCbK to WT and mutant cells. (C)

Figure 2 continued on next page
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supernatants of DcpaE, DzitP and DcpaM cells after shearing (Figure 2E), even though PilA is clearly

expressed in these cells (Figure 2C). As the major subunit of the flagellar filament, the FljK flagellin,

accumulates in the supernatants in all samples (Figure 2E), we conclude that ZitP and CpaM are

required for the presentation of PilA on the cell surface and, as shown below, that they act in the

same pathway (Figure 1B).

Control of motility, G1-phase and the CtrA regulon.
The jCbK adsorption kinetics hinted that motility might be altered in DzitP and DcpaM cells. This

hypothesis is based on the comparison of the jCbK adsorption kinetics to WT, DpilA and Dfljx6 (lack-

ing all six flagellin genes: fljJ/K/L/M/N/O) cells to DzitP and DcpaM cells. While pililess DpilA cells

assemble a flagellum and are motile (Figure 2F), Dfljx6 cells are flagellumless, but piliated (jCbK

sensitive) (Guerrero-Ferreira et al., 2011). The kinetics of adsorption of jCbK to DzitP and DcpaM

cells was strongly reduced compared to WT, fitting halfway between the adsorption curves of jCbK

to DpilA and Dfljx6 cells (Figure 2B). Since it is known that jCbK first reversibly adsorbs to the flagel-

lar filament rotating counter-clockwise, before the irreversibly attachment to the pilus portal is estab-

lished for productive infection (Guerrero-Ferreira et al., 2011), we wondered whether there are

fewer motile cells in the DzitP and DcpaM populations than in WT or if motility in these mutants is

altered in other ways. In fact, motility tests on swarm (0.3%) agar revealed a mild reduction in motil-

ity of DcpaM cells and a severe reduction of DzitP cells compared to WT (Figure 2F). However, DzitP

cells still have residual motility that allows them to spread in swarm agar compared to Dfljx6 cells

(Figure 2F). Expression of Dendra2-ZitP from an ectopic locus confers near WT motility to DzitP cells

(Figure 2G), showing that this deficiency in motility is indeed due to the absence of ZitP.

As Caulobacter divides into a motile G1-phase cell and a sessile S-phase cell, mutants accumulat-

ing fewer G1-phase cells in the population can exhibit reduced motility on soft agar

(Sanselicio et al., 2015; Sanselicio and Viollier, 2015). To test if ZitP controls the G1 cell number,

we used flow cytometry to quantify the number of G1 cells and indeed observed fewer G1 cells in

the DzitP population compared to WT (Figure 2H). Knowing that the master cell cycle transcriptional

regulator CtrA retains cells in G1-phase and activates many cell cycle-regulated promoters that fire

in G1-phase (Domian et al., 1997; Fumeaux et al., 2014; Quon et al., 1996), we then conducted

promoter-probe assays using several CtrA-activated promoters fused to the promoterless lacZ gene

and quantified CtrA-dependent promoter activity in WT and DzitP cells (Figure 2—figure supple-

ment 1). While all such promoter-probe reporters for the CtrA regulon exhibited a decrease in activ-

ity by 30-40% in DzitP versus WT cells, promoter-probe reporters for the GcrA regulon or other

reporters were unaffected. Thus, ZitP is required for optimal CtrA activity and G1 cell accumulation.

The reduction in CtrA-dependent transcription does not appear to be solely responsible for the

motility defect of DzitP cells. First, promoter-probe assays revealed that DcpaM cells also suffer from

reduced CtrA-dependent activation (Figure 2—figure supplement 2A), even though their motility

Figure 2 continued

Steady-state levels of ZitP, CpaM, CpaC, modified CpaC (CpaC*) and PilA in WT and mutant cells as determined by immunoblotting. In the PilA

immunoblots, the asterisk (*) points to a non-specific band. (D) Immunoblots showing the steady-state levels of monomeric CpaC and CpaC* in DzitP

cells harbouring pMT335 or derivatives encoding ZitPWT, ZitPCS or ZitPGAP grown in the presence of vanillate (50 mM). (E) Immunoblots showing PilA

and FljK abundance in supernatants of WT and various mutant cells. Supernatants were harvested from mid-log cultures after shearing. (F) Swarming

motility test performed on soft (0.3%) agar with WT, DzitP, DcpaM, DpilA and Dfljx6 mutant cells. (G) Complementation of the motility defect on swarm

(0.3%) agar displayed by the DzitP cells expressing Dendra2-ZitP variants from Pxyl at the xylX locus. Xylose was added to the swarm (0.3%)

agar as indicated. (H) Flow cytometry of exponential phase WT and DzitP cells. N refers to chromosome equivalents. (I) Suppression of the DzitP motility

phenotype by fliGD306G point mutation as shown on a swarm (0.3%) agar plate. (J) Phage spot tests with jCr30 and jCbK on WT or DzitP cells

expressing Dendra2-ZitP variants from Pxyl at the xylX locus. Cells were embedded in top agar containing xylose (0.3%). (K) Motility assays of DzitP cells

expressing WT ZitP (ZitPWT), ZitPCS or ZitPGAP from pMT335. Swarming motility was assessed in absence of vanillate on 0.3% agar.

DOI: 10.7554/eLife.18647.004

The following figure supplements are available for figure 2:

Figure supplement 1. Master regulator-dependent promoters in DzitP.

DOI: 10.7554/eLife.18647.005

Figure supplement 2. CtrA- and (p)ppGpp-independent influence of the DzitP motility defect.

DOI: 10.7554/eLife.18647.006
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exceeds that of DzitP cells (Figure 2F). Second, we were able to mitigate the defect in CtrA-depen-

dent transcription by ectopic expression of the (p)ppGpp alarmone, a signalling molecule that

enhances CtrA function and stability via a poorly understood mechanism (Gonzalez and Collier,

2014). We accomplished this by heterologously expressing the truncated version of the E. coli (p)

ppGpp-synthase RelA (RelA’) from the xylose-inducible promoter at the xylX locus in WT and DzitP

cells. LacZ-based promoter-probe assays revealed that ectopic induction of (p)ppGpp restores CtrA-

dependent promoter activity to near WT levels (Figure 2—figure supplement 2B). However, the

motility of DzitP cells ectopically producing (p)ppGpp is still substantially lower than that of WT cells

(Figure 2—figure supplement 2C–D), indicating that ZitP also promotes motility through a CtrA-

and (p)ppGpp-independent pathway.

To reinforce this conclusion, we isolated a spontaneous motile suppressor of DzitP cells (see

Materials and Methods, Figure 2I) with a single point mutation in the fliG flagellar gene (fliGD306G)

that neither corrects the pilus assembly defect (jCbK-resistance, Figure 2A), nor the reduction in G1

cell number of the DzitP mutant (Figure 2H). As FliG encodes a component of the flagellar motor

that is associated with the cytoplasmic membrane (Macnab, 2003), we conclude that ZitP controls

pilus biogenesis and a multifactorial motility phenotype, with a minor contribution from a CtrA-

dependent pathway and a major one from a CtrA-independent pathway(s) that can be bypassed by

a mutant variant of FliG.

Distinct polar ZitP assemblies control CpaM localization
To investigate if ZitP also controls its polar functions from the cell pole, we resorted to live-cell fluo-

rescence imaging by epifluorescence microscopy (Figure 3—figure supplement 1A–D) and photo-

activated localization microscopy (PALM, Figure 3A–B and D–E) (Betzig et al., 2006) using WT,

DzitP or DcpaM cells expressing functional Dendra2-CpaM or Dendra2-ZitP. We observed Dendra2-

ZitP to adopt a bipolar disposition in dividing cells, whereas Dendra2-CpaM is restricted to the pole

opposite the stalk where the pilus biogenesis machinery assembles (Figure 3A–B; Figure 3—figure

supplement 2A–C). While Dendra2-ZitP localization is not noticeably perturbed in DcpaM cells (Fig-

ure 3—figure supplement 1B–C), Dendra2-CpaM is dispersed in DzitP cells (Figure 3A; Figure 3—

figure supplement 1D and 2B). Moreover, biochemical pull-down experiments with ZitP-TAP (Fig-

ure 3—figure supplement 3) and reciprocal co-immunoprecipitation experiments using antibodies

to ZitP and CpaM (Figure 3C) showed that ZitP and CpaM reside in a complex. Since Dendra2-ZitP

and Dendra2-CpaM localization is not affected in DpodJ, DcpaE or DcpaC cells (Figure 3F, Fig-

ure 3—figure supplement 1C and D) and since CpaE localization is not noticeably altered in DzitP

and DcpaM cells (Figure 3—figure supplement 4A–B), we conclude that ZitP and CpaM are part of

a previously unknown (PodJ/CpaE-independent) polarization pathway for pilus assembly in Caulo-

bacter in which ZitP recruits CpaM (Figure 1B).

PALM analysis disclosed differently shaped and sized complexes of Dendra2-ZitP at each Caulo-

bacter pole. Both Dendra2-ZitP clusters appear extended, suggesting that ZitP multimerization

along the polar membrane is spatially restricted (Figure 3A–B; Figure 3—figure supplement 2A

and C). Quantification of the 2D area and shape-based analyses (circularity, solidity and eccentricity)

showed that ZitP clusters extending into the base of the stalk are significantly larger and differently

shaped than the extended fluorescent foci lining the cap of the opposite (swarmer) pole (Figure 3B

and D; Figure 3—figure supplement 2A, C and 5A–D). In further support of the existence of two

distinct nanostructures of ZitP at each pole, genetic experiments revealed that different pathways

govern ZitP polarization: one requiring PopZ and another operating independently of PopZ. Imaging

of Dendra2-ZitP in DpopZ cells revealed mainly monopolar foci (Figure 3B and F; Figure 3—figure

supplement 1C and 2C), resembling those seen at the pole opposite the stalk in WT cells

(Figure 3B and D; Figure 3—figure supplement 2C and 5C–D). Quantitative analysis of the polar

residence time using stroboscopic single particle tracking PALM (Gebhardt et al., 2013) revealed a

strong reduction in polar binding times of Dendra2-ZitP in DpopZ compared to that of WT cells

(Figure 3E; Figure 3—figure supplement 6A–D). Thus, PopZ promotes the formation of a large

polar ZitP assembly at the stalked pole, whereas a small complex of ZitP sequesters independently

of PopZ at the opposite pole.
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Figure 3. Distinct ZitP nanoscale assemblies and localization determinants. (A) Photo-activated light microscopy (PALM) imaging of Dendra2-ZitP or

Dendra2-CpaM expressed from the xylose-inducible Pxyl promoter on a plasmid integrated at the chromosomal xylX locus in DzitP or DcpaM cells

exposed to xylose 3 hours before imaging. Scale bar: 1 mm. (B) PALM imaging of Dendra2-ZitP in WT or DpopZ::W cells. We induced expression of

Dendra2-ZitP from the xylose-inducible Pxyl promoter on a plasmid integrated at the chromosomal xylX locus by the addition of xylose 3 hours before

Figure 3 continued on next page
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Localization and functional determinants in ZitP
To identify the determinants within ZitP governing the differential polar localization and to test if

they support specific functions, we first constructed a mutant variant of ZitP in which all four zinc-

coordinating cysteine residues in the zinc-finger domain (Bergé et al., 2016) are replaced by serine

residues (henceforth ZitPCS, Figure 1C). The motility of DzitP cells expressing ZitPCS or Dendra2-

ZitPCS is reduced compared to those expressing the WT version of ZitP (ZitP or Dendra2-ZitP;

Figure 2G and K). While Dendra2-ZitPCS exclusively localizes to the pole opposite the stalk in DzitP

cells (Figure 3G; Figure 3—figure supplement 7A), it still supports lysis by jCbK (Figure 2A) and

CpaC* assembly (Figure 2D). ZitPCS supports localization of Dendra2-CpaM to the pole opposite

the stalk and co-immunoprecipitation experiments show that it interacts with CpaM (Figure 3—fig-

ure supplement 7B–D). ZitPCS also confers (CpaM-dependent) firing of CtrA-activated promoters

with similar efficiency as WT ZitP (Figure 3—figure supplement 8A). Since Dendra2-CpaM is also

still monopolar in DpopZ cells, zinc-binding within the zinc_ribbon_5 domain is necessary for the

interaction between PopZ and ZitP (Bergé et al., 2016), but not for CpaM localization/interaction.

Thus, inactivation of the zinc-coordinating residues in ZitP effectively mimics the monopolar localiza-

tion of Dendra2-ZitP in DpopZ cells and functions as unmodified ZitP with respect to the functions

that depend on CpaM.

By contrast, the opposite effect was seen when ZitP1-133, a ZitP variant that lacks the periplasmic

DUF3426 but retains the cytoplasmic and TM domains (residues 1-133, Figure 1C), is expressed in

DzitP cells. ZitP1-133 supports efficient motility and is polarly localized, but no longer supports pilus

function (i.e. plaque formation by jCbK), CpaM localization and efficient CtrA-activated transcription

(Figure 2G and J, Figure 3—figure supplement 8A–B). Thus, the periplasmic DUF3426 plays a criti-

cal role in promoting pilus assembly through the polar recruitment of CpaM.

Support for the notion that DUF3426 function is regulated from sequences N-terminal to the

DUF3426 came from a forward genetic screen (see Materials and Methods) that led to the

Figure 3 continued

imaging. Scale bar: 1 mm. Scale bar of zoomed images: 0.5 mm. (C) Co-immunoprecipitation (co-IP) of ZitP or CpaM with polyclonal antibodies to CpaM

or ZitP, respectively. Immunoprecipitates and cell lysates from WT, DzitP or DcpaM cells were probed for the presence of ZitP or CpaM. (D) Projected

area of the Dendra2-ZitP polar complex as determined by PALM from Dendra2-ZitP expressed in WT and DpopZ::W cells. Black lines indicate medians.

Statistical significance from Mood’s median test: n.s, p>0.05; ***p<0.001. (E) ZitP polar binding times in WT and DpopZ::W cells, measured via single

particle tracking PALM. Error bars indicate 95% confidence interval of the fit to the data (Figure 3—figure supplement 6D). Statistical significance from

a 2 sample t-test: ***p=p<0.001. (F) Epifluorescence (Dendra2) and Nomarski (DIC) images depicting the localization of Dendra2-ZitP or Dendra2-CpaM

in DpopZ::W, DdivJ, divKcs, DpleC, DcpaE or DpodJ cells. Expression of Dendra2-ZitP or Dendra2-CpaM was induced from the chromosomal xylX locus

with xylose 4 hours before imaging. Scale bars: 1 mm. (G) (H) Epifluorescence (Dendra2) and Nomarski (DIC) images depicting the localization of the

motility-deficient and pilus-proficient Dendra2-ZitPCS variant (G) or the motility-proficient and pilus-deficient Dendra2-ZitP1-133 variant (H) in DzitP cells.

Arrow heads pinpoint stalked poles. We induced expression of Dendra2-fusions from the xylose-inducible Pxyl promoter on a plasmid integrated at the

chromosomal xylX locus by the addition of xylose 4 hours before imaging. Scale bars: 1 mm.

DOI: 10.7554/eLife.18647.007

The following figure supplements are available for figure 3:

Figure supplement 1. Extrinsic determinant for the localization of ZitP and CpaM.

DOI: 10.7554/eLife.18647.008

Figure supplement 2. ZitP and CpaM polar localization by PALM.

DOI: 10.7554/eLife.18647.009

Figure supplement 3. Tandem affinity purification of ZitP.

DOI: 10.7554/eLife.18647.010

Figure supplement 4. CpaE localization in DzitP and DcpaM mutant cells.

DOI: 10.7554/eLife.18647.011

Figure supplement 5. Quantitative analysis of ZitP cluster shape and area.

DOI: 10.7554/eLife.18647.012

Figure supplement 6. Binding time estimation by stroboscopic single particle tracking of ZitP.

DOI: 10.7554/eLife.18647.013

Figure supplement 7. Intrinsic determinants for ZitP localization and function.

DOI: 10.7554/eLife.18647.014

Figure supplement 8. Effect of DUF3426 on ZitP function.

DOI: 10.7554/eLife.18647.015
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identification of ZitPGAP (Figure 1C), a mutant variant in which residues Arg93 and Ala94 preceding

the TM domain are deleted. ZitPGAP supports motility (Figure 2K), but neither plaque formation by

jCbK, nor CpaC* production (Figure 2A and D). As ZitPGAP still localizes to the cell poles, interacts

with CpaM and recruits Dendra2-CpaM (Figure 3—figure supplements 7A–D and 8C), ZitP also

acts on pilus biogenesis independently of CpaM localization.

Taken together our experiments indicate that function and localization of ZitP can be genetically

uncoupled. The periplasmic DUF3426 region is required for pilus biogenesis and CtrA-dependent

transcription and it implements these functions via the recruitment of CpaM to the pole opposite

the stalk. The zinc_ribbon_5 domain promotes PopZ-dependent localization of ZitP to the stalked

pole and efficient swarming motility by an unknown mechanism. Interestingly, in a related study, we

recently found that ZitP controls PopZ localization independently of the DUF3426 (Bergé et al.,

2016).

Cell cycle control of ZitP and CpaM assemblies
Synchronization studies and genetic experiments with cell cycle mutants showed that ZitP and CpaM

polarization is temporally and functionally coordinated with cell cycle progression. Immunoblotting

revealed the steady-state levels of ZitP and CpaM to fluctuate during the cell cycle (Figure 4A),

exhibiting a trough during the G1fiS transition and concomitant loss of polar fluorescence at this

time (Figure 4B–C). Consistent with the genetic and cytological hierarchy, ChIP-Seq data shows that

the early S-phase regulator GcrA directly promotes ZitP and CtrA expression, while the late S-phase

regulator CtrA activates expression of CpaM (Fiebig et al., 2014; Fioravanti et al., 2013;

Fumeaux et al., 2014; Murray et al., 2013). Moreover, ZitP, CtrA and CpaM abundance is reduced

when GcrA is depleted or inactivated (Figure 4D). ZitP expression is also strongly reduced in the

absence of the CcrM adenine methyltransferase that methylates adenines at the N6-position in the

context of 5’-GANTC-3’ sequences. GANTC methylation is required for efficient recruitment of GcrA

to its target promoters (Fioravanti et al., 2013; Murray et al., 2013).

Additionally, we found that the DivJ-PleC-DivK (kinase-phosphatase-substrate) system that regu-

lates cell cycle progression and polar development influences the appearance of polar Dendra2-ZitP

and Dendra2-CpaM (Figure 3F, Figure 3—figure supplement 1C–D). Specifically examining the

localization in mutants where the phosphoflux is shifted towards the accumulation of the phosphory-

lated form of the DivK cell fate determinant (Tsokos and Laub, 2012), we found that such

a mutation (inactivation of the PleC phosphatase, DpleC) promotes ZitP/CpaM polarization as indi-

cated by the bipolar localization of Dendra2-CpaM. By contrast, mutations that have the opposite

effect on DivK activity or DivK phosphorylation (caused by the divKCS or DdivJ mutation), disfavour

Dendra2-ZitP (but not Dendra2-CpaM) polarization (Figure 3F, Figure 3—figure supplement 1C–

D). Thus, polar reprogramming of ZitP and CpaM is deeply integrated into the Caulobacter cell cycle

through conserved components of the a-proteobacterial cell cycle (Brilli et al., 2010).

Discussion
The pole-specific and distinctly shaped assemblies of ZitP are governed via independent localization

pathways and linked with functional specialization (Figure 4E). While ZitP acts on pilus assembly by

recruiting CpaM and, subsequently, the CpaC pilus channel to the pole opposite the stalk (1B and

4E), CpaM is also required for efficient activation of CtrA-dependent promoters by an unknown

mechanism. A similar reduction in CtrA-dependent transcription occurs in DzitP cells that are unable

to localize CpaM. While diminished CtrA activity can undermine motility by reducing the number of

motile G1-phase cells in the population (Sanselicio et al., 2015; Sanselicio and Viollier, 2015), ZitP

affects motility in another way, since DzitP cells are diminished in motility compared to DcpaM cells.

Moreover, ectopic induction of the alarmone (p)ppGpp reinforces CtrA abundance and activity

(Boutte et al., 2012; Gonzalez and Collier, 2014; Lesley and Shapiro, 2008; Ronneau et al.,

2016; Sanselicio and Viollier, 2015), but only modestly improves the motility of DzitP cells.

Such a motility defect also manifests when ZitPCS, a variant that no longer localizes to the stalked

pole, is expressed in DzitP cells. How ZitP promotes swarming motility from the stalked pole is

unclear, but there is precedence of other regulators (SpmX/Y and CpdR) that localize exclusively to

the stalked pole and affect Caulobacter motility indirectly by regulating cell cycle factors

(Janakiraman et al., 2016; McGrath et al., 2006; Radhakrishnan et al., 2008). Moreover, SpmX
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Figure 4. Cell cycle regulation of ZitP and CpaM localization. (A) Immunoblots showing the levels of ZitP, CpaM and master cell cycle regulators along

the C. crescentus cell cycle in a synchronized WT population. The upper scheme depicts C. crescentus cell cycle stages. (B) (C) Epifluorescence

(Dendra2) and Nomarski (DIC) images depicting the localization of Dendra2-ZitP (B) and Dendra2-CpaM (C) in synchronized DzitP or DcpaM cells,

respectively. We induced expression of Dendra2 fusions expressed from the xylose-inducible Pxyl promoter on a plasmid integrated at the

Figure 4 continued on next page
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and CpdR interact with PopZ directly and their localization is compromised in the absence of PopZ

(Bowman et al., 2010; Holmes et al., 2016). It is therefore conceivable that ZitP also affects motility

indirectly from the stalked pole, possibly via cell cycle regulation, flagellar performance and/or polar-

ity. The fact that the motility defect of DzitP cells can be restored by compensatory mutations in a

switch component (FliG) of the flagellar motor (Kojima and Blair, 2004), suggests that flagellar per-

formance, reversals or timing (i.e. the length of flagellation in the cell cycle) could be altered by the

DzitP mutation.

Zinc-finger domain proteins other than ZitP may be implicated in linking motility and polarity. The

gliding motility protein AgmX confers a flagellum- and pilus-independent form of surface motility in

Myxococcus xanthus (Nan et al., 2010), a d-proteobacterium that periodically reverses the polarity

of movement. Since AgmX also harbors a related N-terminal Zinc-finger domain, at least two related

zinc-finger domains control different types of motility. This is intriguing and hints at a potentially

important and conserved role of such zinc-finger domain proteins in developmental processes that

rely on protein polarization in bacteria and polar matrix proteins such as PopZ to interact with them.

In a complementary study, we additionally show in vitro and in vivo that zinc-bound ZitP binds PopZ

directly and regulates PopZ localization without the periplasmic DUF3426 domain (Bergé et al.,

2016), suggesting that this activity in ZitP may underlie the aforementioned CtrA-independent role

in motility.

The conservation of ZitP, CpaM (Figure 1D) and PopZ orthologs (Bowman et al., 2010) in distant

a-proteobacterial lineages that reside in different ecological niches hints that the functions that

these proteins control are not unique to the Caulobacter branch. Indeed, we describe an interaction

between ZitP and PopZ in several distinct a-proteobacterial lineages (Bergé et al., 2016). On a

more general scale, our work suggests that pole-specific functions conferred by bipolar regulators

may be commonly used in bacteria and possibly eukaryotes. Such mechanisms could be relevant for

toggle proteins, moonlighting/trigger enzymes (Commichau and Stulke, 2015) and other bifunc-

tional regulators (Radhakrishnan and Viollier, 2012) that have more than one biochemical activity

and function, for example kinase-phosphatases or synthase-hydrolases of cyclic-di-GMP sequestered

to both cell poles (Boyd, 2000; Kazmierczak et al., 2006; Tsokos and Laub, 2012).

In sum, the functional and topological versatility of ZitP illustrates how a conserved regulator is

used to coordinate multiple functions from different locations and structures in the same cell, relying

on distinct protein domains and partners to control localization or to implement function. As these

functions and polar remodelling events are coordinated with cell cycle progression in Caulobacter

via conserved cell cycle proteins, it is likely that superimposed temporal layers similarly act on ZitP

and CpaM orthologs in other a-proteobacterial cell cycles.

Materials and methods

Strains and growth conditions
Caulobacter crescentus NA1000 and derivatives were grown at 30˚C in PYE or in M2 salts plus 0.2%

glucose (M2G) supplemented with 0.4% liquid PYE (Ely, 1991). Escherichia coli S17-1, S17-1 lpir

and EC100D (Epicentre Technologies, Madison, WI) were cultivated at 37˚C in LB. We added 1.5%

agar to PYE plates, and motility was assayed on PYE plates containing 0.3% agar. We added

D-xylose (0.3% except if otherwise stated), glucose (0.2%), sucrose (3%), kanamycin (solid, 20 mg/ml;

liquid, 5 mg/mL), tetracycline (1 mg/mL), spectinomycin (liquid, 25 mg/mL), spectinomycin/

Figure 4 continued

chromosomal xylX locus. Schematic drawings highlight Dendra2 localizations. After synchronization, cells were resuspended in M2G and imaged every

20 minutes. Scale bars: 1 mm. (D) Steady-state levels of ZitP, CpaM, CtrA, GcrA, CcrM and MreB (control) in WT, gcrA and ccrM mutant cells. Xylose

(0.3%, xyl) or glucose (0.2%, glu) were supplemented to the medium in order to induce/deplete GcrA in DgcrA xylX::Pxyl-gcrA cells. (E) Schematic

representation of the two Caulobacter cell poles. At the stalked pole, the PopZ matrix promotes the recruitment of ZitP. The Zn2+-bound zinc-finger

domain of ZitP prevents ZitP/CpaM association and influences CtrA activity and swarming motility. At the opposite pole, the inactive Zn2+-unbound

zinc-finger domain allows the formation of the ZitP/CpaM complex and the export and assemblage of CpaC in the outer membrane (OM)

independently of PopZ.

DOI: 10.7554/eLife.18647.016
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streptomycin (solid, 30 and 5 mg/mL, respectively), apramycin (10 mg/mL), gentamycin (1 mg/mL) and

nalidixic acid (20 mg/mL), as required. Swarmer cell isolation, electroporation, biparental mating, and

bacteriophage jCr30-mediated generalized transduction were performed as described before

(Chen et al., 2005; Ely, 1991; Simon et al., 1983; Viollier and Shapiro, 2003).

Bacterial strains, plasmids, and oligonucleotides
Bacterial strains, plasmids, and oligonucleotides used in this study are listed and described in sup-

plementary tables.

b-Galactosidase assays
b-Galactosidase assays were performed at 30˚C as described previously (Huitema et al., 2006;

Viollier and Shapiro, 2003). Experimental values represent the averages (standard error of the

mean, SEM) of at least three independent experiments.

PALM imaging conditions
To image C. crescentus, overnight cultures were diluted in fresh PYE, xylose was added (0.3% final

concentration), and the cells were grown for 3 hours to mid-exponential phase (OD (660) ~ 0.4). Two

uL of culture was placed on a agarose pad containing PYE. The agarose pad was mounted in a sili-

cone gasket (Grace Biolabs 103280) sandwiched between two microscope coverslips to minimize

shrinkage of the agarose. The temperature of the microscope enclosure during experiments was

24˚C. Images were acquired using a previously described custom built PALM microscope

(Holden et al., 2014). Fluorescent proteins were excited at 560 nm, and photoactivation was

induced at 405 nm at ~ 0–16 W/cm2. For PALM images of Dendra2-ZitP in C. crescentus, cells were

imaged at an exposure time of 10 milliseconds for 10,000 frames, and an excitation intensity of ~4

kW/cm2. For stroboscopic single particle tracking PALM measurement of ZitP binding time, cells

were imaged at an exposure time of 30 milliseconds, with a variable interval between each frame, at

an excitation intensity of ~1 kW/cm2. PALM localizations were accumulated in a 2D histogram; the

resulting image was blurred with a 2D Gaussian of radius 15 nm to reflect the localization uncertainty

of the measurement. The image was gamma adjusted to 0.5 to compensate for the large dynamic

range of the image, and the ‘Red Hot’ ImageJ colormap was applied.

Measurement of ZitP binding time by PALM
Binding time, toff, of ZitP to the C. crescentus poles was determined via stroboscopic single particle

tracking PALM (Gebhardt et al., 2013; Manley et al., 2008). Under these conditions, Dendra2

bleached under continuous illumination with a photobleaching lifetime, tb, on the order of 50 milli-

seconds. Since rapid diffusion means that Dendra2-ZitP is only visible when bound to the membrane,

and since photobleaching will shorten the observed binding time, the effective on-time of a single

Dendra2-ZitP molecule, teff, will be the convolution of the photobleaching lifetime, tb, and the bind-

ing lifetime toff,

t�1

eff
¼ t�1

off
þ t�1

b
; (1)

Effective on-time was measured by combining individual Dendra2-ZitP localizations in adjacent

frames into tracks (Crocker and Grier, 1996), and fitting a single exponential model to the observed

the track length distribution (Figure 3—figure supplement 6A). In order to measure binding times

longer than the photobleaching lifetime, the photobleaching lifetime of the fluorescent protein may

be artificially extended by using stroboscopic illumination, introducing large gaps between short

periods of illumination. This increases the effective bleaching lifetime to:

t
0

bl ¼ tbl
ttl
tint

; (2)

where ttl is duration of the gap (time lapse/strobe interval), tint is camera integration time. By mea-

suring the effective on-time for multiple different stroboscopic illumination times, ttl, and performing

a fit of:
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teff ¼ t�1

off
þ

tint
tblttl

� �

�1

; (3)

to the data, both the binding time and photobleaching lifetime may be calculated (Gebhardt et al.,

2013) (Figure 3—figure supplement 6B and C Model 1). We performed non-linear least squares fit-

ting of the raw teff data directly to Eq. 3, instead of calculating the quantity ttl/teff and performing a

linear fit as proposed by Gebhardt and coworkers (Gebhardt et al., 2013), since the inverse trans-

form proposed results in a non-linear transformation of the sample error distribution incompatible

with least squares fitting. We observed that for stroboscopic illumination times significantly greater

than the binding time, the data appeared to transition from the hyperbolic relationship predicted by

Eq. 3 to a zero-gradient plateau (Figure 3—figure supplement 6B), giving very poor fits between

Eq 3 and the data, especially for the DpopZ strain which appeared to have a shorter Dendra2-ZitP

binding lifetime (Figure 3—figure supplement 6B). We hypothesized that this was due to an inabil-

ity to accurately estimate effective on-time when molecules bind and unbind in a time significantly

less than the duration of a single strobing interval (since the observed track length will almost always

equal 1 frame). We confirmed this hypothesis by performing the stroboscopic tracking analysis on

simulated data (Figure 3—figure supplement 6C). We simulated timetraces of molecules binding/

unbinding with finite bleaching lifetimes, and measured the observed on-time for each simulated

molecule by fitting a single exponential to the on-time histogram as above. We observed as

hypothesized that the observed off-times showed a sharp plateau for long-strobe intervals due to

the finite integration time of the measurement, giving a poor fit of Eq 3 to the data (Figure 3—fig-

ure supplement 6C). In order to correct for this, we modified the fitting model to include a mini-

mum measurable on-time plateau:

teff ¼ t�1

off
þ

tint
tblttl

� �

�1

; ttl>t
min
tl ;

teff ¼ tmintl ; otherwise:

(4)

Use of the modified model allowed us to obtain accurate fits to the entire simulated dataset (Fig-

ure 3—figure supplement 6C; Eq 4).

We therefore used our updated model to fit the experimental data (Figure 3E and Figure 3—fig-

ure supplement 6B) and to calculate the observed binding times (Figure 3—figure supplement

6D). This gave a much better fit to the data, both at late and early strobe intervals. Notably, inde-

pendent fits to the WT and DpopZ datasets gave similar observed tmintl of ~0.4 frames, supporting

the use of the updated model.

Measurement of ZitP cluster area and shape by PALM
In order to estimate the area of Dendra2-ZitP polar complexes, observed localizations were clus-

tered based on local density using DBSCAN (Endesfelder et al., 2013; Ester et al., 1996). Identi-

fied clusters were converted to PALM images binarized, and morphologically closed (Figure 3—

figure supplement 5Bi-iii). By performing morphological closing on the binary image, we obtained

segmented clusters (Figure 3—figure supplement 5Biii) which were less sensitive to noise and bet-

ter reflected the visually estimated extent of the non-segmented cluster. For each identified cluster,

the area of the segmented cluster was calculated.

For the NA1000 xylX::Pxyl-dendra2-zitP strain, clusters were visually identified as belonging to the

stalked or flagellar poles based on the PALM and phase contrast images of the region. For the

DpopZ::W xylX::Pxyl-dendra2-zitP strain, there was no clear difference in pole morphology, so the

cluster area for cells was calculated without discriminating poles. Measurement noise means that the

measured area of even a zero-area cluster will be larger than zero (and approximately proportional

to the localization uncertainty). To test whether Dendra2-ZitP formed an extended polar complex,

we compared the area of ZitP clusters to the measured area of simulated zero-area clusters by gen-

erating simulated datasets containing localizations coming from a point source, with photon count,

background noise and total number of localizations equal to the median values of either the WT or

DpopZ::W datasets (Figure 3—figure supplement 5D). The cluster area of the simulated datasets

was then calculated as above.
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We also calculated the following shape based metrics to further quantify the differences in pole

shape: circularity, solidity and eccentricity (Figure 3—figure supplement 5C).

Circularity measures similarity of a shape to a circle, C ¼
4pA
p2

; where A is shape area and p is

perimeter. Solidity measures the extent to which a shape is convex or concave, S ¼
A
H

where A is

shape area and H is the convex hull area of the shape. Eccentricity measures how elongated a shape

is, E ¼
a
b
where a is the length of the minor axis and b is the length of the major axis.

Since the observed distributions showed significant non-normality, statistical significance was

assessed by the non-parametric test, Mood’s median test. Stars on Figure 3D and Figure 3—figure

supplement 5C indicate statistical significance: n.s, p>0.05; *p<0.05; **p<0.01; ***p<0.001.

The stalked and the other (swamer) pole foci in WT showed statistically significant differences

(p<0.001) in area, circularity and solidity, supporting the conclusion that ZitP forms distinct polar

assemblies.

The WT stalked pole showed statistically significant differences (p<0.001) to the DpopZ::W mutant

foci for area, circularity, solidity and eccentricity, supporting the conclusion that PopZ specifically

promotes the formation of large polar assemblies at the stalked pole.

Isolation of ’CbK resistant mutants
A himar1-based transposon mutagenesis of the NA1000 (wild-type, WT) strain was done using the E.

coli S17-1 lpir strain containing the himar1-delivery plasmid pHPV414 (Viollier et al., 2004). The

mutant library was selected on plates containing nalidixic acid and kanamycin embedded in top agar

containing jCbK. Colonies emerging from this selection were pooled. We then created generalized

transducing lysate from this pool using phage jCr30 and transduced it into strain PV14 DpilA-

cpaF::Waac3 (conferring resistance to aparamycin), selecting for apramycin and kanamycin resistant

transductants to eliminate himar1 insertions in the pilA-cpaF locus. The transductants were pooled

and a generalized transducing lysate was prepared from this pool using jCr30. This new lysate was

then used to transduce NA1000 to kanamycin resistance and the resulting clones were individually

tested for resistance to jCbK. The himar1 insertion site mapping of jCbK–resistant himar1 mutants

was done as described before (Viollier et al., 2004).

To isolate the zitPGAP mutation, we generated a mutant library of zitP alleles by electroporating

pMT335-zitP into the mutator E. coli XL1-Red strain. We collected and pooled over 20,000 clones

for plasmid extraction and we electroporated the plasmid library into the DzitP mutant. We incu-

bated the electroporated cells during two hours for regeneration and next added jCbK for one

hour in order to eradicate clones that bear a mutated zitP allele restoring effective phage infection.

Finally, we plated cells on soft (0.3% swarming) agar to evaluate the motility properties. We picked

and streaked out motile clones for amplification and plasmid extraction and introduced the plasmids

back into a DzitP background in the perspective to confirm the motility-proficient and jCbK resistant

phenotypes. We isolated a unique plasmid, pMT335-zitPGAP, which bears the zitPGAP allele (deletion

of the Arg93 and Ala94 in the ZitP protein).

Immunoblotting
Protein samples were separated by SDS-PAGE and blotted on PVDF (polyvinylidenfluoride) mem-

branes (Merck Millipore). Membranes were blocked for 1 hour with Tris-buffered saline, 0.05%

Tween 20 (TBST), and 5% dry milk and then incubated for an additional 1 hour with the primary anti-

bodies diluted in TBST, 5% dry milk. The membranes were washed 4 times for 5 minutes in TBST

and incubated for 1 hour with the secondary antibody diluted in TBST, and 5% dry milk. The mem-

branes were finally washed again 4 times for 5 minutes in TBST and revealed with Immobilon West-

ern Blotting Chemoluminescence HRP substrate (Merck Millipore) and Super RX-film (Fujifilm).

Rabbit antisera were used at the following dilutions: anti-CtrA (1:10,000), anti-PilA (1:10,000), anti-

FljK (1:50,000), anti-CpaC (1:5000), anti-ZitP (1:5000), anti-CpaM (1:5000) and anti-GcrA (1:2000).

HRP-conjugated Anti-rabbit secondary antibody was used at 1:20,000 dilution (Jackson ImmunoRe-

search, USA).

Epi-fluorescence microscopy
PYE or M2G cultivated cells in exponential growth phase were immobilized using a thin layer of 1%

agarose. Fluorescence and DIC images were taken with an Alpha Plan-Apochromatic 100x/1.46 DIC
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(UV) VIS-IR oil objective on an Axio Imager M2 microscope (Zeiss) with 488 nm laser (Visitron Sys-

tems GmbH, Puchheim, Germany) and a CoolSnap HQ (Boutte et al., 2012) camera (Photometrics)

controlled through Metamorph V7.5 (Universal Imaging). Images were processed using Image J soft-

ware. Quantifications were done by manually numbering cells in the diffuse, monopolar or bipolar

state.

Protein purification and production of antibodies
The PCR-amplified zitPCterm and cpaMDTM genes were cloned into the pET28a vector (Novagen).

The His6-ZitP
Cterm and His6-CpaM

DTM recombinant proteins were overexpressed in E. coli strain

Rosetta and purified in standard native conditions on Ni2+-NTA agarose as described previously to

raise rabbit polyclonal IgGs in New Zealand White rabbits (Josman LLC, Napa, CA).

Tandem affinity purification (TAP) and mass spectrometry
We followed the TAP procedure as was previously described (Puig et al., 2001). When a 1 L-culture

reached OD660 between 0.4 and 0.6 in the presence of 50 mM vanillate, cells were harvested by

centrifugation (6000xg, 10 min). We washed the pellet in 50 mL of buffer I (50mM sodium phosphate

pH 7.4, 50 mM NaCl, 1 mM EDTA) and lysed for 15 minutes at room temperature in 10 mL of buffer

II (buffer I + 0.5% n-dodecyl-b-D-maltoside, 10mM MgCl2, two protease inhibitor tablets [Complete

EDTA-free, Roche] per 50 mL of buffer II, 1x Ready-Lyse lysozyme [Epicentre], 500U of DNase I

[Roche]). Cellular debris was removed by centrifugation (7000xg, 20 minutes, 4˚C). The supernatant

was incubated for 2 hours at 4˚C with IgG Sepharose beads (GE Healthcare Biosciences) that had

been washed once with IPP150 buffer (10 mM Tris-HCl pH 8, 150 mM NaCl, 0.1% NP40). After incu-

bation, the beads were washed at 4˚C three times with 10 mL of IPP150 buffer and once with 10 mL

of TEV cleavage buffer (10 mM Tris-HCl pH 8, 150 mM NaCl, 0.1% NP40, 0.5 mM EDTA, 1 mM

DTT). The beads were then incubated overnight at 4˚C with 1 mL of TEV solution (TEV cleavage

buffer with 100 U of TEV protease per ml [Promega]) to release the tagged complex. 3 mM CaCl2
was then added to the solution. The sample with 3 mL of calmodulin-binding buffer (10 mM b-mer-

captoethanol, 10 mM Tris-HCl pH 8, 150 mM NaCl, 1 mM magnesium acetate, 1 mM imidazole, 2

mM CaCl2, 0.1% NP40) was incubated for 1 hour at 4˚C with calmodulin beads (GE Healthcare Bio-

sciences) that previously had been washed once with calmodulin-binding buffer. After incubation,

the beads were washed three times with 10 mL of calmodulin-binding buffer and eluted five times

with 200 mL IPP150 calmodulin elution buffer (calmodulin-binding buffer substituted with 2 mM

EGTA instead of CaCl2). Amicon Ultra-4 spin columns (Ambion) were used to concentrate eluates.

Eluates were analyzed by SDS-PAGE and stained with silver using the Biorad Silver Stain Plus kit (Bio-

rad, USA). We then cut specific bands and directly sent the gel slices to the Taplin Biological Mass

Spectrometry Facility (Harvard Medical School, Boston, USA) for mass spectrometric analyses.

Co-immunoprecipitation
Cells were harvested from a 50 mL-culture (OD (660 nm) between 0.4–0.6) by centrifugation at

5000xg for 10 minutes. We washed the cell pellet in 10 mL of buffer I (50mM Tris-HCl (pH 7.5); 50

mM NaCl; 1mM EDTA), centrifuged the cell again and resuspended in 1 mL of buffer II (buffer I plus

0.5% n-dodecy-b-D-maltoside; 10 mM MgCl2; EDTA-free protease inhibitors). We incubated the mix-

ture for 15 minutes with 5000 units of Ready-Lyse lysozyme (Epicentre), and 30 units of DNase I

(Roche). Cellular debris were removed by centrifugation at 10,000xg for 3 minutes at 4˚C. We

cleared the supernatant by incubation for 1 hour at 4˚C with Protein-A agarose beads (Roche) previ-

ously washed three times with 500 mL of buffer II. We removed agarose beads by centrifugation and

added to the pre-cleared solution polyclonal IgG rabbit serum for 90 min at 4˚C (dilution 1:500).

Next, we trapped for 1 hour at 4˚C the antibodies-proteins complexes with the addition of Protein-A

agarose beads (Roche) previously washed three times with 500 mL of buffer II. The samples were

then centrifuged at 3000xg for 1 minute at 4˚C and the supernatant was removed. The beads were

washed once with buffer I plus 0.5% n-dodecy-b-D-maltoside, three times with 500 mL of wash buffer

(10 mM Tris-HCl at pH 7.5; 150 mM NaCl; 0.1% n-dodecy-b-D-maltoside) and finally resuspended in

70 ml SDS sample buffer (50 mM Tris–HCl at pH 6.8), 2% SDS, 10% glycerol, 1% b-mercaptoethanol,

12.5 mM EDTA, 0.02% Bromophenol Blue), heated to 95˚C for 10 minutes and stored at �20˚C.
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Motility assays and phage infectivity tests
Swarming properties were assessed with 5 ml-drops of overnight culture spotted on PYE soft agar

plates (0.3% agar) and grown for 24 hours. Phage susceptibility assays were conducted by mixing

500 mL of overnight culture in 6 mL soft PYE agar and overlaid on a PYE agar plate. Upon solidifica-

tion of the soft (top) agar, we spotted 5 mL-drops of serial dilution of phages (jCbK or jCr30) and

scored for plaques after one day incubation at 4˚C.

Shearing experiments
We centrifuged 5 mL mid-log phase cultures of WT or mutant strains and resuspended them in

700 ml of PYE. Then, we pumped in and out (10x) the cells into a syringe endowed with a thin diame-

ter needle. We centrifuged the shear-stressed cells to remove cells debris and collected 200 mL of

each supernatant. We added SDS-blue straining and loaded samples on SDS-PAGE gels.

’CbK adsorption assay
To determine the adsorption rate of jCbK, Caulobacter crescentus NA1000 and derivatives were

first grown overnight in M2G medium at 30˚C and then re-started in fresh M2G at 30˚C with shaking

until the bacterial cell culture reached an OD660 value of 0.4 (0.4 � 108 CFU/ml). Then cell cultures

were infected by 0.02 multiplicity of jCbK infection (MOI: ratio of phage to bacteria number). The

mixtures were incubated at 30˚C without shaking for phage adsorption, followed by separation of

unbound phages by centrifugation at 13,000 rpm in specified time points up to 30 minutes. Superna-

tants were immediately supplemented by the addition of chloroform (1/20 of cell culture volume)

and mixed vigorously to kill remaining bacterial cells. A control tube containing only jCbK (equiva-

lent to 0.02 MOI) was maintained in parallel for the duration of the experiment and used as refer-

ence to control the initial phage plaque-forming units (pfu) titer. A 50 mL of the phage supernatant

from each tube was mixed with 200 mL of Caulobacter crescentus NA1000 culture at log phase and

incubated without shaking at room temperature for 10 minutes to allow adsorption. Infected cells

were added to 6 mL of soft PYE agar (0.5%) and immediately overlaid on 1.5% PYE agar plates.

Plates were incubated at 30˚C for 24 hours, when pfu were visible. The jCbK adsorption value (in%

of the initial phage pfu titer) was calculated. Values are the mean of three biological replicates; error

bars represent data ranges.

Flow cytometry (Fluorescence-activated cell sorting, FACS)
Cells in exponential growth phase (OD660nm=0.3–0.6) cultivated in PYE, were fixed in ice-cold 77%

ethanol solution. Fixed cells were re-suspended in FACS staining buffer, pH 7.2 (10 mM Tris-HCl, 1

mM EDTA, 50 mM NaCitrate, 0.01% Triton X-100) and then treated with RNase A (Roche) at 0.1 mg

mL�1 for 30 minutes at room temperature. Cells were stained in FACS staining buffer containing 0.5

mM of SYTOX Green nucleic acid stain solution (Invitrogen) and then analysed using a BD Accuri C6

flow cytometer instrument (BD Biosciences). Flow cytometry data were acquired and analysed using

the CFlow Plus V1.0.264.15 software (Accuri Cytometers Inc.). 20,000 cells were analysed from each

biological sample. Experimental values represent the averages of three independent experiments.

fliGD306G swarming pseudo-revertant isolation and backcrossing
We spotted several 5 mL-drops of DzitP overnight culture on soft agar plates and waited for flares

spreading out the bulk of cells. Flares were peaked out and streaked on fresh agar plates for amplifi-

cation and subsequently challenged for motility in comparison to WT and DzitP strains. Motility-profi-

cient clones were sent for Illumina HiSeQ 2000 sequencing (Fasteris, www.fasteris.com/). Genomes

were compared to NA1000 genome and we identified a single mutation in the fliG gene (D306G).

In order to backcross the fliGD306G allele in different backgrounds, the suppressor strain was elec-

trotransformed with the suicide vector pNTPS138-hook and selected on kanamycin-supplemented

plates for single crossing-over in close vicinity of the fliG locus. We prepared lysate of this strain,

transduced the fliGD306G-linked pNTPS138 into WT and DzitP cells and screen by sequencing for

clones harbouring the fliGD306G allele. Finally, we grew up the strain without any antibiotic and

selected for plasmid excision by plating an overnight culture on sucrose.
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