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Abstract: Two non-covalently linked copies of the retrovirus genome are specifically recruited to
the site of virus particle assembly and packaged into released particles. Retroviral RNA packaging
requires RNA export of the unspliced genomic RNA from the nucleus, translocation of the genome to
virus assembly sites, and specific interaction with Gag, the main viral structural protein. While some
aspects of the RNA packaging process are understood, many others remain poorly understood. In
this review, we provide an update on recent advancements in understanding the mechanism of RNA
packaging for retroviruses that cause disease in humans, i.e., HIV-1, HIV-2, and HTLV-1, as well as
advances in the understanding of the details of genomic RNA nuclear export, genome translocation
to virus assembly sites, and genomic RNA dimerization.

Keywords: human retrovirus; RNA encapsidation; nuclear export; RNA dimerization; RNA translo-
cation; lentivirus; deltaretrovirus

1. Introduction

Human retroviruses have infected millions of individuals worldwide. Human immun-
odeficiency virus type 1 (HIV-1, a lentivirus), the most prevalent human retroviral infection,
and human immunodeficiency virus type 2 (HIV-2) cause AIDS, which can be treated with
life-long antiretroviral therapy. Human T-cell leukemia virus type 1 (HTLV-1, a deltaretro-
virus) infects an estimated 15 to 20 million individuals, and HTLV-1 infection can cause
adult T-cell leukemia/lymphoma (ATLL) and HTLV-1 associated myelopathy/tropical
spastic paraparesis (HAM/TSP). There are no successful antiviral treatments for HTLV-1
infection. Understanding the life cycle of human retroviruses on a molecular level has led
to the successful development of the aforementioned antiretrovirals. A further understand-
ing of retroviral replication can expand the development of treatments to combat human
retroviral infections, and aid in the development of next-generation antiretroviral therapies.

Retroviruses encode for a positive sense, single-stranded RNA genome. The genome
is relatively large, ranging in size from 9 kB to 10.2 kB for HIV-1, HIV-2, and HTLV-1. All
human retroviral genomes contain a set of conserved genes, gag, pol, and env. Gag is the
main structural protein of retroviruses, Pol is a polyprotein that includes the retroviral
enzymes (i.e., protease, reverse transcriptase, integrase), and Env is the attachment protein.
Human retroviruses encode a variety of accessory proteins that serve various functions.
HIV-1 and HIV-2 encode Tat and Rev while HTLV-1 encodes Tax and Rex to control gene
expression. Other accessory genes include those that counteract host restriction factors
such as vif of both HIV-1 and HIV-2, vpu of HIV-1 and vpx of HIV-2. HIV-1 and HIV-2 also
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encode for the accessory genes nef and vpr. HTLV-1 expresses many accessory genes of
various functions through the pX region by alternative splicing. HTLV-1 hbz gene encodes
for HBZ which plays a major role in HTLV-1 pathogenesis.

Human retroviral genomes also contain noncoding sequences that serve various roles
in retrovirus replication. Human retroviral genomes contain long terminal repeats at the 5′

and 3′ ends that contribute to genome replication and integration into the host genome. The
5′ untranslated region of retroviral genomes contains a region of high secondary structure
and contains specific structures that mediate dimerization and genome packaging. Human
retroviruses encode a secondary structural element that mediates export of retroviral
unspliced genomic RNA from the nucleus, i.e., the Rev responsive element (RRE) (for HIV-1
and HIV-2) and the Rex responsive element (RxRE) (for HTLV-1).

The retroviral genome is converted to a double-stranded viral DNA. Recent evidence
suggests that capsid core uncoating and reverse transcription primarily occur in the nu-
cleus [1,2]. The cDNA is integrated into the host genome and host cell machinery transcribes
the provirus to make new full-length genomic RNA (gRNA) copies and differently spliced
transcripts. In order to assemble new viral particles containing the retroviral gRNA, these
viral RNA transcripts must be exported from the nucleus. This requires a specialized
mechanism to export the unspliced gRNA. The exported gRNA is then translocated to
virus assembly sites at the plasma membrane. During virus particle assembly, two copies
of noncovalently linked gRNA are packaged. The process of gRNA packaging remains
incompletely understood for human retroviruses. Here, we review three key processes
required for infectious particle assembly containing gRNA—(a) gRNA nuclear export,
(b) gRNA translocation to particle assembly sites, and (c) gRNA packaging/encapsidation.

2. Genomic RNA (gRNA) Nuclear Export

In order to be packaged at the plasma membrane into virus particles, the unspliced
retroviral gRNA must be exported from the nucleus despite not being recognized by
standard RNA nuclear export machinery. Two cellular pathways have been identified
to be hijacked by retroviruses to export unspliced and partially spliced viral RNAs from
the nucleus. Some retroviruses utilize the TAP/NXF1 pathway, while other retroviruses
have been found to use the CRM1/XPO1 nuclear export receptor. For human retroviruses,
HIV-1, HIV-2 and HTLV-1, gRNA nuclear export utilizes the CRM1 pathway [3–12]. These
complex human retroviruses encode accessory proteins that interface with the CRM1 export
machinery. HIV encodes the accessory protein Rev, which mediates post-transcriptional
gene expression [13–15]. HTLV-1 encodes for a homologous protein, Rex, that is required
for post-transcriptional viral gene expression [16]. Both Rev and Rex permit retroviral
gene expression by directly mediating the export of unspliced or partially spliced viral
RNAs [15,17–20], therefore indirectly contributing to gRNA packaging.

2.1. Retroviral Rev and Rex Accessory Proteins Shuttle between the Nucleus and Cytoplasm

Rev and Rex are nucleocytoplasmic shuttle proteins. The shuttle function of the Rev
and Rex proteins is mediated by a nuclear localization signal (NLS) and a nuclear export
signal (NES) that is encoded within each protein; the NES is necessary for retroviral gRNA
nuclear export [21–23]. The nuclear import of Rev and Rex allows for the interaction of
these proteins with their respective unspliced gRNA in the nucleus. Rev nuclear import
alone is not sufficient for HIV gRNA nuclear export, and retroviral gRNA nuclear ex-
port also depends on the nucleolar localization of the Rev [24,25] and Rex proteins [26]
(Figure 1). Basic residues in the Rev and Rex RNA-binding domains mediate nucleolar
localization [23,27,28]. While the significance of Rev and Rex nucleolar localization in
facilitating gRNA nuclear export remains poorly understood, it is thought that nucleolar
localization allows Rev/Rex interaction with host cell proteins involved in nuclear export
of unspliced retroviral RNAs. For example, a recent study employing immunoprecipitation
and mass spectrometry identified several nucleolar factors that interact with Rev only
when Rev nucleolar localization sequences remain intact [29] (Figure 1). This observation
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suggests that proteins including nucleophosmin B23, nucleolin C23, and various cellular
splicing factors interact with HIV-1 Rev in nucleoli and may impact gRNA nuclear export.
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Figure 1. Nuclear export of human retroviral gRNA. (A). The mapped domains in the HIV-1 Rev
and HTLV-1 Rex proteins. Nuclear localization signal (NLS) Nuclear export signal (NES) (B). The
secondary structure of the HIV-1 RRE and HTLV-1 RxRE. Rev responsive element (RRE) Rex respon-
sive element (RxRE) See text for further details. Note that the RRE and RxRE structures are not
drawn to scale. DEAD box helicase 1 (DDX1), DEAD box helicase 3 (DDX3), HIV Tat-specific factor
1 (Tat-SF1), Chromosomal Maintenance 1, also known as Exportin 1 (CRM1), Ras-related Nuclear
protein (Ran), Ran Guanine nucleotide exchange factor (Ran-GEF), Ran GTPase activating protein
(Ran-GAP), Eukaryotic translation initiation factor 5A (eIF5A). Created with BioRender.com software
(accessed on 4 May 2022).

NES-mediated nuclear export of Rev (HIV-1, HIV-2) and Rex (HTLV-1) drives the
export of retroviral RNAs. The NES is located within the activation domain of Rev and
Rex proteins and contains numerous leucine residues associated with the nuclear export
function [21,23,27,30,31]. Several studies have demonstrated that swapping homologous
domains between Rev and Rex can result in the export of HIV or HTLV gRNAs [32–36].
These functional chimeras suggest a partially conserved mechanism of gRNA export.
The observation of nonfunctional swaps between Rev and Rex nucleolar-targeting se-
quences [36] underscores potential differences in their mechanism of gRNA nuclear export.
Investigation of these differences will help delineate the mechanism(s) of unspliced gRNA
nuclear export.

2.2. Rev and Rex Interact Directly with gRNA

Retroviral accessory protein-mediated export of unspliced gRNAs occurs through
direct RNA-protein interactions that form the export complex, and arise cotranscriptionally,
before spliceosome activation [37]. The timing of complex formation allows for export of
unspliced retroviral gRNA before it is processed. In the case of HIV-1, Rev specifically
interacts with the RRE in the HIV-1 gRNA [38–40]. The HIV-1 RRE is a 530 base-pair
sequence located in the env region of the genome and is retained in unspliced and partially
spliced viral RNA species. The RRE has a complex RNA secondary structure comprised
of a central stem and 5 stem-loop structures [17,41,42] (Figure 1). Several reports have
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indicated the requirement of the RRE secondary structure for Rev binding and have shown
that the initial Rev-RRE interaction occurs at a high affinity binding site, i.e., stem-loop
IIB [43–46]. Rev binds the RRE through an arginine-rich RNA binding domain contained
within an alpha-helical structure [24,47–50]. This interaction between Rev and RRE is the
foundation of the nuclear export complex.

Interactions between viral accessory proteins mediating nuclear export and the corre-
sponding RNA sequence element are similar among the human retroviruses. The HIV-2
genome also contains a RRE (RRE-2) located in the env region of the genome that has
complex secondary structure [42,51–53]. Like Rev, Rex also interacts with a specific RNA
sequence to permit nuclear export, i.e., the RxRE [54–57]. Like the RRE, the RxRE has
complex secondary structure, specifically it is made up of a long stem and four stem-
loop structures [55,58,59] (Figure 1). The role of the stem-loop structures of the RxRE has
been investigated in regards to their importance in RNA export efficiency [4,60]. For Rex,
residues similar to those involved in Rev-RRE binding are required for RxRE binding. The
RNA-binding domain of Rex is rich in basic residues, and specific residues important for
binding have been mapped [32,57,61]. The interaction of HIV-2 Rev and HTLV-1 Rex with
RRE-2 or RxRE containing RNAs, respectively, have not been studied as extensively as the
interaction of HIV-1 Rev and RRE-1.

These similarities between Rev and Rex, and their corresponding target sequences,
imply that they mediate nuclear export through a conserved mechanism. Rex has been
shown to export RNAs containing RRE-1 and RRE-2 from the nucleus, but Rev cannot
function in the export of RxRE-containing RNAs [62–65]. Some conservation of function
has also been observed between HIV Rev and RRE sequences. For example, HIV-1 Rev
can export unspliced viral RNAs containing the RRE-2, but HIV-2 Rev cannot mediate
export of RRE-1 containing RNAs [52,64–67]. Further comparative analysis between human
retroviruses that explore the incomplete conservation of Rev and Rex function is likely to
reveal further details on the mechanism(s) of retroviral gRNA nuclear export.

The Rev-RRE interaction induces structural changes of RRE-containing RNAs that
promote nuclear export. Specifically, initial Rev binding results in changes in the stem-loop
structures of RRE-containing RNAs that allows for further Rev binding [68]. Sequential,
cooperative binding of Rev to adjacent low affinity binding sites along the RRE results in
Rev oligomerization [47,69–73] (Figure 1). Dissociation constants have been reported for
Rev-RRE binding as 0.26–33 nM for Rev monomers and 0.77–92 nM for Rev dimers [71,72].
Up to 6–8 Rev molecules have been reported to bind the RRE in vitro [73]. Several studies
have reported mutant Rev proteins that prevent oligomerization and do not bind RRE-
containing RNAs, which impedes gRNA nuclear export [47,69,74–76]. This demonstrates
the importance of Rev oligomerization in retroviral gRNA nuclear export and indicates
the requirement of both protein-protein and protein-RNA interactions in this process.
While Rev oligomerization is mediated by cooperative binding to RNA, residues of the
arginine-rich RNA binding domain are not implicated in Rev oligomerization. In contrast,
residues proximal to this region that comprise a hydrophobic patch on the surface of Rev
are necessary for oligomerization [5,69,75,77]. Rev oligomerization is structurally linked
to the specificity of the Rev-RRE interaction. This conclusion is supported by the solved
structure of a Rev dimer that can bind the RRE, and by the extent to which HIV-1 and
HIV-2 Rev can function with the opposite RRE—i.e., HIV-1 Rev can export HIV-2 gRNA,
but HIV-2 Rev cannot export HIV-1 gRNA [66,78,79]. Rex oligomerization is required for
export of HTLV-1 gRNA [80]. However, the HTLV-1 gRNA export mechanism is not as
completely characterized as Rev oligomerization. Rev and Rex oligomerization are required
for interaction with the CRM1 nuclear export pathway.

2.3. Host Proteins Involved in gRNA Nuclear Export

Cellular proteins have been shown to be involved in Rev binding to the RRE. CRM1
is a major nuclear export receptor that interfaces with the Rev-RRE complex and permits
incompletely spliced RNA export from the nucleus. CRM1 interacts directly with Rev as a
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dimer [81] (Figure 1 and Table 1), and Rev serves as an adaptor to the cellular pathways
that are hijacked by retroviruses to export gRNA. CRM1-mediated export of gRNA requires
RanGTP interaction with the Rev-CRM1 complex [7,82]. Ran proteins are small G proteins
that mediate translocation of cellular proteins and RNA through the nuclear pore complex
(NPC). Ran proteins bind GTP in the nucleus and GDP in the cytoplasm, due to Ran
GAPs that are primarily localized to the cytoplasm and Ran GEFs that are localized in the
nucleus. RanGTP-bound CRM1 directs the Rev-RRE ribonucleoprotein complex out of the
nucleus through direct interaction with the mRNA translocation machinery located at the
nuclear envelope [3] (Figure 1 and Table 1). The GTP hydrolysis drives export of the viral
gRNA utilizing the Ran cycle. The RanGTP hydrolysis in the cytoplasm dissociates the
export complex.

Table 1. Summary of cellular proteins involved in export of retroviral gRNA from the nucleus.

Protein Function in gRNA Nuclear Export

CRM1 Major nuclear export receptor
Ran G protein, Ran GTP hydrolysis cycle drives export of CRM1 complex

DDX1 Nucleates Rev oligomerization on RRE
DDX3 Restructures gRNA for translocation through NPC

Nup62, Nup98, Nup124, Nup153 Nucleoporins that have been identified as part of the NPC involved in gRNA
nuclear export

PACS1 Nucleocytoplasmic shuttle protein that interacts with Rev-RRE-CRM1 complex
ANP32A/B Mediate export of viral RNAs via interaction with Rev-RRE-CRM1 complex

eIF5a Mediates Rev-RRE-CRM1 interaction with NPC
Rab/hRIP Interacts with CRM1

UPF1 Nucleocytoplasmic shuttle protein that interacts with Rev-RRE-CRM1 complex
MOV10 Rev cofactor
Staufen2 Regulates Rev nuclear export
Tat-SF1 Interacts with gRNA and promotes nuclear export

DEAD box helicase (DDX) proteins interact with RRE-Rev-CRM1 complex to promote
nuclear export (Figure 1 and Table 1). The DDX1 protein acts as a clamp on the RNA to
nucleate oligomerization by promoting binding of the first Rev monomer to the RRE [83,84].
A recent study has further clarified the role of DDX1 in nucleating Rev oligomerization by
showing that despite tighter binding to Rev, DDX1 nucleation of oligomerization is medi-
ated through interaction with the RRE [84]. In particular, this study showed that a DDX1
mutant that cannot bind Rev can still nucleate oligomerization, and that DDX1 mutations
that reduced the ability to bind RNA disrupted the ability of DDX1 to promote the first
Rev monomer binding to gRNA [84]. The interaction of DDX1 with RRE RNA results in a
structural change of the RRE RNA at stem IIB that enhances Rev binding and oligomeriza-
tion [85]. DDX1 is hypothesized to either promote this structural change and/or stabilize it.
DDX3 has been hypothesized to restructure retroviral gRNA in order to make it amenable
to translocation through the nuclear pore by interaction with CRM1 [86,87] (Figure 1 and
Table 1). The contribution of DDX1 and DDX3 is complicated by the conservation of other
DEAD-box helicases which could permit interaction with the RRE. It is plausible that this
effect could be the result of several DEAD-box helicases.

Additional cellular proteins interact with the Rev-CRM1 complex and have been
shown to contribute to export of retroviral RNAs. Phosphofurin acid cluster sorting protein
1 (PACS1), which localizes furin to the trans-Golgi network, can also shuttle between
the nucleus and cytoplasm, can associate with Rev and CRM1, and can contribute to
nuclear export of viral transcripts (Table 1) [88]. Moreover, PACS1-mediated export of
viral transcripts was discovered to be due to interaction with the Rev-CRM1 pathway [88].
Other proteins, such as acidic leucine-rich nuclear phosphoprotein 32 family member A
and B (i.e., ANP32A, ANP32B), mediate the export of unspliced or partially-spliced viral
mRNA via interactions with Rev and CRM1 (Table 1) [89]. In particular, a double knockout
of ANP32A and ANP32B led to a significant decrease in Gag expression and a dramatic
accumulation of unspliced viral mRNAs in the nucleus, while reconstitution of either
ANP32A or ANP32B restored virus replication [89].

The Rev-RRE-CRM1 nuclear export complex interacts with the translocation machin-
ery which is comprised of various cellular proteins. Some aspects of the NPC implicated in
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HIV-1 gRNA export have been characterized. Nup98, a nucleoporin, has been shown to
interact with Rev, which implies it is likely part of the NPC responsible for Rev-mediated
RNA export (Table 1) [90]. Other nucleoporins implicated in retroviral gRNA nuclear
export include Nup124, Nup153, Nup98, and Nup62 (Table 1) [91]. Interaction of the Rev-
RRE-CRM1 complex with the NPC is mediated by eIF5A [8,91,92] (Figure 1 and Table 1). It
is known that eIF5A is essential for directing the retroviral export complex to the translo-
cation machinery. This observation was made in cell-free studies, and it is possible that
several DDX proteins may be contributing to restructuring of the retroviral gRNA that
promotes nuclear export in cells. Part of the translocation machinery involved in export of
HIV and HTLV gRNAs include nucleoporin-like protein Rab/hRIP, which interacts with
CRM1 (Table 1) [31,93–95]. The specific function of Rab/hRIP in the nuclear export ma-
chinery of retroviral gRNA is not fully understood. Collectively, the interactions between
cellular proteins and the export complex result in the transport of Rev and Rex with RRE-
or RxRE-containing RNA out of the nucleus as a stable complex with CRM1. Studies with
HIV-1 have provided much of the current understanding of the role of CRM1 and other
associated cellular proteins in viral RNA transport. The previously described similarities
in the viral components of nuclear export suggest potential overlap in the mechanisms
of nuclear export among the human retroviruses. Comparable studies with HIV-2 and
HTLV-1 regarding the involvement of other components of the translocation machinery
are lacking.

Other cellular proteins that have been shown to be involved in the export of HIV-1 gRNA
include UPF1, MOV10, Staufen2 and Tat-SF1. Host upframeshift protein 1 (UPF1) regulation
of viral RNA nuclear export relies on the nucleocytoplasmic shuttling of UPF1 [96]. UPF1
exists in two essential viral ribonucleoprotein (RNP) complexes during the late phase of
HIV-1 replication. The first type of RNP is nuclear export RNPs that contain Rev, CRM1,
DDX3, and the nucleoporin p62; the second type of RNA is cytoplasmic RNPs that exclude
these nuclear export markers but contain Gag (Table 1) [96]. UPF2 was found to be excluded
from the UPF1-Rev-CRM1-DDX3 complex and was identified as a negative regulator of
viral RNA nuclear export [96]. The RNA helicase MOV10, a member of the UPF1-like
superfamily, was found to facilitate Rev/RRE-dependent nuclear export of viral RNAs, as
a co-factor of HIV-1 Rev (Table 1) [97]. MOV10 interacts with Rev in an RNA-independent
manner as determined by co-immunoprecipitation analysis [97]. The DEAG (Asp-Glu-
Ala-Gly) box of MOV10 is required to enhance Rev/RRE-dependent nuclear export [97].
Staufen2 positively regulates Rev nuclear export, which is predicted to contribute to gRNA
nuclear export [98]. Lastly, human Tat-specific factor 1 (Tat-SF1) was found to bind the
HIV-1 genome at the trans-acting response (TAR) sequence and selectively transport HIV-1
RNAs by facilitating the nuclear export of unspliced gRNAs, while retaining singly spliced
viral RNAs in the nucleus (Table 1) [99]. Cell-free studies have revealed some details of
the Tat-SF1 interaction with the HIV-1 genome [99]. In particular, Tat-SF1 forms a complex
with the TAR RNA independent of Tat. Tat-SF1 interacts with at least one additional
location in the 5′ end of the HIV-1 gRNA, and this interaction is enhanced by Tat [99].
Taken together, these findings suggest that nuclear export of retroviral gRNA is a highly
regulated process requiring several other cellular proteins. Future studies into how these
cellular proteins interface to coordinate retroviral gRNA nuclear export will provide a more
complete understanding of the mechanism(s) of RNA export. Such studies have yet to be
fully extended to other human retroviruses.

A role for Gag in retroviral gRNA nuclear export has been suggested. For exam-
ple, several retroviral Gag proteins, including those of Rous sarcoma virus (RSV) and
HIV-1, have been observed in the nucleus, though the nuclear roles of Gag are not fully
characterized. The RSV Gag protein interacts with unspliced viral RNA in the nuclei of
infected cells to form viral RNPs [100]. RSV viral RNPs have been implicated in genomic
RNA packaging [100]. HIV-1 Gag was also discovered to form viral RNP complexes with
unspliced viral RNA at transcription sites [101]. The interaction of nuclear HIV-1 Gag
with unspliced gRNA is specific and has been visualized in discrete foci in cell nuclei.
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Three-dimensional imaging analysis has revealed that HIV-1 Gag was localized to the
perichromatin space and associated with both unspliced gRNA and Rev in a tripartite RNP
complex. This observation supports a model where Gag interacts with newly transcribed
gRNA to form nuclear RNP complexes which may aid in export and/or packaging.

3. Translocation of gRNA to the Plasma Membrane

After the gRNA is exported out of the nucleus, the gRNA translocates through the
cytoplasm to sites of virus particle assembly at the plasma membrane. One study reported
tracking many individual HIV-1 gRNA molecules in the cytoplasm, and found most gRNAs
moved in a manner that was ‘nondirectional’ and ‘random walk-like’, indicating that the
HIV-1 gRNA moves by diffusion throughout the cytoplasm [102]. This type of gRNA
movement is observed whether HIV-1 Gag is present or not [102]. Diffusive movement
implies that Gag does not guide the movement of HIV-1 gRNA in a directed manner nor
do cellular proteins. Furthermore, the observation of single HIV-1 gRNA molecules over
time has revealed that at different time points, a given HIV-1 gRNA molecule could move
at various speeds [102]. This change in gRNA movement implies that the local gRNA
environment dictates gRNA behavior. These data, taken together, suggest that retroviral
gRNA is not directly transported to virus assembly sites by a single mechanism and that
several host cell components locally contribute to gRNA translocation to virus assembly
sites. While the studies described in this review suggest various ways in which viral or host
cell components may contribute to gRNA translocation to virus assembly sites, a cohesive
model for retroviral gRNA translocation to assembly sites is lacking. The importance of all
these factors in the context of retroviral infection events in infected individuals is unclear.

3.1. Influence of Nuclear Export Pathway on gRNA Translocation to the Plasma Membrane

Components of the nuclear export machinery have been implicated to influence gRNA
translocation to virus particle assembly sites. For instance, changing the RNA export
pathway from RRE-dependent trafficking via CRM1 to constitutive transport element
(CTE)-dependent export via NXF1 was necessary for HIV-1 replication in murine cells [103].
The requirement of a specific nuclear export pathway in murine cells would imply a link
between that pathway and gRNA translocation to virus assembly sites. In a system with
HIV-1 gRNAs exported by different nuclear export pathways (i.e., CRM1 or NXF1), the
gRNAs exported by different pathways were not copackaged [104]. Comparing retroviral
gRNA exported by different pathways can provide further insights into potential linkage(s)
of these processes. For example, HIV-1 gRNAs exported by the CRM1 or NXF1 pathway
were found to have diffusive movement in the cytoplasm, while CTE-containing RNAs
diffuse more slowly than RRE-containing RNAs [105]. While the biology causing observed
differences in diffusion rates is unknown, one possible explanation is that RNAs exported
by different pathways are associated with different proteins that alter diffusion rates to
varying extents. In contrast, other studies using an HIV-1 RRE-containing RNA observed
export to the cytoplasm that occurred in short bursts, while a CTE-containing Mason-Pfizer
monkey virus (MPMV) gRNA, viral RNA export was observed to be continuous [106].
The subcellular localization of viral RNAs also differs depending upon the mode of RNA
export, with HIV-1 RRE RNAs being exported throughout the cytoplasm with no specific
localization, while MPMV gRNAs are specifically exported to the microtubule organizing
center (MTOC) [106]. These observed differences in gRNA localization were reversed
when the HIV-1 gRNA export pathway was reversed by replacement of the RRE with
the CTE [106]. Taken together, the nuclear export pathway could, to some extent, impact
viral gRNA localization. For example, components of either system could serve as a signal
for a particular cytoplasmic fate. However, one study reported that changes in HIV-1
gRNA localization due to the nuclear export pathway do not change gRNA localization
and that the HIV-1 gRNA was not targeted to centrosomes [105]. The differences in
reported observations may involve the use of proviruses to express viral components
versus transfected DNAs. To date, the precise role of nuclear export in retroviral gRNA
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translocation to virus particle assembly sites remains poorly understood for HIV-1, let alone
HIV-2 and HTLV-1.

3.2. Influence of Gag on gRNA Translocation to the Plasma Membrane

Gag plays a major role in specific gRNA packaging; therefore, it is plausible that
Gag may influence gRNA translocation to assembly sites. Genome recognition of gRNA
by Gag represents the initial RNA-protein interaction. This process involves HIV-1 Gag
specifically interacting with the gRNA in the 5′ region of the genome [107,108]. One study
found that HIV-1 Gag and the gRNA colocalized at areas surrounding the nuclear envelope
at early time points after the appearance of Gag expression, where this colocalization
was shown to be driven by Gag [109,110]. These data, taken together, imply that HIV-1
genome recognition occurs in the perinuclear region of the cell (Figure 2A). However, it
is technically challenging to detect single Gag molecules, and therefore the first Gag and
gRNA interaction has not been observed in cells, though cell-free studies have detailed
HIV-1 genome recognition. For example, a recent study demonstrated that out of more
than two dozen binding sites in the 5′ leader sequence of the HIV-1 gRNA, the initial Gag-
RNA contact determined by assessing NC binding to a portion of the 5′ leader sequence,
occurred at high-affinity binding sites with the UUUU:GGAG motif [111] (Figure 2A).
Initial binding of Gag to gRNA is dependent on the structural lability of this motif [111].
Gaining greater insights into the subcellular location of genome recognition will provide
new details regarding the role of Gag in gRNA translocation to the plasma membrane.
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Figure 2. HIV-1 gRNA interaction with Gag and translocation to assembly sites. (A). Genome recogni-
tion occurs in the perinuclear region of the cell. (B). Phase separation of gRNA regulates translocation
to virus particle assembly sites. Liquid-liquid phase separation (LLPS), Ribonucleoprotein complex
(RNP), Gag nucleocapsid domain (NC). (C). Localization of gRNA to assembly intermediates pro-
motes virus particle assembly. DEAD box Helicase 6 (DDX6), ATP Binding Cassette Subfamily E
Member 1 (ABCE1) (D). Retention of gRNA at the plasma membrane is dependent upon interaction
with Gag. Created with BioRender.com (accessed 4 May 2022).

Recent studies using transmission electron microscopy (TEM) to study HIV-1 Gag and
gRNA localization at high resolution revealed colocalization mainly in the cytoplasm with
few instances of colocalization in the nucleus [112]. The site of genome recognition was not
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defined, and clustering of HIV-1 Gag and gRNA in the cytoplasm was dependent on regions
of Gag and gRNA previously reported to be involved in Gag and gRNA interactions [112].
Furthermore, amino acid substitutions at residues shown to reduce gRNA packaging
were observed to also reduce Gag and gRNA clustering, implying that Gag and gRNA
colocalization in the cytoplasm is important for genome recognition [112]. The relatively
high resolution of the TEM approach allowed for measurements of the distance between
Gag and gRNA and revealed that the distance between Gag and gRNA was reduced over
time. This suggests that Gag and gRNA condense in the cytoplasm [112]. Additional high-
resolution studies of Gag and gRNA in the cytoplasm have increased our understanding
of translocation of gRNA to the plasma membrane. For example, one study that utilized
3D-super-resolution structured illumination microscopy detected gRNA dimers in the
cytoplasm and found that Gag is involved in gRNA dimerization in the cytoplasm [113].
These results help to support the conclusion that Gag is involved in targeting gRNA dimers
to the plasma membrane [113]. This study and another reported that Gag interaction
with gRNA in the cytoplasm and translocation to the membrane is dependent on the NC
domain of Gag and more specifically the zinc-coordinating finger (ZnF) domains [113,114].
Another study supports the model that Gag-gRNA interactions in the cytoplasm promote
assembly given that reduction in Gag oligomerization in the cytoplasm occurred when the
NC domain was mutated, and Gag-gRNA binding was inhibited [115].

Phase separation of Gag and gRNA in the cytoplasm has recently been reported, where
the ZnF domains of HIV-1 Gag NC promote gRNA liquid-liquid phase separation (LLPS)
into RNP complexes [116]. These RNPs were theorized to stimulate virus assembly by
inhibiting translation and promoting formation of assembly intermediates (Figure 2B).
HIV-2 and HTLV-1 Gag may create similar complexes as their respective NC domains
also have the ability to phase separate in a Zn2+ dependent manner [116]. This study
showed that Zn2+ concentration can regulate RNP formation through experiments in which
high levels of HIV-1 NC resulted in a switch from RNP formation to Zn2+ dependent
stress granule formation, and in which Zn2+ depletion led to gRNA localization to stress
granules or retention in the nucleus [116] (Figure 2B). The switch between RNP and stress
granule phase separation suggests a potential mechanism that indirectly regulates gRNA
trafficking to virus assembly sites controlled by the NC domain of Gag and Zn2+. The
level of Gag expression and Zn2+ containing NC maintains Gag and gRNA RNPs that
promote translocation to assembly sites which likely occurs through assembly intermediates
(Figure 2B). A key cellular protein, Staufen-1, plays a role in this switch mechanism. Staufen-
1 has been shown to associate with HIV-1 gRNA and Gag RNPs as well as promote assembly
and gRNA packaging [117,118]. Furthermore, Staufen-1 has been shown to have a role
in dissociating HIV-1 stress granules and specifically preventing gRNA localization to
stress granules [119] (Figure 2B). HIV-2 gRNA has also been shown to phase separate in
RNPs and stress granules. However, the composition of the RNPs and the regulation of
phase separation differ from that of HIV-1. While HIV-1 abrogates stress granule formation,
HIV-2 infection has been shown to induce stress granule formation. HIV-2 gRNA phase
separates into RNPs with a stress granule assembly protein, TIAR, that is found in the
cytoplasm or in stress granules [120]. Phase separation of TIAR with HIV-2 gRNA was
not dependent on the interaction with Gag, but increased Gag expression promoted stress
granule formation [120]. The correlation between a threshold level of Gag expression and
gRNA localization to stress granules suggests this may regulate the switch from translation
to assembly, and the switch could promote gRNA translocation to assembly sites.

Similar to Gag and gRNA phase separation, Gag and gRNA colocalization in assembly
intermediates suggests specific trafficking mechanisms of gRNA prior to localization to
assembly sites at the plasma membrane. The HIV-1 gRNA has been reported to colocalize
with Gag in complexes larger than 30S, such as Gag assembly intermediates [121]. In
particular, HIV-1 gRNA was detected with Gag in an assembly intermediate derived from
host RNA granules that contain two cellular proteins that facilitate assembly, ABCE1 and
DDX6, an RNA granule protein [121] (Figure 2C). The localization of gRNA to Gag assembly
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intermediates may suggest a potential gRNA translocation mechanism in which after
incorporation to assembly intermediates, the gRNA is translocated to plasma membrane
assembly sites by the assembly intermediates.

Behavior of RNA near the plasma membrane can also provide insights into the mecha-
nism of translocation to assembly sites. The HIV-1 gRNA can be localized to the plasma
membrane in the absence of Gag and is only transiently near the membrane [107,122]
(Figure 2D). The retention of gRNA at the plasma membrane requires Gag and Gag-gRNA
interactions via the RNA packaging signal [107,110,122] (Figure 2D). Not all RNAs local-
ized near the plasma membrane are packaged into particles [122]. As Gag expression level
increases, the frequency of RNA packaging also increased [122], suggesting that Gag likely
plays an important role late in the translocation to a virus assembly site. Gag membrane
binding and multimerization are required to retain gRNA at the membrane [107]. It is
believed that Gag oligomers can readily recruit gRNA to the plasma membrane for gRNA
packaging [107] (Figure 2D). It remains unclear how all the observations described above
contribute to gRNA translocation to virus assembly sites in the formation of infectious
virus particles.

At the plasma membrane, the gRNA promotes particle assembly. Not only can the HIV-
1 gRNA stimulate particle assembly, but the gRNA can stimulate particle production by
specific Gag-gRNA interactions [123–125] and highlights the importance of specific genome
recognition in virus particle production [125]. This further supports studies that have
shown that RNA incorporation in virus particles is necessary for virion integrity [126–128]
and that specific interactions between dimeric HIV-1 gRNA and Gag act to nucleate the
process of HIV-1 particle assembly. Retroviral gRNA is particularly important for nucle-
ation at low Gag levels in cells [129], which is thought to be driven by the decrease in
activation energy needed for Gag interactions with the gRNA packaging signal that allow
for selective packaging.

3.3. Role of Microtubule Organizing Center (MTOC) on gRNA Translocation to the Plasma Membrane

HIV-1 gRNA sequences suggest a role for a cellular protein in translocating gRNA
via the MTOC. For example, the HIV-1 gRNA contains two sequences predicted to be
compatible for interaction with host protein hnRNP A2, similar to the hnRNP A2 response
element (A2RE) found in the human genome [130]. The A2RE-1 site in the HIV-1 gRNA is
located in the gag gene, while the A2RE-2 site is located in the overlap between the tat and
vpr genes [130]. These sequences are involved in RNA transport in oligodendrocytes [130].
However, the extent of the function of the A2RE-like sequences in the HIV-1 genome is
poorly understood. Depletion of hnRNP A2 in HIV-1 expressing cells was found to result
in HIV-1 gRNA accumulation at the MTOC [131]. Other studies have found HIV-1 Gag and
gRNA colocalization at the MTOC [109]. The accumulation at the MTOC in the absence of
hnRNP A2 implies that hnRNP A2 may aid in translocating gRNA to virus assembly sites
along microtubules. Alternatively, translocation to the MTOC could provide an opportunity
for interaction with other proteins that coordinate trafficking to assembly sites and not via
microtubules. Treatment of cells with microtubule depolymerizing drugs was observed to
not alter the random-walk like motion of HIV-1 gRNA in the cytoplasm [102], suggesting
that the role of hnRNP A2 may be in promoting colocalization with other proteins that
permit trafficking to the plasma membrane. No reports of hnRNP A2 in gRNA translocation
have been reported for HIV-2 or HTLV-1. The function of gRNA localization to the MTOC
remains unclear.

3.4. Role of Endosomal Vesicles on gRNA Translocation to the Plasma Membrane

Endosomal vesicles are another component of the cell that have been reported to
influence retroviral gRNA translocation. In a Gag dependent manner, HIV-1 gRNA has
been reported to be transported via endosomal vesicles, where the RNA displayed di-
rected movement instead of diffusive cytoplasmic movement for a minority of the gRNA
molecules that were tracked [102,132]. It has also been suggested that Gag and gRNA
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may be transported to the perinuclear region by late endosomes in a dynein dependent
manner [133]. This localization and transport via endosomes were not the result of endocy-
tosis of either gRNA or Gag at the plasma membrane [133], suggesting a specific population
of gRNA and Gag associates with late endosomes and is packaged into virus particles.

4. Packaging of Human Retroviral gRNA

Retroviral gRNA is specifically packaged as a noncovalently linked dimer. Compared
to spliced viral RNAs, HIV-1 gRNA is enriched in virions by a factor of 20 [134]. It has been
reported that dimerized gRNA is the RNA unit recognized for gRNA packaging [135,136].
This is supported by studies that show that mutations that promote dimerization between
RNAs promote the packaging of those RNAs [135,137]. Inversely, it has been reported
that gRNA mutations that prevent dimerization will inhibit gRNA packaging [138,139].
However, one study that made different mutations to prevent dimerization did not find a
reduction in packaging, while another study uncoupled gRNA dimerization and packaging
and observed robust packaging of gRNA monomers [140,141]. The apparent discrepancies
are likely due to the use of different dimerization mutants. For HTLV-1 mutations that
disrupted HTLV-1 gRNA dimerization in vitro had no effect on gRNA packaging into
released particles [142].

Two key interactions are required for specific packaging of dimerized gRNA: 1. A
high-affinity protein-RNA interaction between Gag and gRNA and 2. A specific interaction
of structural motifs in two gRNA molecules (dimerization).

4.1. gRNA Sequences Involved in the Gag-gRNA Interaction

In order to package retroviral gRNA, the Gag protein interacts with a specific cis-acting
element of the gRNA. This element has been referred to by different names, including
the RNA packaging signal (psi) or the RNA encapsidation signal (E). Interaction of Gag
with the RNA packaging signal promotes selective packaging of retroviral gRNA over
other virus-derived RNAs and cellular RNAs [126,129,143,144]. The RNA packaging signal
for retroviruses is comprised of a complex secondary (and tertiary) structure commonly
involving several RNA stem-loops. This RNA packaging signal is conserved on a structural
level [145,146]. The RNA secondary structure of the stem-loops is important for gRNA
packaging [141]. It has been hypothesized that selective packaging by the RNA packaging
signal is due to Gag nucleation occurring at a faster rate on these sequences.

Retroviral RNA packaging sequences are located in the 5′ leader sequence of the gRNA.
The HIV-1 RNA packaging signal is located in the 5′ UTR after the major splice donor site
and before the gag gene (Figure 3A) [134,147–151]. Because the sequences necessary for
packaging are downstream of the splice donor site these sequences are only in unspliced
RNA molecules; only the gRNA is specifically packaged over other RNAs. For HIV-2,
the key sequences required for RNA packaging are located upstream of the major splice
site (Figure 3A) [152,153]. Sequences between the major splice donor and the beginning
of the Gag ORF have also been shown to play a role in HIV-2 gRNA packaging, but the
effect on packaging when these sequences are deleted or mutated is less than when the
sequences upstream of the splice donor are mutated [152,154]. The sequences downstream
of the splice donor site have been reported to bind to HIV-2 Gag [155]. This RNA-protein
interaction likely permits selectivity between spliced RNAs and the unspliced gRNA that
is not encoded solely by sequences upstream of the splice donor site. The differences in the
location of RNA packaging sequences in HIV-1 and HIV-2 relative to the splice donor site
suggest potential differences in the mechanistic details of gRNA packaging, which could
have implications for particle assembly and infectivity.
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Figure 3. Schematic representation of the human retroviral gRNA packaging process. Gag stabiliza-
tion of retroviral genome dimers which occurs between two Gag-gRNA duplexes. (A) HIV-1 and
HIV-2 RNA secondary structure models of the 5-untranslated region (5′ UTR) containing the psi
(Ψ) sequence with indication of the major splice donor site (SD) either upstream to the Ψ sequences
necessary for packaging, as in HIV-1 or downstream to the Ψ packaging sequences as in the case
of HIV-2; HTLV-1 and BLV RNA secondary structure models of the gRNA packaging sequence are
located in the Gag open reading frame (ORF). The RNA structural elements are marked as indicated:
SL1, stem-loop 1; SL2, stem-loop 2; SL3, stem-loop 3; SL4, stem-loop 4; gRNA, viral genomic RNA.
Stem-loops are not drawn to scale. (B) Model of the structural motifs in the retroviral Gag polyprotein
nucleocapsid (NC) domain mediating the specific Gag-gRNA interaction. Shown are the two zinc-
finger (ZnF1 and ZnF2) motifs in HIV-1, HIV-2, and HTLV-1 NC (amino acid residues 11–53, 5–47,
and 9–53 respectively). During HIV-1 gRNA packaging, both ZnFs are necessary as the predominant
interacting partners with the gRNA, yet the N-terminal ZnF has a greater impact on gRNA packaging.
Highlighted in blue are the specific, positively charged, basic amino acid residues within the two ZnF
motifs that have been identified to be involved in binding the gRNA. (C) Representative kissing-loop
structure induced by NC of HIV-1 and HIV-2 at the gRNA dimer initiation site (DIS), a palindromic
sequence located in SL1 of the Ψ sequence secondary structure in the 5′ UTR; representative structure
of the two DIS sites identified for HTLV-1 containing palindrome-like sequences located within
loop structures in the 5’ leader sequence upstream of the primer binding site (PBS). Created with
BioRender.com software (accessed 4 May 2022).

For HIV-1 and HIV-2, the RNA packaging signal contains four stem-loop structures
(i.e., SL1, SL2, SL3, and SL4). These structures are the key sites for Gag-gRNA interac-
tions [156,157]. All 4 stem-loops can independently bind Gag, and all four of the stem-loops
have been shown to be important for RNA packaging [158–163]. Evidence supports the
conclusion that SL3 has the most significant contribution to gRNA packaging, followed next
by SL1 [108,134,160,164–167]. In particular, a 110 nt sequence in the gRNA from position
227–337 represents the core Gag binding domain [168]. The stem-loop structure of this
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region is mediated by a long-range interaction between a CU-rich region and nucleotides
proximal to the AUG start codon [168]. In addition to RNA stem-loop structures, it has
more recently become apparent that unpaired guanosine bases in the packaging signal
contribute to specific Gag binding of gRNA, perhaps even more than SL1 and SL3 for
HIV-1 as determined in cell-free studies using a shortened RNA containing the packaging
signal [129,169]. Similar observations have been made for unpaired guanosine nucleotides
in the full-length genome [161]. Unpaired guanosine nucleotides are also present at several
locations in the packaging signal that have previously been identified to be primary HIV-1
Gag binding sites [161]. Mutation of a few unpaired guanosine nucleotides in one Gag
binding site was found to cause a minor defect in gRNA packaging, but the combination of
mutations at unpaired guanosine nucleotides of multiple Gag binding sites resulted in a
synergistic reduction in gRNA packaging [163]. This suggests that multiple Gag molecules
binding to gRNA are required for packaging. Furthermore, these observations imply
functional redundancy in the RNA packaging mechanism. Unpaired guanosines in the
HIV-2 RNA packaging signal have also been implicated in gRNA packaging [170], which
suggests conservation of the RNA packaging mechanism. Other nucleotides have been
identified that play a more secondary role in specific gRNA packaging, as they are not
Gag binding sites. For the HIV-1 RNA packaging signal, the nucleotides at positions 226
and 227 have been reported to promote gRNA packaging efficiency by regulating RNA
secondary structure of the packaging signal [171].

The HTLV-1 packaging signal has not been as extensively characterized. Bovine
leukemia virus (BLV), a closely related deltaretrovirus, has provided insight into 5′ leader
sequences involved in HTLV-1 RNA packaging. Two RNA stem-loop structures in the
HTLV-1 gag gene that are homologous to stem-loops in BLV that were shown to be involved
in gRNA packaging were able to be substituted in the BLV genome and allowed for
RNA packaging (Figure 3A) [172]. This implies that these stem-loop structures are likely
involved in HTLV-1 gRNA packaging. The contributions of other sequences involved in
gRNA packaging for HTLV-1 such as those in the 5′ UTR are not well characterized.

4.2. Gag NC Determinants of Gag-gRNA Interaction

The RNA-protein interaction mediating packaging of gRNA is known to involve the
NC domain of Gag. The NC domain of HIV-1 and HIV-2 Gag has been shown to bind the
viral gRNA (Figure 3) [125–134]. The specific motifs in NC important for interaction with
the gRNA include two ZnFs, each of which is formed by a cysteine-histidine (Cys-His) box,
(Figure 3B) [144,158,169,173–176]. These similar yet distinct ZnFs are thought to contribute
differently to viral gRNA packaging. While both are required, the N-terminal ZnF is thought
to be more dominant and the two ZnFs are known to not be interchangeable [158,177–181].
A recent study more completely characterized the role of ZnFs in gRNA packaging. This
report suggests that both ZnFs mediate Gag-gRNA interaction in the cytoplasm equally, but
each ZnF contributed individually to Gag-gRNA accumulation at the plasma membrane
with the more C-terminal ZnF being more crucial to this activity [114]. Specific NC residues
involved in gRNA binding have been characterized, and include positively charged, basic
amino acids within the ZnFs [178,179,182–184]. However, mutation of both ZnFs did
not completely inhibit HIV-1 gRNA packaging, providing evidence that the Gag-gRNA
interaction is mediated by other residues outside of the ZnFs [185]. Taken together, these
observations suggest a model for gRNA packaging in which basic residues and ZnFs of
HIV-1 Gag NC cooperate to select gRNA to be packaged into assembling viral particles.

The mechanism by which ZnFs promote binding to gRNA has been of great interest.
An NMR spectroscopy study of the structure of HIV-1 NC in complex with SL3 of the
HIV-1 gRNA packaging signal revealed that the ZnFs form hydrophobic clefts that bind
to unpaired guanosines [186]. More recent work has described how ZnF metalation may
also support that structure. Gag variants containing two Zn2+ molecules were shown to
have a higher binding affinity to and selectivity for model gRNA when compared to Gag
variants with one Zn2+ molecule [181]. These findings support that both ZnFs of Gag must
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be metallated by Zn2+ for gRNA packaging. It has been hypothesized that this permits
gRNA packaging, as the structure of metallated ZnFs brings basic residues flanking these
motifs closer together to form a basic region that could serve to select RNA. The binding
of Gag to a model gRNA compared to binding to other viral RNAs has revealed how
ZnFs may mediate specific interactions. In particular, it was observed that Gag binds to
gRNA in a specific salt-independent manner selecting for gRNA over other RNAs in the
cell [169]. ZnF metallation may also be important in differentiating the function of the NC
domain within full-length Gag from that of NCp7, mature cleavage product of Gag encoded
by the NC region. This is supported by a decreased affinity and selectivity of NCp7 for
gRNA regions that promote packaging [181]. Notably, cleavage of Gag that creates NCp7
favors nonspecific nucleic acid interactions that allow NCp7 to coat the entire genome in
mature virus particles. HIV-2 and HTLV-1 Gag have ZnF motifs similar to that of HIV-1
Gag (Figure 3B). Further study of the specific interaction of HIV-2 and HTLV-1 Gag and
the respective gRNAs is needed to understand the mechanistic similarities in packaging
retroviral gRNAs.

4.3. Role of Other Gag Domains in Gag-gRNA Interaction

Other domains of Gag have been shown to contribute to Gag-gRNA interactions
involved in retroviral gRNA packaging. HIV-1 NC, not in the context of the full-length Gag
protein, can bind RNA with high-affinity, but without specificity, though NC is required
for specificity and binding affinity in full-length Gag [157,181]. This suggests a role for
other domains of Gag in packaging specificity. For HIV-1, the Gag domains SP1 and p6
have both been shown to be involved in selectively binding gRNA. The p6 domain is
required for specific high-affinity binding to gRNA, while mutations in SP1 reduced HIV-1
gRNA packaging through a mechanism that is not fully understood [187–189]. It has
been suggested that the p6 domain indirectly supports selective RNA binding through
interaction with Gag NC ZnFs. This has been suggested to promote steric selection of
gRNA by masking the positive charges of Gag NC. The deltaretroviral MA domain of Gag
has been shown to potentially play an important role in gRNA packaging. The HTLV-1 and
HTLV-2 MA proteins have higher nucleic acid binding affinity than HTLV-1 NC and can
act as a nucleic acid chaperone [142,190]. Furthermore, the HTLV-2 MA specifically binds
HTLV-2 gRNA with high-affinity [190]. For other deltaretroviruses, specific residues in MA
have been shown to be required for gRNA packaging. The HIV-2 Gag MA domain also has
been reported to have nucleic acid chaperone activity [191]. It is plausible that both MA
and NC domains contribute to HIV-2 gRNA packaging. There is a paucity of virological
studies to fully validate cell-free studies to date and it is an important direction for future
investigations. The function of other Gag domains in gRNA packaging, as well as their
roles in direct or indirect gRNA recognition, need further clarification as the role of Gag
domains in gRNA packaging varies among retroviruses. These differences can provide
deeper insights into the various mechanisms evolved by retroviruses.

A recent study reported that HIV-1 CA and MA domains have a functional role in
genome packaging as Gag multimerization and membrane binding, mediated by both the
CA and MA domains, are required for genome packaging [192]. These observations support
a model for HIV-1 gRNA packaging in which Gag proteins interact with the gRNA at the
plasma membrane, multimerize, and lead to nucleation of the particle assembly complex.

4.4. Dimerization Initiation Site/Dimer Initiation Signal (DIS) Mediates gRNA-gRNA Interaction

The interaction of two gRNA molecules, or dimerization, is the second key interaction
in gRNA packaging. Where gRNA dimerization occurs in the cell has been studied. For
HIV-1, studies have suggested that dimerization occurs after the gRNA is exported from the
nucleus, likely at or near the plasma membrane, but prior to gRNA packaging [104,193,194].
For example, a recent study tracked individual HIV-1 RNA molecules and found that indi-
vidual gRNAs dimerize at the plasma membrane and do not arrive as dimers [194]. The
RNA secondary structure can impact gRNA dimerization, given that the RNA structure in-
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volved in dimerization is located within the packaging signal [150,195]. In particular, HIV-1
has a palindromic sequence in the SL1 of the packaging signal that mediates dimerization,
i.e., the dimerization initiation site (DIS) [196–199]. The key nucleotides mediating this
interaction are located at the top of the SL1 hairpin loop (i.e., the kissing loop) (Figure 3C).
Dimerization relies on the guanine quartets in the hairpin loop [200], where dimeriza-
tion occurs through annealing of the palindromic sequences by a loop-loop interaction
between two monomers with no extended duplex [196,201,202]. A second aspect of the
dimerization mechanism involves intrastrand base pairs that form the stems of the hairpin
loops and dissociate and reanneal to form a stable interstrand duplex [196]. The extended
dimer conformation of dimerized HIV-1 gRNA molecules has been shown to be similar
among various HIV-1 strains [203], suggesting a consistent model of dimerization among
HIV-1 strains.

Similarities exist in the dimerization mechanisms for other human retroviruses. The
HIV-2 DIS is highly similar to HIV-1 and is also a 6-mer palindromic sequence located in
a hairpin loop within SL1 (Figure 3C) [204–206]. Another HIV-2 hairpin loop that may
mediate dimerization is located in the trans-activation response (TAR) element [206,207].
Furthermore, a sequence in the HIV-2 primer binding site (PBS) is involved in dimeriza-
tion [205,208,209]. Higher RNA concentrations were used in these studies, so the identified
role of TAR and PBS in dimerization could be artifacts due to nonspecific interactions. Dur-
ing virus particle assembly, the tRNAlys3 binds the PBS, which changes the RNA structure
and likely inhibits RNA dimerization. Though the PBS may permit gRNA dimerization,
it would not do so in the context of gRNA packaging. More recent findings suggest it is
also possible that the PBS was identified as a DIS because tRNAlys3 binding changes the
overall gRNA structure in a way that promotes dimerization through the DIS identified
in SL1 [210]. The HIV-1 and HIV-2 DIS hairpin loops are too distinct from one another to
permit heterodimerization [211], suggesting that the likelihood of HIV-1 and HIV-2 recombi-
nation would be low. There have been two DIS sequences identified for HTLV-1, with both
being palindrome-like sequences located within loop structures in the 5′ leader sequence
upstream of the PBS (Figure 3C) [142,212–214]. One of these sites contains a structural motif
that is different than the hairpin loops involved in HIV-1 and HIV-2 dimerization. The RNA
forms a trinucleotide RNA loop that has been implicated in dimerization [215]. The dif-
ferences in dimerization among deltaretroviruses and lentiviruses, and their implications,
remain to be determined.

4.5. Regulation of gRNA Dimerization by RNA Conformation

The conformation of the gRNA is important for mediating the interaction between
two gRNA molecules. Two major RNA structural conformations, i.e., a long-distance
interaction (LDI) conformation in which the DIS is inaccessible, and a branched molecular
hairpin (BMH) conformation in which the DIS is exposed, have been observed [216]. For
HIV-1, the LDI conformation is prompted by interactions between the polyA sequence
and DIS hairpin motifs [216]. For HIV-2, the LDI structure forms through interaction
of nucleotide bases upstream of the PBS and sequences in the vicinity of the Gag start
codon [198,217,218]. For both HIV-1 and HIV-2, the BMH structure, which is composed of
several intramolecular interactions, promotes dimerization by altering the gRNA structure
such that the palindromic sequence of the hairpin loop is exposed [219–223]. Both the
HIV-1 and HIV-2 BMH structures promote gRNA packaging, which implies a linkage in
these two processes [146,220,224]. Taken together, these observations suggest a mechanism
in which changes in RNA structure may serve as a molecular switch between processes
associated with gRNA packaging—i.e., dimerization, NC binding, and viral protein trans-
lation. Among lentiviruses, this molecular switch, appears conserved, while little is known
for deltaretroviruses like HTLV-1.

Other sequences forming intramolecular interactions have been proposed to contribute
to dimerization. In particular, sequences located within the major splice donor site and
downstream sequences have been predicted to form intramolecular interactions that pro-
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mote dimerization [196,225]. For HIV-2, an additional palindromic sequence (pal) located
in the stem B region of SL1 was found to be necessary for dimerization [206,226–228].
This pal sequence has been shown to permit intramolecular interactions with upstream
and downstream sequences in the 5′ UTR that are predicted to alter how the DIS is ex-
posed [162,229–231]. A recent study reported a role for a key intramolecular interaction
that is present only in the BMH conformation between sequences in the U5 region and
in the vicinity of the Gag start codon [231]. Specifically, when sequences near the Gag
start codon were replaced with sequences that form a stable hairpin structure, dimer sta-
bilization was maintained. However, when the sequence was altered to sequester the
sequence surrounding the Gag AUG, the U5:AUG interaction was prevented, which inhib-
ited both dimerization and gRNA packaging [231]. This and other studies have confirmed
the importance of intramolecular interactions in stabilizing gRNA dimers.

4.6. Role of Gag in Promoting gRNA Dimerization

Gag has been implicated in facilitating gRNA dimerization. A positive correlation be-
tween HIV-1 Gag concentration in cells and RNA dimer formation has been reported [194].
A link between NC binding and RNA dimerization has also been observed [195,218]. The
mechanism by which NC binding promotes dimerization is presently unknown, but it is
plausible that Gag binding to gRNA could stabilize dimers, or that the chaperone activity
of NC may promote gRNA dimerization. In support of this, it has been observed that
NC binding may enhance gRNA dimerization by stabilizing the BMH conformation [216].
However, it has also been demonstrated that gRNA can adopt a stable conformation with 5′

UTR intermolecular base pairing with the AUG start codon of the gag gene in the absence of
NC domain of Gag as well as any RNA chaperone [232]. The mechanism for how Gag pro-
motes dimerization remains an outstanding question in the field. It has also been observed
that dimerization may occur between two Gag-gRNA duplexes, based on the observation
that gRNA behavior is influenced by Gag near the plasma membrane [122]. This suggests
that gRNA near the membrane interacts with Gag that is at low copy numbers [122].

4.7. Other RNA Sequences Contribute to gRNA Packaging: Secondary Packaging Signals

Other regions of retroviral genomes have been reported to contribute to gRNA pack-
aging. While not required for packaging, the HIV-1 RRE sequence has been shown to
enhance gRNA packaging, as has HIV-1 Rev, beyond the effect of exporting gRNA from
the nucleus [231,233–236]. The effect of Rev-mediated enhancement of packaging was
also demonstrated when a similar RNA was exported by NXF1, suggesting that Rev has a
role in gRNA packaging beyond its role in mediating gRNA nuclear export [104,234]. The
exact mechanism by which Rev enhances gRNA packaging is poorly understood, though
it has been indicated to be indirect [230]. The interaction of the gRNA with Rev has been
suggested to alter the RNP complex, or in general, make the gRNA more accessible for
selection by Gag. The RRE sequence may contribute to long-distance interactions that
stabilize RNA structures necessary for Gag-gRNA interactions. To date, there have not
been any reports of a contribution of Rev/RRE in HIV-2 gRNA packaging [237]. Other
genomic sequences potentially involved in gRNA packaging include a sequence in the
HIV-1 Gag P1-P6 domain, as well as the Gag-Pol ribosomal frameshift site [238]. However,
subsequent work has shown that the frameshift site is not required for packaging [239].
Differences in the experimental systems explain the differences in observations made.

The observed differences in gRNA packaging mechanisms among human retroviruses
are further underscored by the differential ability to cross-package or co-package gRNAs.
In gRNA cross packaging, the gRNA of one virus is incorporated into the virions of other
viruses; gRNA co-packaging is the incorporation of a gRNA from one virus with a gRNA
from another virus. Retrovirus gRNA cross packaging is not universal [240]. In particular,
non-reciprocal gRNA packaging between HIV-1 and HIV-2 has been observed, where HIV-1
Gag-Pol can package HIV-2 gRNA, but HIV-2 cannot cross package HIV-1 gRNA [241].
The cross packaging and co-packaging of HTLV-1 with human lentiviruses have not been
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reported to date. Nonreciprocal cross packaging and co-packaging imply differences in
gRNA packaging for retroviruses, which may include differences in binding sites or other
aspects of gRNA packaging, including gRNA dimerization and/or translocation to particle
assembly sites.

4.8. RNA Selection for gRNA Packaging Is Regulated on a Transcriptional Level

Whether a retroviral gRNA is utilized for packaging or for protein translation is
a key aspect of the retrovirus lifecycle that has attracted great interest for many years.
One favored model has been that there is a functional separation of gRNA for packaging
and translation (i.e., separate pools). Inhibition of transcription does not reduce HIV-1
or HIV-2 gRNA packaging more rapidly than reductions that occur in cytoplasmic RNA
levels [242–244]. Furthermore, inhibition of nuclear export by leptomycin B was not
found to affect HIV-1 and HIV-2 gRNA packaging [243]. Together, these observations
suggest that there is no functional separation of gRNAs into pools because the rate of
decrease in gRNA packaging and translation of viral proteins matched the decrease in
abundance of cytoplasmic RNAs. More recent studies have indicated that gRNA packaging
is regulated at a transcriptional level, based on the observation that several versions of
the same transcript are observed with varying numbers of 5′ capped guanosines [245].
Transcripts with a single capped guanosine are enriched in virions, while transcripts with
two or three capped guanosines are enriched on polysomes [245,246]. This differential
capping mechanism has been shown to alter the transcript structure in a way that correlates
with changes in function. In particular, for gRNA with a single capped guanosine, the
dimeric multi-hairpin conformation was promoted, resulting in an inaccessible cap that
prevents interaction with eIF4E [247]. The addition of two or three capped guanosines
forms a structure that will expose the cap, which favors RNA translation [247]. Another
study supported this model by demonstrating that HIV-1 gRNA cap exposure can inhibit
gRNA packaging [248]. Whether gRNA is selected for packaging in cis or in trans by Gag
has been studied, and it was found that HIV-1 gRNA that cannot be translated was still
packaged into virions [230,249]. Furthermore, it was reported that HIV-1 Gag selectively
packages non-translated gRNA [250]. These observations imply that cis packaging is not a
requirement for HIV-1 gRNA packaging. The HIV-2 gRNA packaging has also been shown
to be random, implying that cis packaging is not required [249,251–253]. The fact that
cis packaging is not required for gRNA packaging supports the conclusion for functional
separation of gRNA for human retroviruses.

5. Conclusions

Retroviral gRNA packaging represents a crucial step in the production of infectious
virus particles and studies of this process provide greater insights into retrovirus replication.
To date, knowledge regarding retrovirus gRNA packaging has come mainly from studies of
HIV-1. Many details of gRNA packaging known for HIV-1 are poorly understood for closely
related human retroviruses, i.e., HIV-2 and HTLV-1. Thus, comparative analyses of HIV-2
and HTLV-1 gRNA packaging would provide deeper insights into the details of gRNA
packaging by revealing the conserved or novel mechanisms. The mechanism of gRNA
nuclear export represents an important aspect of unspliced RNA molecule translocation
to the cytoplasm. Viral elements essential for gRNA nuclear export have been defined
for all three human retroviruses, but cellular proteins involved in gRNA nuclear export
have, to date, only been characterized for HIV-1. Viral gRNA-protein interactions required
for gRNA encapsidation and dimerization are well characterized, particularly for HIV-
1 and HIV-2. A particular knowledge gap in the field involves the dynamics of gRNA
packaging—particularly how the gRNA translocates to the plasma membrane. While
various studies have identified cellular components that influence gRNA translocation
to the plasma membrane, the mechanistic details remain unclear. The temporospatial
dynamics of the gRNA and Gag are lacking beyond those studies at limited timescales
and at various subcellular localizations. To date, studies of gRNA translocation to virus
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assembly sites have almost exclusively focused on HIV-1. Addressing these knowledge
gaps will improve our understanding of the complex process of genome recognition and
gRNA packaging.
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