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BACKGROUND: The non-malignant cells of the tumour stroma have a critical role in tumour biology. Studies dissecting the interplay
between cancer cells and stromal cells are required to further our understanding of tumour progression and methods of intervention.
For proof-of-principle of a multi-modal approach to dissect the differential effects of treatment on cancer cells and stromal cells,
we analysed the effects of the stromal-targeting agent 5,6-dimethylxanthenone-4-acetic acid on melanoma xenografts.
METHODS: Flow cytometry and multi-colour immunofluorescence staining was used to analyse leukocyte numbers in xenografts.
Murine-specific and human-specific multiplex cytokine panels were used to quantitate cytokines produced by stromal and melanoma
cells, respectively. Human and mouse Affymetrix microarrays were used to separately identify melanoma cell-specific and stromal
cell-specific gene expression.
RESULTS: 5,6-Dimethylxanthenone-4-acetic acid activated pro-inflammatory signalling pathways and cytokine expression from both
stromal and cancer cells, leading to neutrophil accumulation and haemorrhagic necrosis and a delay in tumour re-growth of 26 days in
A375 melanoma xenografts.
CONCLUSION: 5,6-Dimethylxanthenone-4-acetic acid and related analogues may potentially have utility in the treatment of melanoma.
The experimental platform used allowed distinction between cancer cells and stromal cells and can be applied to investigate other
tumour models and anti-cancer agents.
British Journal of Cancer (2012) 106, 1134 – 1147. doi:10.1038/bjc.2012.63 www.bjcancer.com
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Melanoma accounts for nearly 80% of skin cancer-related deaths,
and the incidence of melanoma is increasing rapidly. Melanoma
progression involves complex interactions between tumour cells
and the non-malignant cells of the tumour stroma (Ch’ng and Tan,
2009). These stromal cells include tumour fibroblasts, which
express growth factors such as TGFb2 that act on the adjacent
tumour cells (van Zijl et al, 2009), as well as proteins of the
extracellular matrix, which are modified by matrix metalloprotei-
nases derived from tumour cells to regulate tumour invasion and
angiogenesis (Kalluri, 2003). Another important component of the
melanoma stroma is the vascular endothelial cells, as angiogenesis
and a functioning vasculature are necessary in all stages of
melanoma progression (Garcia-Barros et al, 2003). The interac-
tions of the melanoma cell with its stroma are complex (Ilkovitch
and Lopez, 2008) and are incompletely understood. Methodologies
that allow the network of messages within the tumour to be
dissected would aid in our determination of the mechanisms by

which the stroma influences melanoma biology. They will also
promote our understanding of how we may disrupt these
interactions with novel stromal-targeting agents to impede tumour
progression, and how these interactions are altered by traditional
chemotherapies that target tumour cells.

Significant benefits for melanoma patients have been obtained
through targeted modification of tumour vasculature, immunity
and inflammation, such as IFN-a (Moschos et al, 2006) and
isolated limb perfusion of high-dose TNF-a therapies (Lienard
et al, 1992). Ipilimumab, a monoclonal antibody to CTL-4
(Sanderson et al, 2005), was recently approved for metastatic
melanoma and numerous other immunological approaches for
melanoma are also under development (Parmiani et al, 2003;
Smith et al, 2005). In addition, approaches that act to alter the
cytokine milieu within tumours, changing the microenvironment
from one that is pro-tumour to one that is non-conducive to
tumour growth are beginning to make an impact. Examples of
these approaches include antagonists of TGF-b (Ge et al, 2006;
Nam et al, 2008) and 5,6-dimethylxanthenone-4-acetic acid
(DMXAA), a small molecule cytokine inducer (Ching et al,
1999a; Joseph et al, 1999), developed at the Auckland Cancer
Society Research Centre (Rewcastle et al, 1991).Revised 25 January 2012; accepted 06 February 2012
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In addition to its direct pro-apoptotic action on the tumour
vasculature (Ching et al, 2002, 2004), DMXAA induces cytokine
synthesis in situ in the tumour (Ching et al, 1999a; Joseph et al,
1999). The induced cytokines elicit a cascade of responses:
irreversible vascular shutdown, tumour ischaemia and haemor-
rhagic necrosis (Lash et al, 1998) that can result in tumour growth
inhibition even in an immunodeficient host. In immunocompetent
hosts, the elicited cytokines additionally lead to augmentation
of systemic immune cytotoxic T cell activity against the tumour
(Jassar et al, 2005), an essential component for long-term tumour
regressions induced with this class of compounds (Bibby et al,
1991; Ching et al, 1992).

DMXAA has shown activity against a wide range of preclinical
tumour models (Kanwar et al, 2001; Jassar et al, 2005; Seshadri
et al, 2006; Seshadri and Ciesielski, 2009), and phase II trials of
DMXAA in combination with standard chemotherapy were carried
out against ovarian (Gabra and Jameson, 2007), prostate (Pili et al,
2010) and lung cancers (McKeage et al, 2008). Following promising
results in phase II, Novartis sponsored two phase III studies
(ATTRACT-1 and ATTRACT-2) of DMXAA in combination with
carboplatin and paclitaxel for lung cancer. Although both phase III
trials against lung cancer were recently discontinued after interim
analysis of the results, DMXAA may potentially have utility against
other types of cancers such as melanoma, especially in combina-
tion with newer immunological approaches, and provides a
paradigm for other derivatives of this class.

In this communication, we describe a multi-modal approach to
investigate the distinct effects of a treatment on stromal cells and
the cancer cells, using DMXAA and its effects on A375 human
melanoma xenografts in nude mice as a proof-of-principle. The
experimental platform developed here can be easily applied to
other tumour models to better define tumour– stroma crosstalk
and to define the mode of action of other stromal-targeting agents.

MATERIAL AND METHODS

DMXAA

DMXAA was synthesised as the sodium salt at the Auckland
Cancer Society Research Centre (Rewcastle et al, 1991) and
dissolved fresh for each experiment in saline. 5,6-Dimethylxanthe-
none-4-acetic acid was administered to mice by intra-peritoneal
injection at 25 mg kg�1.

Mice and tumour inoculations

Immunodeficient CD-1 nude mice and RAG-1 knockout
(RAG-1�/�) mice were bred at the Vernon Jansen Unit, Auckland
University. All experiments conformed to local institutional
guidelines that meet the standards required by the UKCCCR
guidelines. Melanoma lines NZM1, NZM2, NZM3, NZM4 and
NZM7, developed from surgical specimens obtained from patients
with informed consent, were maintained as previously described
(Marshall et al, 1993). Xenografts from these lines were initiated
by inoculation of 107 cells into the left flank of RAG-1�/� mice.
The A375 melanoma line (ATCC no. CRL-1619) was maintained in
DMEM media supplemented with 10% FCS, and 106 cells were
inoculated subcutaneously into CD-1 nude mice.

Determination of haemorrhagic necrosis and tumour
growth inhibition

Tumours between 8 and 10 mm in diameter were used for
haemorrhagic necrosis determinations. Mice with tumours were
treated with DMXAA and the tumour excised at 4 or 24 h after
treatment. Part of each tumour was fixed in formalin, paraffin-
embedded, sectioned and haematoxylin and eosin-stained. Mon-
tages of entire tumour sections were acquired (Image Pro PLUS

7.0, Media Cybernetics Inc, Bethesda, MD, USA) at an original
magnification � 10 (Nikon TE2000E microscope, Nikon Inc.,
Kawasaki, Japan). Using Image J 1.45 s software (National
Institutes of Health, Bethesda, MD, USA), a grid with 80-mm
intersections was overlaid over each montage and the number of
grid intersections over necrotic regions as a percentage of the total
number of grid intersections was calculated. One entire section
from the widest part of the tumour was scored and the mean±-
s.e.m. of n¼ 5 tumours per group was calculated. Data from
treated tumours were compared with that of untreated control
tumours using one-way ANOVA and Tukey’s post hoc test and
were considered significantly different when Pp0.05.

Growth inhibition studies were initiated when the tumours were
3–4 mm in diameter. Mice (six per group) with tumours were
treated with DMXAA and another group was left untreated.
Tumours were measured thee times weekly thereafter and tumour
volumes were calculated as 0.52a2b where a and b are the minor
and major axes of the tumour. The arithmetic mean±s.e.m. was
calculated for each time point and expressed as a fraction of the
pre-treatment volume. Delay in tumour re-growth was determined
as the number of days required for the treated tumours to return to
pre-treatment volumes. Data from treated and untreated tumours
were compared using repeated measures two-way ANOVA and
Bonferroni post hoc test and was considered significantly different
when Pp0.05.

Measurement of cytokines

Tumours between 8 and 10 mm in diameter from untreated or
DMXAA-treated mice were excised following cervical dislocation,
and weighed and homogenised in 200 ml PBS containing 1 : 100
Sigma Protease Inhibitor Cocktail (Sigma, St Louis, MO, USA).
Samples were re-centrifuged and the supernatants stored at �80 1C
until assayed for both murine (stromal cell-derived) or human
(melanoma cell-derived) cytokines using non-cross-reacting mur-
ine and human multiplex cytokine kits (MILLIPLEX MAP Human
Cytokine/Chemokine – Premixed 42 Plex, catalogue no. MPXHCY-
TO-60K-PMX42, and MILLIPLEX MAP Mouse Cytokine/Chemo-
kine – Premixed 32, Plex catalogue no. MPXMCYTO-70K-PMX32,
Millipore Corporation, Billerica, MA, USA). Concentration of each
cytokine present was read using the Luminex 100 instrument
(Luminex Corporation, Austin, TX, USA). The cytokine concen-
tration (picogram per gram of tumour) from three mice per group
were expressed as mean±s.e.m. Data between two groups were
compared using unpaired Student’s t-tests or ANOVA, if multiple
comparisons were made and were considered significant when the
P-value was p0.05.

Characterisation of tumour-infiltrating leukocytes

Tumours excised at various times after DMXAA treatment were
digested with collagenase I (250 U ml�1) and dispase (1.66 U ml�1;
Gibco-URL, Grand Island, NY, USA) at 37 1C for 2 h to yield a
single-cell suspension. Erythrocytes were removed using red blood
cell lysis buffer (0.15 M ammonium chloride, 10 mM potassium
bicarbonate, 0.1 mM EDTA, in sterile MilliQ water (Millipore), pH
7.2–7.4), and the leukocyte fraction was isolated by Ficoll-Paque
PLUS (Pharmacia, Uppsala, Sweden) density centrifugation.
Leukocytes were labelled with either of two panels of fluoro-
phore-conjugated rat and hamster antibodies described in the
Supplementary Methods, or left as unstained controls, in order to
identify leukocyte subsets by flow cytometry. Compensation was
carried out using a BD CompBeads Anti-Rat and Anti-Hamster Ig
k/Negative Control Compensation Particles Set (BD Biosciences,
San Jose, CA, USA). Cell populations were analysed using the FACS
Aria II cell sorter and Flow Jo 7.6 (TreeStar Inc., Ashland, OR,
USA). Labelling was carried out on leukocytes extracted from five
tumours pooled for each time point.
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Immunofluorescence staining of tumour sections

Excised tumours were snap frozen and stored at �80 1C until
sectioned (7 mm) for immunostaining as previously described
(Angel et al, 2006, 2009; Lloyd et al, 2008). Primary rat anti-mouse
antibodies used in these studies were: FITC-labelled anti-CD11b
(BD Pharmingen, San Diego, CA, USA), unconjugated anti-F4/80
(Serotec Inc., Raleigh, NC, USA) and unconjugated anti-Ly6G
(BD Pharmingen). Sections were first incubated with rat anti-F4/80
or anti-Ly6G, then Alexa Fluor 555-conjugated anti-rat
IgG (Molecular Probes, Invitrogen, Camarillo, CA, USA). After
blocking with 5% rat serum, sections were probed with
FITC-labelled anti-CD11b, subsequently detected with an Alexa
Fluor 488-conjugated anti-FITC antibody (Molecular Probes,
Invitrogen). Cell nuclei were detected using DAPI stain. Washed
sections were mounted with Prolong Gold (Invitrogen) and
visualised sequentially using the 350 nm (blue), 470–490 nm
(green), and 515–560 nm (red) excitation filters on a Leica DMRE
microscope (Leica, Cambridge, UK) and photographed using a
Leica DC500 camera (Leica). Sequential images were processed
using Portia (CytoCode, Auckland, New Zealand, www.cytocode.
com). The amount of autofluorescence was determined using
unstained negative controls, and sections stained only with Alexa
Fluor 555 anti-rat IgG or Alexa Fluor 488 anti-FITC were used to
identify any non-specific binding of the secondary antibodies.
These sections were also used to set the input levels for each colour
such that the background autofluorescence was reduced to zero,
and this setting was applied to every image. Three individual
tumours per group were stained and a representative image from
each group is presented.

RNA preparation and microarray hybridisation

RNA was isolated by homogenising frozen tumours in TRIzol
reagent (Invitrogen, Carlsbad, CA, USA), resuspended in RNAase-
free water (Ambion, Austin, TX, USA), and further purified using
the RNA-Midi Kit according to the manufacturer’s instructions
(Qiagen Inc., Valencia, CA, USA). The final product was eluted in
RNAse-free water, and RNA integrity assessed by capillary gel
electrophoresis using an Agilent Technologies 2100 Bioanalyser
(Agilent technologies UK Limited, Cheshire, UK), and frozen at
�80 1C until analysis. The RNAs were used as templates to prepare
Biotin-labelled complex cRNAs that were hybridised separately
to both human U133plus2 and mouse 430 v2.0 Affymetrix gene
chips, according to standard Affymetrix protocols (Affymetrix,
High Wycombe, UK).

Analysis of microarrays

(a) Analysis of the cross-hybridisation potential of Affymetrix probe
sets: Since xenografts contain RNAs derived from two different
species, a control experiment was carried out to estimate the
potential for cross-species hybridisation of specific human and
mouse probe sets in our experimental context. Control RNAs from
both human (cultured A375 cells) and mouse (a mixture of tissues
from lymph node, skin and vascular regions of subcutaneous fat)
were hybridised to both human U133plus2 and mouse 430 v2 gene
chips. From these human-on-human, mouse-on-human, mouse-
on-mouse and human-on-mouse microarray data, we generated
lists of probes sets that had the potential to hybridise across spe-
cies, as described in the Supplementary Methods. This approach
identified 7176 mouse 430 v2 probe sets and 7797 human
U133plus2 probe sets that may potentially cross-species hybridise,
representing 16% and 14% of the probe sets on the human and
mouse gene chips, respectively (Supplementary File 1). Conversely,
we identified a second set of transcripts that were unlikely to cross-
species hybridise. These probe sets: (i) were not in the lists above
of probe sets with potential for cross-species hybridisation and,

(ii) in addition, the RNA from the other species was shown to be
present and therefore to be capable of producing a cross-species
hybridising signal. This approach identified 6105 mouse 430 v2
probe sets and 7163 human U133plus2 probe sets that were
unlikely to cross-species hybridise (Supplementary File 1).

(b) Analysis of xenograft transcripts: Mouse and human data
from untreated and DMXAA-treated tumours (n¼ 5 each) were
normalised at the probe level using the RMA algorithm from the
Bioconductor Affy package. The mouse and human gene chips were
normalised separately and data were logbase2-transformed. The RMA
normalised data were not significantly altered by exclusion of the
probes/probe sets estimated to be likely to cross-species hybridise,
therefore, all probe sets were used for further analysis. The Ingenuity
Pathways Analysis (IPA) database (http://www.ingenuity.com) was
used to identify putative activation of molecular pathways by
DMXAA. To assess the likelihood of identifying gene lists that
appeared to be enriched for molecular pathways by chance alone, we
performed permutation analyses as described in the Supplementary
Methods. Our gene array data are available from the Gene
Expression Omnibus web repository, accession number GSE26308.
All manipulation of the data was performed within the bioinformatic
environment R (www.r-project.org), using modules from the
Bioconductor Affy and LIMMA packages.

Species-specific quantitative RT–PCR (qRT –PCR)

Complementary DNA was produced from oligodT-primed
mRNA using the Omniscript RT Kit (Qiagen). Primers for the
putative DMXAA-regulated mRNAs CCL3, CCL4 and CCL7 and
‘housekeeping controls’ YWHAZ and PPIA were designed with a
30 base difference between species and their species-specificity
confirmed using RT–PCR of control RNAs from mouse and
human cells. Melting curves were calculated to ensure purity of
PCR products. Cycle thresholds for CCL3/MIP-1a, CCL4/MIP-1b
and CCL7/MCP-3 were normalised for total RNA content using the
average of the YWHAZ and PPIA signals. This analysis was
performed in two separate experiments of two and three
xenografts, respectively.

RESULTS

Antitumour activity of DMXAA on A375 melanoma
xenograft histology and growth

A multi-modal approach to analysing the effects of DMXAA on
human A375 melanoma xenografts in nude mice was carried
out. First, we examined the effects of DMXAA on the histology of
the A375 melanoma xenografts. A single dose of DMXAA at
25 mg kg�1 induced 34±9% at 4 h (Figures 1B and D), and 84±8%
at 24 h (Figures 1C and D) haemorrhagic necrosis that was
significantly greater than that observed in untreated (7±4%)
xenografts (Figures 1A and D). In a separate experiment, we
compared the growth of A375 xenografts untreated, and follow-
ing treatment with single dose of DMXAA at 25 mg kg�1.
5,6-Dimethylxanthenone-4-acetic acid treatment delayed A375 re-
growth by 26 days, with significant differences in tumour volume
obtained 36 days post treatment compared with untreated controls
(Figure 1E).

Effects on stromal cell infiltrates following DMXAA
treatment

The leukocyte content of the A375 melanoma xenografts was next
examined. CD45þ leukocytes per gram tumour weight increased
nearly five-fold 3 days after treatment with DMXAA (Figure 2B),
when tumour weight had decreased by 70% (Figure 2A). Multi-
channel FACS analysis was used to characterise the leukocyte
population in xenografts (Figure 2C). Neutrophil (CD11bþLy6Gþ
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cells) numbers showed the greatest change and by 3 days had
increased over 10-fold (Figure 2C). Monocytes and macrophages
decreased in numbers over the first 24 h, but after 3 days, cells with
the phenotype of mature macrophages (CD11bþF4/80þ ) had
increased five-fold. A sharp peak of NKp46þ NK cells was seen
only on day 3. CD11cþ dendritic cells were not detected before or
after DMXAA treatment (Figure 2C). (See Supplementary Figure 1
for gating and dot plots.)

The spatial distribution of the neutrophils and macrophage/
monocyte populations in untreated and treated A375 xenografts
was examined using double immunofluorescence labelling of
sequential cryosections (Figure 3). Untreated A375 xenograft
sections showed the presence of CD11bþF4/80þ macrophages in

the capsule and periphery of the tumours (Figure 3B),
and no Ly6Gþ neutrophils (Figure 3C). One day after DMXAA
treatment, both macrophages (CD11bþF4/80þ; Figure 3E) and
neutrophils (CD11bþLy6Gþ; Figure 3F) were seen within
the tumour parenchyma. On day 3, the majority of the CD11bþ

cells in the tumour also expressed the Ly6G marker indicating
that the infiltrate was primarily neutrophils (Figure 3I), and
these cells were still present 7 days after treatment (Figure 3L).
The immunofluorescence studies carried out using three
tumours per time point (Figure 3) confirm those obtained
with flow cytometry analyses of the leucocyte populations
carried out using five pooled tumours for each time point
(Figure 2C).
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Figure 1 Antitumour effects of DMXAA against A375 melanoma xenografts in CD-1 nude mice. Degree of haemorrhagic necrosis in a representative
montage of haematoxylin and eosin-stained sections from A375 xenografts untreated (A), 4 h (B) and 24 h after DMXAA (25 mg kg�1) (C). Insets show the
field of view in the rectangle at original magnification � 10. Percent haemorrhagic necrosis determined in montaged sections (D). Bars represent
mean±s.e.m. (n¼ 5 tumours per group). P-values determined by one-way ANOVA and Tukey’s post hoc test showing significant differences between
treated and untreated groups. Growth of subcutaneous A375 xenografts untreated (open circles) and after single dose of DMXAA (25 mg kg�1; closed
circles) (E). Mean±s.e.m. of six mice per group. Growth curves compared using repeated measures two-way ANOVA and Bonferroni correction for
multiple comparisons. Asterisks denote significant difference between treated and untreated groups; *Pp0.05.
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Dissection of the cytokine response induced in stromal cell
and melanoma cells

Cytokines in A375 xenografts before and 4 h after treatment were
assayed using human and murine multiplex cytokine panels. A
number of human cytokines were detected above lower limits of
detection of the assay in the untreated A375 xenografts: most
notably, MCP-1, GRO, IL-8 and FGF-2 (Figure 4A). Following
DMXAA treatment, significant increases in both human
(Figure 4A) and murine cytokines (Figure 4B) were observed.
Human, melanoma cell-derived cytokines elevated by DMXAA
included GM-CSF, IL-6, IP-10, MCP-1, GRO and IL-8 (Figure 4A).
Murine, stromal cell-derived cytokines elevated by DMXAA
included eotaxin, G-CSF, IL-6, IP-10, MCP-1, MIP-1a, MIP-1b,
RANTES, and TNF-a, KC, MIP-2, and LIX (Figure 4B). 5,6-
Dimethylxanthenone-4-acetic acid treatment induced higher con-
centrations and a greater number of stromal cell-derived cytokines
compared with A375-derived cytokines.

When the cytokine profiles produced in xenografts from five
other human melanoma lines, NZM1, NZM2, NZM3, NZM4 and
NZM7 derived from New Zealand melanoma patients (Marshall
et al, 1993) were compared, DMXAA was shown to induce a
consistent panel of stromal cell-derived cytokines: G-CSF, IL-6,
IP-10, KC, MCP-1, MIP-1a, RANTES and TNF-a in all five NZ

melanoma xenografts (Figure 5A). In contrast, the melanoma
cell-derived cytokines produced constitutively or in response to
DMXAA varied between cell lines (Figure 5B). Again, higher
concentrations and a larger panel of stromal-derived murine
cytokines were observed compared with melanoma-derived human
cytokines.

Global mRNA expression in tumour and stromal cells

We next examined the separate transcriptomes of the tumour cells
(human) and stromal cells (murine) by microarrays in the five
treated and five untreated A375 xenografts. We identified the
global mRNA profiles of the stromal and A375 melanoma cells of
the untreated xenografts and how these profiles were affected by
DMXAA. Labelled RNAs from each of five untreated and five
DMXAA-treated xenografts were hybridised to both human
(U133plus2) and mouse (430v2) Affymetrix microarrays. The
problem of potential cross-species hybridisation (Harrell et al,
2008) was addressed in a control microarray experiment
(see Materials and Methods), where we generated a list of probe
sets that clearly hybridised to RNA from the other species, and a
list of probe sets that were unlikely to cross-species hybridise
(Supplementary File 1). Linear models (LIMMA) were used to
identify and rank DMXAA-induced or -repressed RNAs. Human
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and murine probe sets with a differential expression P-value o0.05
and a fold change X1.5 up or down were selected for further
analysis (listed in Supplementary Files 2 and 3). To illustrate these
changes, the most significantly differentially expressed 25 probe
sets in human and mouse are shown in heat maps in Figure 6.

RNAs and molecular pathways activated by DMXAA in
A375 xenografts

In stromal cells, according to the criteria described above, DMXAA
appeared to downregulate 98 probe sets, of which 49 could be
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indicative of neutrophils (C, F, I, L). All images were acquired at an original magnification � 10. The large panels (B, C, E, F, H, I, K, L) represent the
merged image, with the individual green and red images shown in the smaller panels underneath. Representative section from n¼ 3 tumours per group.
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mapped to known RNA transcripts, and 49 represented unchar-
acterised ESTs. 5,6-Dimethylxanthenone-4-acetic acid appeared to
upregulate 140 probe sets, of which 18 were duplicate probe sets
representing the same transcripts, and 49 represented unchar-
acterised ESTs. Analysis using the Gene Ontology database
through the Gather web tool suggested that several transcripts
regulated by DMXAA in stromal cells encoded molecules
associated with defence/immune responses. Twenty-nine of the
murine DMXAA-regulated RNAs were associated with the GO
category GO:0006952 for defence response. This is significantly
more transcripts of this type than expected due to chance (Bayes
Factor¼ 11 and permutation P¼ 0.02). Stromal cytokine tran-
scripts induced by DMXAA included cxcl10 (IP-10), ccl4 (MIP-1b),
il6 and ccl2 (MCP-1), which concurred with the protein data for
these transcripts measured using Luminex multiplex cytokine
assays (Table 1). Analysis using the IPA database suggested that
the DMXAA-regulated stromal cell RNAs were enriched for the
targets of: NF-kB transcription factors, TNF-a pathways, IFN-b
pathways and IL-6 pathways (Figure 7). A permutation analysis
(see Supplementary Methods) indicated that the intersections
observed between our list of DMXAA-regulated stromal genes, and
the targets of NF-kB/TNF-a/IL-6/IFN-b pathways, were unlikely to
have occurred by chance, with empirical P-values of 0.02 and 0.05,
0.03 and 0.04, respectively. Although not induced themselves by
DMXAA at the RNA level, NF-kB, TNF-a, IL-6 and IFN-b have
several downstream targets that are differentially expressed
between control and DMXAA-treated tumours. This coordinated
change in abundance of RNAs downstream of each of the NF-kB/
TNF-a/IL-6/IFN-b pathways is consistent with DMXAA regulating

the activity of these pathways in stromal cells, either directly or
indirectly.

DMXAA also appeared to regulate mRNA abundance in the
human A375 melanoma cells within the xenografts. 5,6-Dimethyl-
xanthenone-4-acetic acid downregulated 30 probe sets, of which
12 could be mapped to known RNA transcripts and 18 represented
uncharacterised ESTs. 5,6-Dimethylxanthenone-4-acetic acid
appeared to upregulate 117 probe sets, of which 4 were duplicate
probe sets representing the same transcripts and 57 represented
uncharacterised ESTs. As with DMXAA-regulated stromal RNAs,
several cancer cell-derived RNAs, including CCL2 (MCP-1), IL-8,
IL-6, CXCL1 (Melanoma Growth Stimulating Activity/GRO1), also
concurred with the protein data (Table 2). As in stroma, DMXAA
appeared to induce in A375 cells the expression of several RNAs
downstream of NF-kB, TNF-a and IL-6 pathways (Figure 8).
Permutation analyses suggested that the intersections observed
between our list of DMXAA-regulated A375 melanoma cell genes
and the targets of these three pathways were unlikely to have
occurred by chance (P¼ 0.04, 0.03 and 0.02, respectively).

As some of the molecules described above were flagged as probe
sets that may exhibit cross-species hybridisation, as proof of our
principle of the species-specific (and therefore A375 melanoma-
specific and stroma-specific) microarray analysis, we tested
whether the stromal cell-specific induction by DMXAA of three
chemokines, ccl3 (MIP-1a), ccl4 (MIP-1b) and ccl7 (MCP-3), could
be confirmed using species-specific qRT–PCR. Both human- and
mouse-specific oligonucleotide primers for CCL3, CCL4 and CCL7
and ‘housekeeping controls’ for normalisation (YWHAZ and
PPIA, CYC1, RPLPO and ACTB) were designed with a 30 base
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Figure 4 Cytokines upregulated by DMXAA in A375 xenografts. Human melanoma cell-derived cytokines (A) or murine, stromal cell-derived cytokines
(B) in A375 xenografts untreated (black bars) or 4 h after DMXAA (25 mg kg�1) treatment (hatched bars). Mean±s.e.m. of n¼ 3 mice. Asterisks denote
statistically significant difference compared with untreated controls (*Pp0.05 by unpaired t-tests).

Effect of DMXAA on stromal and melanoma cells

K Henare et al

1140

British Journal of Cancer (2012) 106(6), 1134 – 1147 & 2012 Cancer Research UK

T
ra

n
sla

tio
n

a
l

T
h

e
ra

p
e
u

tic
s



corresponding to a base that differs between species. All were
confirmed by qRT–PCR to amplify only from template RNAs from
a single species. Quantitative RT–PCR using these primers
suggested that all three chemokines were induced by DMXAA in
the stromal cells but not significantly in the A375 melanoma cells
(Supplementary Figure 3).

DISCUSSION

Despite the growing clinical use of drugs that target the tumour
stroma, we have little understanding of the precise mechanisms of

action of many of these agents. We also have relatively little
understanding of the molecular pathways passing between the
malignant cells and the stromal cells that these agents perturb.
Therefore, we urgently require experimental systems to assess how
a drug affects the cancer cell and stromal cell compartments, and
how these effects lead to changes in the entire tumour tissue. To
address this challenge we have performed an integrated, multi-
modal study using A375 melanoma xenografts, which has provided
an understanding of how the stromal-targeting agent DMXAA,
distinctly affects the melanoma and the stromal cells on multiple
levels. Remarkable consistency was observed – for example,
between active pro-inflammatory molecular pathways, RNAs
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encoding cytokines and the cytokine proteins themselves, and
between these cytokines and the leukocyte subsets that infiltrated
into the tumours. The microarray data provided new information
that receptors for almost all of the DMXAA-induced cytokines are

expressed by stromal cells irrespective of DMXAA treatment,
whereas the RNA encoding CCRL2, a receptor for CCL19
(MIP-3b), was additionally upregulated by DMXAA. We also
saw clear examples of the complexity of tumour biology, where
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TNF-a/IL-6 pathways were activated by DMXAA in both A375 cells
and stromal cells. This appeared to cause the transcription factors
associated with these pathways such as NF-kB to promote the
expression of their transcriptional targets, including numerous
molecules that are themselves involved in TNF-a/IL-6 signalling.
Technical considerations of our pathway analysis approach using
cross-species hybridisation are described in the Supplementary
Discussion.

The consistency between RNA, protein and immunohistological
data allows us to build up a multi-level model of the effects of
DMXAA on tumour tissue, in this first report of growth inhibition
induced with DMXAA against human melanoma xenografts.
A single dose of DMXAA induced widespread haemorrhagic
necrosis (Figures 1C and D), and a 26-day delay in tumour re-
growth (Figure 1E). The neutrophil accumulation seen in Colon 38
tumours in immunocompetent mice after DMXAA treatment
(Wang et al, 2009), was also seen here in A375 xenografts in
immunodeficient nude mice (Figure 3). Treatment of murine
sarcomas with combretastatin-4-phosphate (CA4P), another
vascular disrupting agent, is also associated with neutrophil
accumulation (Parkins et al, 2000), which could in part represent
an inflammatory response to tumour necrosis induced by
anti-vascular agents. However, this simple inflammatory response
is unlikely to fully account for the massive neutrophil influx
observed with DMXAA-treated tumours. We have shown that
DMXAA can directly induce leukocytes in culture to produce
cytokines with neutrophil chemotactic activities (Wang et al,
2006), and the neutrophil infiltration in tumours seen following
DMXAA treatment could therefore be initiated by the induced
chemoattractants (e.g., MIP-1a and IP-10). The chemokines
induced following DMXAA treatment are strikingly similar to

Table 1 Comparison between protein and RNA data for DMXAA-
regulated molecules in stroma (mouse)

Protein name
Gene
symbol

Protein fold
change

RNA fold
change

IP-10 cxcl10 15.8 13.4
IL-6 il6 372.2 7.7
MIP-1b ccl4 24.7 4.7
MIP-1a ccl3 26.9 4.1
MCP-1 ccl2 52.8 3.1
MIP-2 cxcl2 8 2.6
KC cxcl1 41.4 2.2
RANTES ccl5 7 2.1
MIG cxcl9 3.9 2
IL-1b il1b 1 1.5
TNF-a tnf 23.1 1.4
IFN-g ifng 6.4 1.3
LIX lix 6.1 1.3
EOTAXIN ccl11 3.8 1.2
IL-4 il4 1.9 1.2
IL-15 il15 0.4 1.1
IL-1a il1a 7.6 1.1
M-CSF csf1 3.6 1.1
IL-3 il3 1.3 1.1
IL-10 il10 0.5 1.1
IL-2 il2 1.1 1.1
LIF lif 9 1.1
IL-17 il17a 1.3 1
G-CSF csf3 67.9 1
IL-13 il13 0.7 0.9
IL-5 il5 5.3 0.9
IL-12 il12a 1.1 0.9
IL-9 il9 0.5 0.8

Figure 7 The RNAs regulated in stromal cells (mouse) by DMXAA constitute members of NF-kB/TNF-a/IL-6/IFN-b molecular pathways more than
would be expected by chance. Graphs are from the IPA database. Red indicates that a molecule was upregulated by DMXAA, green indicates
downregulated by DMXAA, and no colour indicates that a molecule was not significantly regulated by DMXAA.
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those induced following TGF-b blockade that result in polarisation
of tumour-associated neutrophils from pro-tumour to antitumour
phenotypes (Fridlender et al, 2009). Therefore, it will be interesting
to examine the phenotype of neutrophils isolated from DMXAA-
treated tumours.

When xenografts of five primary human melanoma cell lines
were treated with DMXAA, the cytokines produced by the stromal
cells (Figure 5A) were, in all cases, similar to those induced in
stromal cells in A375 xenografts (Figure 4B), and similar to that in
Colon 38 tumours in syngeneic immunocompetent mice (Wang
et al, 2009). This suggests that the effect of DMXAA on murine
stroma is consistent, irrespective of the tumour cell type or the
mouse strain. In contrast, the cytokines induced by DMXAA in the
various melanoma lines as xenografts were variable (Figure 5B),
and a melanoma-specific cytokine signature is not evident.
Whether or not the various NZMel xenografts exhibit differential
sensitivities to DMXAA treatment, and whether their responsive-
ness can be linked to their profile of cytokine production has yet
to be investigated.

In A375 xenografts, we observed an overlapping but distinct
effect of DMXAA on cytokine protein production by melanoma
cells and the stromal cells, which was also seen at the level of gene
expression in the microarrays (Tables 1 and 2) and in three cases
verified with RT– PCR (Supplementary Figure 3). Several stromal-
derived cytokines were, however, shown to be significantly
upregulated at the protein level but not at the RNA level (Table 1).
For example, although mRNA for murine TNF-a and G-CSF were
not significantly induced, these cytokines were highly induced at
the protein level 4 h after DMXAA treatment (Table 1). These
results provide strong indication of post-transcriptional regulation
by DMXAA in the production of these cytokines. Stromal-derived
G-CSF is the most notable of the cytokines that appears to be

upregulated by DMXAA at the post-transcriptional level (Table 1).
A 68-fold increase in murine G-CSF protein was obtained in A375
xenografts after DMXAA treatment with no change in mRNA
expression. Recent studies show that G-CSF promotes metastasis
and tumour vascularisation through a number of different
mechanisms that include mobilisation of endothelial precursor
cells (Voloshin et al, 2011), and mobilisation of granulocytes
(Kowanetz et al, 2010). Elevated levels of plasma G-CSF, VEGF and
SDF-1 are detected in cancer patients treated with CA4P (Shaked
et al, 2009). The production of these cytokines in mice with
tumours following treatment with CA4P and its second generation
derivatives has been suggested to contribute to the rapid
re-vascularisation of the treated tumours, thereby diminishing
the antitumour effects of this class of vascular disrupting agents
(Shaked et al, 2009; Voloshin et al, 2011). In G-CSF-R�/� mice,
SDF-1 was downregulated and mobilisation of endothelial
precursor cells was not observed compared with wild-type control
mice following treatment with a CA4P derivative, indicating that
SDF-1 is secondarily involved in G-CSF-induced mobilisation of
endothelial precursor cells (Shaked et al, 2009). In another study,
inhibition of SDF-1 signalling decreased influx of TIE2-expressing,
pro-tumour macrophages into murine mammary tumours and
increased the efficacy of CA4P treatment (Welford et al, 2011).
In this study, protein levels of SDF-1was not measured, VEGF was
unchanged, but G-CSF was markedly increased in A375 xenografts
following DMXAA treatment (Figure 4B). The A375 melanoma is
non-metastatic and non-invasive, and it would be of interest to
compare the rates of tumour re-vascularisation and re-growth
following treatment with DMXAA and CA4P in an invasive,
metastatic tumour model in relation to their differential induction
of the pro-angiogenic cytokines.

The analysis of the xenografts at the whole transcriptome level
using microarrays allows inference of the activity of molecular
pathways (Creighton et al, 2003, 2005; Hull et al, 2008).
We identified pro-inflammatory gene sets including NF-kB targets
induced by DMXAA in both tumour and stromal cells (Figures 6
and 7). For example, 27% of 125 mRNAs upregulated in stroma
following DMXAA treatment had NF-kB response elements in their
promoters. This strengthens our previous suggestions that
DMXAA activates the NF-kB pathway (Ching et al, 1999b; Woon
et al, 2003; Wang et al, 2006). Consistent with previous reports that
IFN-b has an important role in the antitumour effects of DMXAA
(Roberts et al, 2007, 2008), mRNAs encoding IFNA1, IFNB1 as
well as known IFN targets (Figures 6 and 7) were shown here to
be induced. Our studies also indicated that DMXAA activated
TNF-a/IL-6 pathways in both cancer and stromal cells and caused
transcription factors downstream of these pathways, such as
NF-kB, to promote the expression of their transcriptional targets,
including molecules that are themselves involved in TNF-a/IL-6
signalling. When we estimated the potential for tumour –stroma
crosstalk based on expression above background of RNAs
encoding stroma-derived factors and their tumour cell receptors,
we found numerous potential stroma-tumour interactions. We also
noted the induction by DMXAA of potential interactions involving
stroma-derived IFNB1 and IL-6, consistent with the analysis of
differential expression and the histological data. We also noted
that A375 cells in xenografts downregulate metabolic enzymes
including oxidative stress response genes and upregulate compo-
nents of the extracellular matrix, consistent with the relatively
hyperoxic state and lack of three dimensional matrix structure of
melanoma cells grown in tissue culture. This supports the
investigation of drug effects using a xenograft model rather than
simple tissue culture studies.

The studies were designed to provide insights into the molecular
pathways and target(s) for DMXAA, which are still not completely
defined. Multiple targets are likely to be involved in order to
account for the numerous and distinct effects that DMXAA has on
different cell types. Recent efforts from our laboratory using the

Table 2 Comparison between protein and RNA data for DMXAA-
regulated molecules in tumour cells (human)

Protein name
Gene
symbol

Protein fold
change

RNA fold
change

MCP-1 CCL2 3.1 2.7
IL-8 IL8 3.7 2.4
GRO CXCL1 1.7 2.4
VEGF VEGF 2.8 1.9
GMCSF CSF2 6.5 1.8
IL-6 IL6 5.4 1.5
MIP-1b CCL4 4.2 1.3
TNF-a TNFA 3.1 1.3
IL-1a IL1a 0.4 1.2
FGF-2 FGF2 1 1.2
FLT-3 L FLT3LG 1.1 1.2
IP-10 CXCL10 4.8 1.2
TGF-a TGFA 3 1.2
RANTES CCL5 1.9 1.1
MCP-3 CCL7 1.5 1.1
MIP-1a CCL3 1.1 1.1
IFN-a2 IFNa2 2 1.1
IL-12P40 IL12P40 1.7 1.1
IL-1b IL1b 3.2 1.1
IL-15 IL15 2.5 1.1
IL-2RA IL2RA 1.8 1.1
FRACTALKINE CX3CL1 1.4 1.1
PGGF PDGF 1 1.1
IL-17 IL17 1 1.1
IL-3 IL3 1 1.1
G-CSF CSF3 1.1 1
IFN-g IFNg 2.6 1
EGF EGF 2.8 1
IL-4 IL4 1 1
IL-1RA IL1RA 2.2 1
IL-13 IL13 1.7 1
TNF-b TNFB 1 1
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approach of photoaffinity labelling (Palmer et al, 2007; Brauer
et al, 2010) identified more than 30 cellular proteins that were
found to interact with the azido-analogue of DMXAA. Essentially,
all the labelled proteins were oxidisable proteins, implicating a role
for redox signalling in the action of DMXAA (Brauer et al, 2010).
We suggest that under physiological conditions, enzymes catalyse
the one-electron oxidation of DMXAA to form the benzyl radical
and subsequent production of reactive oxygen species (Ching et al,
2010). Identification of the cellular enzymes that oxidise DMXAA
to initiate redox signalling is a high priority in our laboratory, as
these enzymes may also be regarded as biochemical target(s) of
DMXAA.

In summary, this study has provided proof-of-principle of an
integrated multi-modal approach to dissect molecular signals,
pathways and tissue structure in cancer and stromal cells. In doing
so, we have shown that DMXAA can target melanoma xenografts
by inducing complex cytokine signalling cascades that are distinct
but overlapping between cancer cells and the various stromal cell
populations and lead to haemorrhagic necrosis in the tumour
tissue. The use of a xenograft model allowed the differential effects
of DMXAA on stroma (murine origin) to be distinguished from its
effects on the cancer cells (human origin). Although this approach

cannot be directly applied to the use of the drug on a clinical
setting, we believe the integrated approach described here will be
useful for the study of other experimental tumour models and
drugs to provide insights into potential crosstalk between soluble
proteins secreted by stromal cells and their receptors on cancer
cells and vice versa (see Supplementary results) that will aid in our
understanding of the action of a drug in the clinical setting.
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