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ABSTRACT

The discovery of microRNAs (miRNAs) has added
a new player to the regulation of gene expression.
With the increasing number of molecular species in-
volved in gene regulatory networks, it is hard to ob-
tain an intuitive understanding of network dynam-
ics. Mathematical modelling can help dissecting the
role of miRNAs in gene regulatory networks, and we
shall here review the most recent developments that
utilise different mathematical modelling approaches
to provide quantitative insights into the function of
miRNAs in the regulation of gene expression. Key
miRNA regulation features that have been elucidated
via modelling include: (i) the role of miRNA-mediated
feedback and feedforward loops in fine-tuning of
gene expression; (ii) the miRNA–target interaction
properties determining the effectiveness of miRNA-
mediated gene repression; and (iii) the competition
for shared miRNAs leading to the cross-regulation
of genes. However, there is still lack of mechanistic
understanding of many other properties of miRNA
regulation like unconventional miRNA–target inter-
actions, miRNA regulation at different sub-cellular
locations and functional miRNA variant, which will
need future modelling efforts to deal with. This re-
view provides an overview of recent developments
and challenges in this field.

INTRODUCTION

MicroRNAs (miRNAs) are a class of small endogenous
non-coding RNAs (ncRNAs) with a length of ∼22 nt

(1,2). MiRNAs function as evolutionarily conserved post-
transcriptional gene regulators that, in most cases, decrease
the stability or inhibit translation of messenger RNAs (mR-
NAs) through binding to complementary sequences. These
sequences are found in different regions of mRNAs, mainly
in their three prime untranslated regions (3′-UTRs; (3)),
and also in their 5’-UTRs (4) and coding sequences (5).
In addition to their well-studied repressive function, miR-
NAs can act in a context-dependent fashion to increase
translation of targets by both transcriptional and post-
transcriptional mechanisms (6). So far, 2588 mature miR-
NAs have been identified in humans, and the genome loca-
tion, sequence and annotation of these transcripts can be
found in the public data repository miRBase v21 (7). Esti-
mates based on computational and experimental analyses
suggest that more than half of protein-coding genes are tar-
gets of miRNAs in Homo sapiens (8). In addition, recent
experimental studies have shown that miRNAs can also in-
teract with long ncRNAs (9). The broad interaction of miR-
NAs with other molecular species indicates their pervasive
roles in the regulation of key cellular processes, including
proliferation, differentiation and apoptosis (10,11). In ad-
dition to exerting critical function during normal develop-
ment and cellular homeostasis, miRNAs have been found
deregulated in many multifactorial and highly prevalent hu-
man diseases such as cancer (12–15).

Computational methods that utilise the canonical seed-
match model, evolutionary conservation, miRNA–target
binding energy as well as miRNA and mRNA expression
data have been developed to identify putative miRNA tar-
gets. This has fostered the discovery and experimental vali-
dation of miRNA targets. The implementation and applica-
tion of these methods have already been reviewed and dis-
cussed elsewhere (16–18). Despite the relative ease in identi-
fication of putative miRNA–target interactions using com-
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putational algorithms, experimentation is essential to iden-
tify bona fide miRNA targets. Analyses using sequencing
technologies, such as high-throughput sequencing of RNA
isolated by crosslinking immunoprecipitation (HITS–CLIP
also known as CLIP-seq), can provide a transcriptome-
wide view of miRNA–target interactions (19). The database
starBase is established for identifying miRNA targets from
large scale CLIP-seq data (20).

On the other hand, under the systems biology paradigm
the integration of quantitative experimental data with
mathematical modelling has been used to investigate the
regulation of gene expression by miRNAs as dynamical sys-
tems. The key idea is that miRNA regulation embedded in
gene regulatory networks can be represented with mathe-
matical models that encode molecular species and interac-
tions that make up these networks. The general procedure
for creating mathematical models accounting for miRNA-
mediated gene regulatory networks includes four key steps
(21). Firstly, a miRNA-mediated gene regulatory network
can be reconstructed by establishing molecular interactions,
such as miRNA–target interactions and the interactions be-
tween miRNAs and their transcriptional factors (TFs). Sec-
ondly, the network can be translated into a mathematical
model using a particular framework, such as ordinary dif-
ferential equations (ODEs) that can be used to describe
biochemical reactions that make up the network. Thirdly,
model parameter values can be characterised using infor-
mation from the literature, databases and/or estimated by
fitting model simulations to experimental data. Finally, the
model can be used to study properties and behaviours of
the dynamic system represented by the regulatory network.
The available tools for constructing and simulating such
kind of models have been reviewed and summarised by
Alves et al. (22). Data-driven modelling provides the means
for integrating quantitative data into the model equations,
thereby making the model a tool for predicting the features
of miRNA regulation in these networks (23–25). Mathe-
matical modelling has proven to be useful at elucidating the
fine-tuning of biological processes underlying cell and tis-
sue function both at temporal and spatial resolution (26).
It has also been used to develop hypothesis on the structure
and regulation of biochemical networks, to integrate mul-
tiple sources of quantitative data into a coherent analysis
framework, or to pave the way towards biomarker discov-
ery, a new drug or a novel therapy (24,25,27–29).

We shall here focus on a review of those studies that make
use of mathematical modelling to describe the molecular
activity and biological function of miRNAs in the context
of gene regulatory networks. These studies illustrate how
mathematical modelling can advance our understanding of
miRNA function at both cellular and disease levels. This
review article includes four sections. In the first section, we
show mathematical modelling helps to unravel the role of
miRNA-mediated network motifs, such as feedback loops
(FBLs), feedforward loops (FFLs) and target hubs, in fine-
tuning gene expression. In the second section, we discuss the
quantitative description of molecular mechanisms underly-
ing miRNA-mediated gene regulation through mathemati-
cal modelling. In the third section, we demonstrate the util-
ity of mathematical modelling in elaborating the role that
miRNA played in determining the cross-regulation of com-

peting endogenous RNAs (ceRNAs). In the last section, we
enumerate modelling studies that characterise the role miR-
NAs in orchestrating gene regulatory networks that are es-
sential to the initiation, progression and treatment of can-
cer.

MiRNA-mediated network motifs fine-tune gene expression

Network motifs are small recurring regulatory circuits em-
bedded in complex gene regulatory networks (30). The
small network motif composed by two interacting compo-
nents can induce complex regulatory patterns, which are
critical for the emergence of given phenotypes (30). Intra-
cellular networks are specially enriched by network motifs
integrating TFs and their targets, and these motifs are well
known to enable regulatory features like homeostasis, oscil-
latory behaviour and all-or-nothing gene expression pattern
(31). In recent times, it has been found that miRNAs can
play a role in these circuits, and they act either as a targets or
repressors of TFs (32). The involvement of miRNAs in TF
network motifs adds an additional layer of complexity by
providing target-specific repression mechanisms at the post-
transcriptional level, thus allowing unique features for these
TF-miRNA motifs. For example, in comparison to TFs,
miRNAs can quickly turn off or resume protein translation
by binding to or disassociating from an already transcribed
mRNA, thus leading to rapid and adaptive changes in gene
expression (33). The evolutionary advantage of combining
TF and miRNA target regulation in gene circuits is still
an open debate, but one promising hypothesis is that the
combination of miRNA- and TF-mediated gene regulation
allows for defining tightly controlled gene expression pro-
grams at both temporal and spatial scales (33). In addition,
these circuits are crucial for controlling cell fate, including
cell proliferation and apoptosis (34). For example, cell dif-
ferentiation can be associated with the existence of miRNA-
mediated positive FBLs governing the occurrence of bista-
bility, a sophisticated regulatory condition in which the net-
work switches to a new state upon a transient perturbation
(Figure 1). These complex, non-linear dynamical proper-
ties such as bistability can only be fully understood by inte-
grating experimental data into mathematical modelling and
analysing the properties of the network motifs using tools
and methods from theoretical biology. In the following, we
show some remarkable examples that integrate mathemati-
cal modelling with experimental data to advance our under-
standing of the dynamics and regulation of network motifs
involving miRNAs (35,36).

Nested TF-miRNA feedback loops govern cell cycle. In re-
cent literature, an increasing number of TF-miRNA cir-
cuits have been identified to have the structure of miRNA-
mediated FBLs. In these circuits, a TF positively or nega-
tively regulates the expression of a miRNA, which subse-
quently suppresses the TF in a post-transcriptional manner
(Table 1). These kinds of FBLs can give rise to bistability in
gene expression (31), and they can also confer robustness
to biological processes by resisting intrinsic and extrinsic
noise (37–39). Intrinsic noise stems from the stochasticity
of transcription, translation and decay of molecular species
(40), while extrinsic one refers to fluctuations propagating
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Figure 1. Bistability in miRNA-mediated feedback loops. Here, we used a model that accounts for a positive FBL composed of the TF p53 and miR-34a
to explain bistability in p53 steady states. In the FBL, p53 upregulates the transcription of miR-34a, and in turn the miRNA indirectly upregulates p53
expression via repressing SIRT1, a negative regulator of p53 (36). We also included upstream signals (S) such as DNA damage signalling that can upregulate
p53 expression. In Equation 1, the four terms correspond to the synthesis of p53, the upregulation of p53 by upstream signals, the upregulation of p53
by miR-34a and the degradation of p53. In Equation 2, the Hill function represents the transcriptional activation of miR-34 by p53 and the second term
corresponds to the degradation of the miRNA. To identify bistability, we drew the trajectories of p53 (the red line) and miR-34a (the blue line) at their
equilibrium states (i.e. dp53/dt = 0 and dmiR34/dt = 0). We obtained three intersections (the circles) of the trajectories that stand for three steady states
of p53. One of them is unstable (the black circle; Suns), and the other two are stable, corresponding to ‘on’ (the red circle; Son) and ‘off’ (the orange circle;
Soff) steady states of p53, respectively. Biologically, the ‘off’ steady state of p53 can be associated with cell proliferation, and the ‘on’ steady state can be
associated with cell cycle arrest as a result of sudden upregulation of p53 expression by DNA damage signalling. The middle plot shows the evolution of
p53 (the red line) and S (the green line) over time, and p53 can rest in Soff or Son depending on the intensity of S. The bifurcation plot shows different
steady states of p53 (p53ss) against different intensities of S. The intersections of the stable steady states and unstable ones represent bifurcation points
(BPl and BPr). When the value of S crosses these points, the steady state of p53 switches between the two stable states (the solid lines) but cannot stay on
the unstable one (the dashed line). The numbers correspond to the steady states of p53 as shown in the middle plot. Similarly, bistability can also be found
in oscillatory behaviours: stable oscillation attracts neighbouring oscillations of a model variable, and unstable one drives them away. More examples of
bistability were reviewed by Tyson and Novák (31), and for fundamental mathematical explanation, the interested reader is referred to (35).

from external factors (e.g. environment) to gene regulatory
networks (41).

A remarkable case of multiple TF-miRNA FBLs appears
in the regulation of the E2F family, which is involved in the
regulation of cancer-associated phenotypes like malignant
proliferation, apoptosis evasion, angiogenesis and chemore-
sistance (42). The E2F activity can be regulated by multiple
miRNAs adding a new layer to the regulation of the intri-
cate E2F network (42). A well-known case is the regulation
of E2F family by the miR-17-92 cluster. The cluster is en-
coded within about 1 kilo base on chromosome 13 and con-
tains six miRNAs. The transcription of the miRNA cluster
can be induced by E2F while some members of the cluster
inhibit E2F at the post-transcriptional level, thereby form-
ing a negative FBL (43). In addition, E2F can promote its
own transcription forming a positive FBL. The two FBLs
compose the E2F/miR-17-92 network whose complex regu-
latory dynamics can be studied through mathematical mod-
elling (Figure 2). ODE modelling of the network in the con-
text of glioma showed that the miRNA cluster can function
alternatively as an oncogene or a tumour suppressor (44).
Such a dual role of the miR-17-92 cluster could result from
the bistable steady states that E2F possesses in the circuit.
The switch between the two states is controlled by the val-
ues of two key model parameters. The two parameters cor-
respond to the intensity of growth factor signalling and the
inhibition of E2F translation by the miRNA cluster, respec-
tively. Model simulations showed that the switch of the E2F

steady states can make cells transit in four cell states: rest-
ing cell state (quiescent), normal (cell cycle) and abnormal
(cancer) cell proliferation and cell death (apoptosis). As a
result, the transitions endow the miRNA cluster with the
opposite function in glioma (Figure 2).

In follow-up studies, the introduction of noise into ex-
ternal signalling (i.e. extrinsic noise) or into E2F expres-
sion (i.e. intrinsic noise) showed that the regulation by the
miRNA cluster confers robustness to the E2F network
by enabling cells to resist extrinsic noise (45,46). Interest-
ingly, the ability of miRNAs in noise buffering was recently
demonstrated in a synthetic motif, in which an artificial neg-
ative FBL formed by a TF and miR-223 was constructed in
murine cells (47). Similar properties were also found in a
theoretical study focusing on a TF self-regulation loop me-
diated by a miRNA (48). Moreover, stochastic modelling of
the E2F/miR-17-92 FBL, under the assumptions that the
number of molecules involved in these reactions is small and
thus intrinsic noise should be considered, recovered most of
the features identified in the ODE model. In addition, this
stochastic model showed substantial differences regarding
the number of stable states exhibited by the system (49).
This result provided us with complementary insights into
the regulatory circuit. Of note, the biogenesis of the miRNA
cluster members can be selectively controlled by the progen-
itor miRNA, an intermediate product between primary and
precursor miRNA, thus yielding a potential mechanism for
differential production of miRNAs in the cluster (50). This
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Table 1. MiRNA-mediated feedback loops and feedforward loops

Avoiding spatial co-expression Preventing leaky transcripts Avoiding temporal co-expression

Avoiding spatial co-expression 
(79, 80) 
Preventing leaky transcripts 
(75)

Avoiding temporal co-expression
(74)
Noise buffering (81-83)
Fold-change detection (84)

Positive

miRNATF

miRNATF

Negative

Activation     Inhibition

E2F miR-17-92

pool
dra

wrofdeeF
noitartsullI

Fe
ed

ba
ck

 lo
op

Bi- or multistability (44, 55-60)
Noise buffering (45-48)
Oscillation (63-70)

ZEB miR-200

Examples Dynamic features (Ref.)

MET
CAV1
CAV2

miR-199a

EGR1

Target

TF miRNA

Coherent

Target

miRNATF

Target

TF miRNA

Target

miRNATF

Incoherent

Target

TF miRNA

Target

TF miRNA

RB1

E2F1 miR-17

E2F

miR-17
miR-20a

MYC

Ex
pr

es
si

on

Cell-type 1  Cell-type 2

EGR1

miR-199

MET
CAV1-2 Ex

pr
es

si
on

Time

delay

MYC

miR-17/20

E2F

Time

Ex
pr

es
si

on

E2F1

miR-17

RB1

no miR-17
regulation

Feedback loops are classified into positive and negative loops. In positive loops, both the miRNA and the TF have the same overall effect (activation or
inhibition) on each other, and this effect can be direct or indirect. In negative loops, the overall effect of the miRNA and the TF on each other is opposite.
Feedforward loops are classified into coherent and incoherent loops. In coherent feedforward loops, the miRNA and the TF have the same effect on their
common target. In incoherent feedforward loops, the miRNA and the TF have opposite effect on their common target. Some biological examples for these
loops are presented, and their possible dynamic features are illustrated (see main text for detailed descriptions).

factor may increase the complexity of the interactions be-
tween the miRNA cluster and its targets and should be con-
sidered in future modelling efforts investigating regulatory
role of the miRNA-17-92 cluster in the E2F network.

Beside the miR-17-92 cluster, the E2F network can also
be regulated by other miRNAs, and mathematical mod-
elling has been used to explore their function in the E2F
network (51,52). By simulating the role of the miR-449 and
miR-34 families in the crosstalk between p53 and E2F1,
Yan et al. (52) showed the coordination of the two miRNA
families in regulating cell cycle progression after response
to DNA damage. Modelling-based analyses indicated that
the miR-449 family can induce apoptosis after cells respond
to DNA damage, while the miR-34 family can help avoid-

ing transmission of DNA damage to daughter cells by pro-
moting transient cell cycle arrest. In addition, recent exper-
imental studies have shown the existence of several other
regulatory loops involving miRNAs in the regulation of the
E2F family in cancer (42). The fact that these loops are un-
tangled and their regulation is cancer type-specific suggests
that more modelling efforts will be necessary to advance our
understanding of the E2F regulation.

The mutually inhibitory TF-miRNA feedback loops regulate
epithelial to mesenchymal transition in cancer metastasis.
The switch between epithelial and mesenchymal phenotypes
is a hallmark of cancer metastasis. Epithelial to mesenchy-
mal transition (EMT) makes cells gain migrating ability
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Figure 2. Oncogenic and tumour suppressor property of the miR-17-92 cluster in the E2F network. The diagram illustrates an abstract model of the
interactions between the miR-17-92 cluster and the E2F family. With the increasing intensity of the growth factor signal (S), the expression of E2F can
switch between the ‘off’ and ‘on’ steady states (Soff and Son; the blue solid lines), but cannot stay on the unstable one (Suns; the blue dashed line). When
the inhibition efficiency of the miRNA cluster decreases (the red and green lines), the switch of E2F from Son to Soff becomes irreversible, as the left
bifurcation points (Bl) locate outside of the intensity interval of S, which contains biologically reasonable values. When cells express low E2F, decreasing
miRNA inhibition efficiency results in a transition from the cell cycle zone to the cancer zone (i.e. shift from the blue line to the red line), showing the
tumour suppressor property of the miRNA cluster. In contrast, when cells are already in the cancer zone, unchanged miRNA inhibition efficiency prevents
them from exiting the cancer zone (i.e. shift from the red line to the green line), showing the oncogenic property of the miRNA cluster. The bifurcation
plot is modified from (44).

and is therefore involved in the initiation of the invasion-
metastasis cascade. Mesenchymal to epithelial transition
(MET) makes cells regain epithelial characteristics, thus al-
lowing colonisation and outgrowth of metastases (53). It
has been found that miRNAs belonging to the miR-200
and miR-34 families can inhibit metastasis, presumably by
reversing EMT and promoting MET (54). Mathematical
modelling has been used in combination with experimen-
tal work to establish the basis of the miR-34/SNAIL and
miR-200/ZEB loops underlying EMT and MET in cancer
metastasis and aggressiveness (55–58). Tian et al. (55) pro-
posed that the two TF-miRNA FBLs function together as
a bistable switch to control EMT. In particular, model sim-
ulations showed that the epithelial phenotype corresponds
to high levels of the miRNAs (miR-34 and miR-200) and
low levels of the TFs (SNAIL and ZEB), whereas the mes-
enchymal phenotype corresponds to high levels of the TFs
and low levels of the miRNAs. In addition, based on the
model analysis the authors proposed the existence of a hy-
brid epithelial-mesenchymal phenotype (also known as par-
tial EMT) corresponding to low levels of miR-34 and ZEB
and high levels of SNAIL and miR-200. Such a pheno-
type endows cells with both adhesion and migratory prop-
erties, thus leading to collective cell migration (59). On
the other hand, Lu et al. showed distinctive roles of both
FBLs and proposed that the ZEB/miR-200 loop is account-
able for the initiation and completion of EMT, whereas the
SNAIL/miR-34 loop acts as a noise-buffering integrator of
EMT-inducing signals like Wnt, Notch and p53, thereby
preventing aberrant activation of EMT due to undesired
signals (56,57). The ZEB/miR-200 loop allows for the exis-
tence of three phenotypes (i.e. three stable states; Figure 3).

These phenotypes are the epithelial phenotype (high miR-
200, low ZEB), the mesenchymal phenotype (low miR-200,
high ZEB) and the hybrid phenotype (medium miR-200,
medium ZEB).

Although both models have different assumptions for the
EMT network, they both can exhibit multistability that is
in agreement with the following experimental observations
(58): (i) with the help of ZEB, SNAIL can suppress its
downstream transcriptional targets associated with cell ad-
herence such as E-cadherin; (ii) upon withdrawal of EMT-
inducing signals, cells with high levels of ZEB can undergo
EMT, a transition that is not possible for cells expressing
low ZEB; and (iii) reverting EMT requires the suppression
of both the EMT-inducing signal and ZEB, whereas knock-
down of SNAIL does not suffice to revert EMT. Interest-
ingly, further experimental results concerning the features
of partial EMT are consistent with the tristability results,
suggesting that medium levels of miR-200 and ZEB corre-
spond to partial EMT (58). However, this experimental ev-
idence may be cell-line specific, so more experiments will be
required to further characterise the features of partial EMT.

In a follow-up study, Huang et al. (60) connected the
EMT network with the Rac1/RhoA circuit that controls
the transitions between the mesenchymal phenotype and
the amoeboid phenotype. As mentioned before, when mi-
grating cancer cells show the partial EMT phenotype they
move collectively; while when cancer cells migrate individ-
ually they show the mesenchymal or the amoeboid phe-
notype. The resulting model was used to investigate the
transitions between collective and individual migration phe-
notypes during carcinoma metastasis. Model simulations
showed that the transitions between the two migration phe-
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Figure 3. The EMT regulatory network. The EMT network is composed of two TFs (SNAIL and ZEB) and two miRNAs (miR-200 and miR-34). The
inputs of the network are EMT-inducing signals such that Wnt and Notch activate ZEB and SNAIL, and p53 activates miR-200 and miR-34. With the
change of SNAIL expression, the ZEB/miR-200 loop functions as a switch that makes ZEB jump among the three stable steady states (the solid blue
lines), but ZEB cannot stay on the unstable steady states (the dashed blue lines). The three stable states correspond to three phenotypes: the epithelial
phenotype (E), the mesenchymal phenotype (M) and the hybrid phenotype (E/M). The cartoons illustrate the corresponding gene expression profile
for each phenotype. The colour areas in the bifurcation plot represent the possible combinations of phenotypes for different expression levels of ZEB
and SNAIL. The bifurcation plot is modified from (58).

notypes are governed by miR-200 and miR-34. According
to their results, high levels of the two miRNAs can restrict
the transition of metastatic cancer cells towards the indi-
vidual migration phenotype, thereby suggesting the role of
the miRNAs in suppressing plasticity of tumour cell move-
ment that can favour carcinoma metastasis. This continued
work is a good example showing the reuse of an early math-
ematical model to investigate new features of a biological
system that is associated with the addition of extra compo-
nents and the introduction of new hypotheses. In this case,
the upgraded model provides a precise understanding of the
molecular mechanism underlying distinctive migration phe-
notypes of cancer cells.

MiRNA feedback loops regulate oscillatory gene expression.
Negative FBLs are ubiquitous in gene regulatory networks
as their existences provide cells with abilities to maintain
homeostasis and to adjust signals that are not desirable (61).
However, under some conditions negative FBLs including
TFs, such as p53 and NF-�B, can induce sustained oscilla-
tions in gene expression, a regulatory pattern in which the
FBL components are alternatively expressed or activated
over time (62). MiRNAs can also make contribution to os-
cillatory FBLs, in which a TF slowly activates the expres-
sion of a miRNA, while the miRNA quickly inhibits the TF

by translation repression or mRNA degradation, thereby
satisfying the criterion to give rise to oscillations (62).

A series of models included in theoretical works and bi-
ological case studies have been developed to characterise
the role of miRNAs in regulating gene oscillations. Over-
all, the theoretical works showed not only the determinant
role of miRNAs in provoking oscillatory gene expression,
but also their abilities to control the amplitude and fre-
quency of gene oscillations (63–67). Further efforts com-
bining modelling with quantitative data have been made
to investigate the role of miRNAs in regulating oscillatory
gene expression in different biological contexts, such as in-
flammation, neuron differentiation and cellular stress re-
sponse. Xue et al. (68) investigated the role of miR-21 and
miR-146a in shaping the oscillations of NF-�B, a key TF
involved in triggering inflammatory response. Their work
indicated that the negative FBL involving miR-21 (NF-
�B→IL-6→miR-21-|NF-�B) can stimulate the NF-�B os-
cillations, while the FBL involving miR-146a that can indi-
rectly repress IL-6 through IRAK1 (IL-6→NF-�B→miR-
146a-|IRAK1→IL-6) has the ability to dampen the oscil-
lations. These results pointed to the possibility that the
balance between alternative miRNA-embedded FBLs may
play a role in fine-tuning the NF-�B oscillations. In the con-
text of neuron differentiation, Goodfellow et al. (69) showed
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that miR-9 modulates the transient oscillatory behaviour of
HES1 expression through a negative FBL (HES1→miR-9-
|HES1), thereby contributing to adjusting the timing of neu-
ron differentiation. In addition, Moore et al. (70) showed
that inhibition of the p53-promoted miR-192, miR-34a or
miR-29a can significantly reduce the number of breast can-
cer cells showing p53 oscillations upon DNA damage induc-
tion. These miRNAs are further involved in the feedback
regulation of p53 by repressing its known regulators (e.g.
p53→miR-34a-|SIRT1-|p53). This suggests that the p53 os-
cillations emerge out of a complex network of nested FBLs,
in which miRNAs play a crucial role in conferring robust-
ness to the oscillations.

The most important oscillatory gene expression program
is the circadian rhythm, a conserved gene regulatory sys-
tem which provides a mechanism to synchronise cell and
organism activity to the periodic oscillation of sunlight.
Interestingly, recent experimental studies have shown that
multiple miRNA-mediated FBLs are important for sustain-
ing and shaping circadian rhythms (71). As mentioned be-
fore, miRNA-mediated FBLs can buffer noise in gene ex-
pression, and this feature may play an important role when
these FBLs confer robustness to circadian rhythms. In line
with this, a data-driven mathematical modelling focusing on
miRNA regulation of circadian rhythms will be necessary
sooner or later.

MiRNA feedforward loops confer robustness to gene regula-
tory networks. Recent computational studies and experi-
mental evidence suggest that miRNA-mediated FFLs are
also prominent network motifs (72,73). Such motifs often
contain a TF that promotes the expression of a miRNA,
and both of them have a common target gene in the reg-
ulatory circuit. Thus, the TF can exert a direct action on
the target gene expression but also an indirect one through
the miRNA. The other configuration is also possible that
a miRNA represses a TF and their common target, and
the transcription of the target is simultaneously regulated
by the TF (Table 1). Genome-wide surveys of recurring in-
teraction patterns between TFs and miRNAs showed that
TF-miRNA FFLs occur frequently in gene regulatory net-
works. In mammalian genomes, these network motifs can
provide additional robustness to key gene circuits associ-
ated with cell development and differentiation (72–74). For
example, the involvement of miRNAs in the E2F1/RB1 cir-
cuit results in miRNA-mediated FFLs, and model simula-
tions showed that these FFLs can reinforce the stability of
the two genes’ concentrations against intrinsic noise, thus
ensuring correct transition from G0/G1 to S phase in the
cell (75).

Depending on the nature of the interactions between
their components, miRNA-mediated FFLs can be classified
into two classes (76–78). In coherent FFLs, the direct and
indirect actions on the targets are consistent, while in inco-
herent ones the two actions are opposite (Table 1). From a
theoretical point of view, miRNA-mediated coherent FFLs
can serve to avoid spatial co-expression of miRNAs and
their targets (74). For example, high or low expression lev-
els of EGR1 in different types of cells can up- or down-
regulate miR-199, resulting in opposite expression levels to
their mutual targets MET, CAV1 and CAV2 in different

types of cells (79) (Table 1 avoiding spatial co-expression).
This feature could explain the observation that targets of
a miRNA are usually at lower levels in a tissue/cell ex-
pressing the miRNA than in other tissues/cells (80). Be-
sides, this kind of FFLs can provide an exquisite mecha-
nism to prevent undesired leaky transcripts of a gene tar-
geted by a TF and a miRNA (74). For example, upregula-
tion of miR-17 can quickly turn off RB1 through inhibit-
ing its transcriptional activator E2F1 and degrading the al-
ready transcribed mRNAs (i.e. leaky transcripts) of RB1. If
there is no miR-17 regulation, the leaky transcripts of RB1
will degrade slower and the degradation rate is based only
on the natural half-life of the transcripts (Table 1 prevent-
ing leaky transcription). In contrast, miRNA-mediated in-
coherent FFLs can exert their function in a dynamic fash-
ion: when a TF gets activated, a delay between the transcrip-
tion of a miRNA and that of their common target can cre-
ate a temporal shutdown mechanism that avoids temporal
co-expression of the miRNA and its target (74). For exam-
ple, upregulation of MYC can increase the expression levels
of E2F and E2F-targeting miRNAs. Due to the delay of
miRNA upregulation (e.g. caused by miRNA biogenesis),
E2F and its targeting miRNAs can avoid co-expressing at
the same time (Table 1 avoiding temporal co-expression).
Furthermore, a number of modelling studies indicated that
incoherent FFLs including miRNAs have the capability to
buffer extrinsic noise in target gene regulation, thus uncou-
pling target gene expression from noise in TF concentration
or activity (81–83). As we mentioned before, the ability of
miRNA-mediated FBLs in buffering gene expression noise
is also demonstrated. The fact that both miRNA-mediated
FFLs and FBLs can reduce noise in gene expression shows
the non-uniqueness solutions for the same biological con-
sequence, and we think that investigating the rationality for
two distinctive miRNA-mediated network motifs providing
a similar advantage is worth a theoretical analysis.

Deeping into the features of FFLs, mathematical mod-
elling has also shown that incoherent FFLs can induce fold-
change detection in gene regulation, that is, the intensity
and duration of the transcription for the mutual target gene
depends on the fold-change in the expression level of the
TF and not on its absolute expression level ( Figure 4). This
fold-change detection property can be explained using the
so-called Weber’s Law, which states that the change in a
stimulus (e.g. a signal that changes the expression of a TF)
must meet a minimum threshold based on the ratio to its
original magnitude to make a noticeable effect in the down-
stream targets (84). This property may allow cells to have
an identical response to external signals of different magni-
tudes but showing the same fold-change despite cell-to-cell
variation in the basal level of the TF expression (84). So
far, both theoretical analysis and data-driven modelling of
the fold-change detection in miRNA-mediated incoherent
FFLs are missing, and they are necessary to unravel the role
of this interesting property in different biological contexts.

MiRNA target hubs: concurring gene regulation by multiple
miRNAs. Another key motif in gene regulatory networks
is target hub genes that can interact with many network
components, and therefore their deregulation can affect ma-
jor parts of the network (85). It has been shown that some
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Figure 4. Fold-change detection in miRNA-mediated incoherent FFLs. Fold-change detection allows heterogeneous cells to tolerate signal noise by relative
change in their intensities (the shaded area). In other words, the two cells receive external signals (S; the green lines) with different absolute intensities but
the expression of the TF and the miRNA stays at their initial levels (the red and blue lines). When S exceeds a detection threshold (the non-shaded area),
which is determined by the relative change of its intensity, the TF responds to S leading to the upregulation of the miRNA and its target (the grey lines).
Such a mechanism may allow for the same response of the cells when the upregulation of the TF expression differs in absolute magnitude but shows the
same relative change (2-fold-changes).

genes are especially prone to miRNA regulation and can
be targeted by dozens of miRNAs, making these genes be-
come miRNA target hubs (86). For example, CDKN1A is
an experimentally verified miRNA target hub, and its cod-
ing protein p21 is a cell cycle regulator that plays an im-
portant role in cancer progression (87). So, it is interesting
to ask how this miRNA target hub is regulated by multi-
ple miRNAs and what biological consequences of this reg-
ulation are. Two experimental groups have proven that the
close proximity of two miRNA binding sites on a com-
mon target (i.e. cooperative miRNA regulation) can induce
stronger repression of the gene (88,89). Based on this evi-
dence, we developed an ODE model to investigate the reg-
ulation of CDKN1A by multiple and potentially cooper-
ative miRNAs (90,91). Model simulations showed that se-
lective expression of CDKN1A-targeting cooperative miR-
NAs can fine-tune its protein expression level, thereby re-
sulting in tightly regulated p21 expression in various cel-
lular processes, such as cell cycle and apoptosis. Based on
these results on the relevance of miRNA cooperativity, we
launched a systematic search for human genes that could
be regulated by cooperative miRNAs and made these in-
formation available for the public using an online database
(92). Interestingly, we found that such genes are enriched
in the human genome, so miRNA cooperativity should be
considered when future modelling and experimental efforts
are made to investigate their regulation.

Mechanistic modelling of miRNA-mediated post-
transcriptional gene repression

MiRNA-mediated post-transcriptional gene repression is a
complicated process with a variety of possible mechanisms,
including initiation block, post-initiation block, deadenyla-
tion of target mRNAs to induce quick decay and translo-
cation of target mRNAs to P-bodies followed by degrada-
tion (93). In addition to these distinctive mechanisms, the
features of miRNA regulation can also play a role in deter-

mining the repression ability of given miRNAs for specific
target genes. For example, the accessibility to miRNA bind-
ing sites can be characterised by their locations (3′ UTR,
5′ UTR or coding region), abundance and their affinities
to miRNAs (94–96). MiRNA turnovers can differ in dif-
ferent biological contexts (97–99). The production of ma-
ture miRNAs is subjected to upstream processing proteins,
such as Dgcr8 and Dicer, whose expression and activity can
be context-specific (100,101), while the efficiency of the for-
mation of miRNA-induced silencing complexes (MIRISCs)
can be modulated by the availability of Argonaute proteins
(AGO) (102,103). A miRNA–mRNA interaction can be
catalytic if the miRNA molecules are completely recycled
after interacting with the target, or stoichiometric if they are
not (104,105). Interestingly, the computational algorithm
miRBooking, which considers the stoichiometric mode of
miRNA action, showed significant improvement in the ac-
curacy of miRNA target predictions in comparison to other
algorithms that do not consider this feature of miRNA reg-
ulation (106). Taken together, the various mechanisms com-
bined with different features of miRNA regulation make
the post-transcriptional gene repression an intricate pro-
cess, which requires the efforts from both experimental and
computational researchers to understand it. Herein, we re-
view publications that utilise mathematical models to anal-
yse distinct regulatory properties associated with gene re-
pression by miRNAs.

The role of miRNA-mediated gene repression mechanisms
in shaping context-specific gene expression. Some seminal
modelling studies revealed that the effectiveness and kinet-
ics of miRNA-mediated gene repression is strongly associ-
ated with the number of miRNA binding sites, the location
of the binding sites and their binding affinities to miRNAs
as well as the turnover of miRNAs and their targets (107–
111). For example, by modelling miRNA-mediated gene re-
pression through binding to coding regions or to 3′ UTRs,
Brümmer and Hausser (111) showed that miRNAs can
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significantly speed up repression of specific genes through
binding to their coding regions, and these genes, which pro-
duce long half-life mRNAs and short half-life proteins, are
typically involved in cell proliferation. It is also worth men-
tioning that a kinetic model considering the complete post-
transcriptional repression process has been developed in a
series of publications (112–114). The model was used for
discriminating those mentioned distinct mechanisms that
can lead to the same effect (i.e. gene repression), and also for
simulating gene expression dynamics when several mech-
anisms occur at the same time. Interestingly, model simu-
lations have provided plausible explanation for a number
of experimental observations, namely: (i) the same miRNA
can use distinct mechanisms for different target genes; (ii)
several mechanisms can co-occur to repress the expression
of given genes; and (iii) the effectiveness of gene repression
by a miRNA can differ in different biological contexts (114).
Besides, such a model provides a template for investigating
the detailed miRNA repression mechanism of given genes.

The role of AGO and MIRISC in determining the effec-
tiveness of miRNA-mediated gene repression. With the in-
creasing understanding of miRNA repression mechanism,
AGO and MIRISCs have been introduced into mathemati-
cal models. Klironomos and Berg (115) showed that the ki-
netics of the post-transcriptional gene repression is deter-
mined by the catalytic or stoichiometric interaction type be-
tween miRNAs and their targets, the efficiency of MIRISC
formation and degradation, and the availability of AGO.
Hausser et al. (116) found that mild repression commonly
observed for many target genes upon miRNA transfection
may be caused by two factors: the delay in the loading
of miRNA into AGO and the higher stability of proteins
compared to mRNAs for given miRNA target genes. More
interestingly, it has been also observed that miRNA can
upregulate gene expression under certain biological con-
texts (117). Model-based analyses indicated that this ob-
servation can be explained by a mechanism that allows re-
versible mRNA–miRNA binding, protein translation from
MIRISC, and selective return of RNAs from the complex
(118,119).

Furthermore, Barad et al. (101) showed that a self-
regulatory negative feedback on the miRNA processing
protein Dgcr8 allows for efficient miRNA production, thus
ensuring effective gene repression by miRNA. Except for
such self-regulation, the biogenesis of some miRNAs can
be regulated by other miRNAs, and consequently this can
affect their repressive abilities on target genes (120,121). For
example, by modelling the interactions between hypoxia-
response miRNAs, Zhao and Popel (122) showed that in hy-
poxia upregulated let-7 expression leads to downregulated
AGO1 expression and miRISC formation, therefore result-
ing in the derepression of VEGF targeted by miR-15 due
to the reduced miRISC activity. This example also demon-
strates the role of stress signals in modulating the repression
effectiveness of specific miRNAs, hence affecting their func-
tion in stress response. Consequently, this may change cel-
lular stress environments in which cancer cells evolve (34).

MiRNA-mediated gene regulation at the single-cell level.
The previous studies have shown the breadth and impor-

tance of gene regulation by miRNA in models that ac-
count for the dynamics in cell populations. However, pop-
ulation averages often mask properties that show cell-to-
cell variations (123). To obtain an accurate representation
of miRNA-mediated gene repression in individual cells,
Mukherji et al. (124) used a two-colour fluorescent reporter
system to measure both transcription and translation fol-
lowing regulation by miRNA in single mammalian cells. By
integrating single-cell data with mathematical modelling,
the authors found that gene repression by miRNA can vary
dramatically among individual cells, and this variation can
lead to the modest gene repression on average level, which is
in agreement with the results from population-based studies
(Figure 5). Besides, the authors showed that miRNAs can
establish expression thresholds for their target genes, and
these thresholds can determine how these miRNA target
genes transit from repression to derepression. Namely, if the
target mRNA abundance is below the threshold, the gene is
highly repressed; while if the target mRNA abundance is
above the threshold, the gene is relieved from miRNA re-
pression. Further analyses indicated that when the miRNA
abundance is stable, the increasing interaction strength be-
tween the miRNA and its target mRNA sharps the tran-
sition from repression to escaping from miRNA repres-
sion (Figure 5, left); and when the interaction strength re-
mains unchanged, the increasing miRNA abundance in-
creases the sharpness of the transition and also the level
of the threshold (Figure 5, right). Moreover, a follow-up
study showed that miRNA regulation can result in distinc-
tive noise profiles of protein expression in mouse embryonic
stem cells. In particular, the authors found that miRNA reg-
ulation can decrease noise in protein expression for lowly
expressed genes, while increasing noise for highly expressed
genes (125). In line with our previous discussion, this result
demonstrates the ability of miRNA in conferring robustness
to gene expression at the single-cell level.

Competing endogenous RNAs and miRNAs

It is not controversial that miRNAs can target protein-
coding and ncRNAs that have specific binding sites for
given miRNAs (126–128). These RNA transcripts can act
as competitive endogenous RNAs (ceRNAs), which com-
pete for common miRNAs and thus cause diluted gene re-
pression by the miRNAs. In other words, the more bind-
ing sites available in ceRNA candidates, the lower are the
effective concentration of their targeting miRNAs (39). In
turn, it is also hypothesized that miRNA binding sites in
RNA transcripts have evolved to become crosstalk hubs
of gene interactions, thereby affecting the expression lev-
els and activities of ceRNAs (129). This means that com-
petition and depletion of shared miRNAs by ceRNAs is
a mechanism for indirect interaction and cross-regulation
of RNA species. This suggests a complex network of inter-
acting RNA species linked by their abilities to bind to and
to deplete miRNAs. Under these circumstances, mathemat-
ical modelling becomes a useful tool to provide a precise
and quantitative understanding of ceRNA cross-regulation
through shared miRNAs, thus allowing addressing ques-
tions like which kinetic parameters control the emergence of
the effective miRNA-mediated crosstalk between ceRNAs
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Figure 5. MiRNA-mediated gene repression at the single-cell level. Due to the existence of the gene expression threshold created by miRNA (the vertical
black dashed lines), the repression of a gene by its targeting miRNA can vary dramatically at the single-cell level (the circles), resulting in mild gene
repression at the population level (the horizontal colour dashed lines). The varying abundance of the target mRNA (x-axis) results in distinctive miRNA-
mediated repression profiles (y-axis) in individual cells. The solid lines represent the model predictions that are validated by the single-cell data. The
interaction strength between the miRNA and its target mRNA can be characterised by the number of the miRNA binding sites on the 3′ UTR of the mRNA
and the affinities of these binding sites to the miRNA. When miRNA abundance is stable, the increasing interaction strength leads to shaper transition of
gene repression but does not affect the level of the threshold (Left). The sharpness of the transition is defined by the distance from the maximum repression
of the gene to non-repression. When the interaction strength remains unchanged, modulating miRNA abundance alters the sharpness of the transition
and also the level of the threshold (Right).

and what type of effective interaction networks may result
from such a simple titration mechanism (130–139).

Kinetic modelling of a minimal ceRNA network, in
which one miRNA interacts with two competing RNAs,
showed that ceRNA activity is determined by the relative
abundance of ceRNAs and miRNAs as well by the type
of their interaction (stoichiometric or catalytic) (130). Fur-
ther extension of the minimal model by considering interac-
tions between multiple miRNAs and ceRNAs allowed for
the characterisation of mean and noise profiles of ceRNA
network components and the response time of the network
components required to resume their steady states upon
perturbation (130,131). Several examples accounting for
dynamics of the crosstalk between ceRNAs through miR-
NAs are shown in Figure 6.

By integrating miRNA-mediated ceRNA crosstalk with
TF regulation, Martirosyan et al. (139) showed that
miRNA regulation of a gene through the ceRNA net-
work can outperform its regulation by a TF, suggesting the
possible role of miRNAs as major regulators rather than
fine-tuners of gene expression. To study noise character-
istics within a ceRNA network composed by a miRNA,
a protein-coding RNA and a ncRNA, Noorbakhsh et al.
(134) defined the intrinsic noise as the variance in protein
level divided by mean protein level squared. By simulating
the noise profile, the author showed that the noise is dramat-
ically high when the combined transcription rate of the ceR-
NAs approximates the transcription rate of the miRNA (i.e.
the cross-regulation of the two ceRNA happens). This prop-
erty makes this noise quantity a possible measure for detect-
ing the miRNA-mediated interactions between the two ceR-
NAs (134). The ability of co-regulated ceRNAs and miR-
NAs to propagate oscillatory behaviour was demonstrated
with a mathematical model accounting for the ceRNA net-

work equipped with an oscillator that drives the circadian
clock in diverse organisms (135).

Furthermore, mathematical models have also been pro-
posed to study specific ceRNA cross-regulation via shared
miRNAs (137,140,141). Yuan et al. (137) studied the cross-
regulation of mKate and EYFP in a synthetic circuit, in
which their mRNAs were engineered to have partial and
perfect complementarity to miR-21. The results showed
that the repression of EYFP by miR-21 can be significantly
relieved when the expression of mKate mRNA increases
due to its strong binding sites to miR-21. This derepression
effect can be compensated by increasing the concentration
of miR-21, suggesting a strategy to reduce the off-target
effect of miR-21 in in vivo experiments. Interestingly, not
only endogenous ceRNAs can compete with miRNAs for
targets, but also exogenous ceRNAs from virus can inhibit
miRNA activity (142). Mathematical modelling of miR-122
sequestering by hepatitis C virus RNAs showed the sponge
effect of the virus RNAs on diluting the inhibition activ-
ity of host miR-122. As a consequence, global derepression
of host miR-122 targets was observed, suggesting a mech-
anism that can facilitate the long-term oncogenic potential
of the virus (143).

In summary, although the above reports have described
ceRNA interactions via shared miRNAs in diverse bio-
logical settings, certain criteria have to be met to observe
the cross-regulation under physiological conditions. Fac-
tors, such as the expression levels of miRNAs and ceR-
NAs, the number of miRNA binding sites and their bind-
ing affinities, have been suggested to modulate the effec-
tiveness of ceRNA crosstalk (129,144). Indeed, it has also
been shown that under physiological conditions a signifi-
cant relief of a gene from miRNA repression may happen
only when the ratio of miRNA molecules to their binding
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Figure 6. MiRNA-ceRNA networks. (A) The cross-regulation two ceRNAs through one miRNA. Up- or downregulation of one ceRNA (Target1) can
result in the same change in the expression of the other ceRNA (Target2) through competing their common miRNA. (B) The cross-regulation two miRNAs
through one ceRNA. Up- or downregulation of miRNA1 can result in the same change in the expression of miRNA2 through competing their common
ceRNA (Target). (C) The interactions of multiple miRNAs and ceRNAs. Up- or downregulation of Target1 leads to the same change of Target2 expres-
sion but opposite expression change of Target3 through competing two miRNAs that share Target2 and regulate Target1 and Target3, respectively. Such
modulations in Target1 expression result in the opposite change in miRNA expression. Similar dynamics of Target3 expression can also be achieved by
modulating the expression of miRNA1. (D) In comparison to (C), the involvement of an additional miRNA (miRNA3) can result in amplified effect on
ceRNAs. The knockdown of Target1 results in upregulation of free miRNA3. Due to the participation of miRNA3 in repressing Target3, the expression of
Target3 is downregulated to a lower level compared to the ceRNA network without miRNA3 (the extended dashed lines). Similar effect can be transmitted
to Target2, due to the increased miRNA2 level as a result of lower Target3. The line colours in the plots are corresponding to the node colours in the
cartoons. The black dashed line indicates the time point at which the sudden change (up- or downregulation) in the expression of network components
happens.
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sites lies in a reasonable range (144,145). Furthermore, by
using CLIP-seq Bosson et al. (146) revealed that high abun-
dance miRNAs are not susceptible to ceRNA competition.
This result is supported by the experimental evidence that
miR–122, a highly expressed miRNA in liver, is not sensitive
to physiological expression of individual competing tran-
scripts (147). On the other hand, Bosson et al. (146) showed
that high affinity targets of low abundance miRNAs, such
as the miR-92-25 family, can create a scenario of physio-
logical RNA competition. These findings suggest that the
ceRNA hypothesis may not be a general mechanism under-
lying regulatory functions of miRNAs but only explain ex-
ceptional circumstances. Besides, we have foreseen a trend
to expand gene regulatory networks by adding the interac-
tions between miRNAs and other non-coding transcripts
such as circular RNAs and long ncRNAs. In this context,
mathematical modelling will be a necessary methodology
to provide us with a comprehensive and systematic under-
standing of gene regulation by ncRNAs.

MiRNA regulation of genes in biomedicine: case studies in
cancer

Temporal and spatial control of gene expression is essential
for the correct functioning of cellular processes such as cell
cycle, cell differentiation and apoptosis whose dysregulation
underlies the emergence of many diseases. Protein-coding
genes are major regulators of these processes, and therefore
their regulation by miRNAs plays an important role in the
disease-associated dysregulation of these cellular events. On
the other hand, miRNA regulation allows specific manip-
ulation of undruggable protein-coding genes, thus making
miRNAs great potential for therapeutic application (148).
All of this explains why miRNAs draw great interest from a
biomedical perspective, especially for cancers.

By targeting tens to hundreds of genes, the so-called on-
comiRs contribute to cancer progression by regulating gene
networks that underlie tumour cellular responses such as
impaired cell-death, abnormal proliferation and metastatic
migration (15,149). In contrast, miRNAs can function as
tumour suppressors through impeding tumour progression
or sensitising tumour cells to intrinsic or extrinsic apopto-
sis. Mathematical modelling has been applied to advance
our understanding how miRNAs regulate intracellular can-
cer signalling pathways, and thereby identifying potential
miRNA targets for therapeutic intervention, such as let-7
and miR-15 for suppressing angiogenesis in tumour growth
(122), downregulating miR-9 for reducing lung metastasis
(150), inhibiting miRNAs that favour colon cancer (151)
and utilising a combined therapy composed of targeted
inhibitors and BCR.ABL-targeting miRNAs for treating
chronic myeloid leukemia (152). To illustrate this idea, we
here discuss in detail some examples. Schuetz et al. (153)
developed a hybrid model for glioma regulation by cou-
pling a key signalling pathway with cell phenotypes. In
this model, the phenotype (either proliferation or migra-
tion) of a tumour cell was determined by ODEs accounting
for the LKB1/AMPK/miR-145 pathway (154). The phe-
notype switching of tumour cells were simulated using an
agent-based model. The simulation results supported the ex-
perimental finding that sufficient amount of glucose can

increase miR-415 expression, leading to the repression of
AMPK via LKB1 which consequently makes tumour cells
proliferative; however, glucose deprivation can cause upreg-
ulation of AMPK through downregulating miR-451, as a
result tumour cells separate from each other and start mi-
grating. These modelling results suggest miR-415 as a po-
tential target for glioblastoma therapy.

It has been shown that deregulation of miRNAs can lead
to drug resistance in cancer (155). Reversal of deregulated
miRNAs can normalise intracellular signalling pathways
that are consistently dysregulated in cancer and hence sen-
sitise tumour cells to chemotherapies (155–158). We devel-
oped a multi-level ODE model of the E2F1/p73/DNp73
signalling pathway to investigate the role that miR-205 plays
in resisting conventional genotoxic and cytostatic drugs
(153–160). In the model, given genes of the pathway were
defined to regulate the proliferation and apoptosis of tu-
mour populations represented by ODEs. By systematic
perturbation of parameter values accounting for tumour-
associated genetic variation in the pathway, we identified
a number of in silico gene expression signatures associated
with chemoresistance, and the most prominent one showed
high expression levels of E2F1 and ERBB3 and low expres-
sion level of miR-205. Further model simulations and ex-
perimental validation showed that among the tumour cells
exhibiting genetic heterogeneity in the E2F1/p73/miR-205
signalling pathway, the ones with high E2F1 and low miR-
205 are resistant to the conventional chemotherapies and
can even relapse after the therapy.

The modelling of miRNAs regulation in the context of
biomedicine, especially in cancer, has tremendous future
perspectives. On one hand, one can expect more crucial
miRNA-mRNA interactions associated with phenotypes to
be found in different cancers and other multifactorial dis-
eases. On the other hand, a number of pharmaceutical com-
panies and translational research institutes are currently es-
saying miRNA vectors and antagomiRs as potential an-
ticancer therapies or adjuvant therapies (148,160). In this
context, mathematical modelling will be necessary to as-
sess the bio-distribution and the dose-dependent effects of
these miRNA therapies. Modelling strategies already used
in pharmacokinetics and -dynamics will have to be adapted
to the speciality of miRNAs.

CONCLUSION

Complex networks enriched with non-linear regulatory mo-
tifs require mathematical modelling for the integration of
multi-level quantitative data, for their mechanistic under-
standing and for their therapy-oriented application. Mathe-
matical modelling has shown that miRNA-enriched circuits
display complex regulatory patterns and non-linear dynam-
ics, even for small network motifs with only a few compo-
nents. Key miRNA repression features that have been elu-
cidated via modelling include: (i) the ability of miRNA-
mediated FBLs to enable bistability or multistability in gene
expression; (ii) the possible ability of miRNA-mediated
FFLs to allow fold-change detection of gene expression; (iii)
the fact that the effectiveness of miRNA-mediated gene re-
pression can be determined by the molecular properties of
the miRNA–target interaction; (iv) the fact that the mild
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gene repression by miRNAs at the cell population level can
be a result of diverse repression degree at the single-cell
level; and (v) the existence of cross-regulation of ceRNAs
via shared miRNAs. From a biomedical perspective, mathe-
matical modelling in combination with experimentation has
shown its merit in elucidating the contribution of miRNAs
to dysregulated signalling pathways in cancer and has also
provided a promising approach to deliver novel miRNA-
based therapies for cancer.

So far, as most experimental studies focused on direct
miRNA–target interactions, modellers included these inter-
actions into gene regulatory networks associated with cer-
tain phenotypes. Mathematical modelling of these biologi-
cal systems allows systematic simulations to unravel the role
of miRNAs within the systems and hence provides a system-
level understanding of miRNA-mediated gene repression.
However, beside those conventional miRNA–target interac-
tions, recent experiments have shown that primary or pre-
cursor miRNAs produced during miRNA biogenesis can
also compete with mature miRNAs for their binding sites
on target mRNAs. For example, mouse primary and pre-
cursor miR-151 are in competition with the mature form for
binding sites situated within 3′-UTR of the E2F6 mRNA,
leading to derepression of E2F6 (161). Thus, it will be of
interest to model how such unconventional miRNA regula-
tion can affect the repression of corresponding target genes.
It is also worth noting that except for acting as inhibitors
of gene expression miRNAs can influence the local struc-
ture of targeting mRNAs, and subsequently the availability
of RNA-binding motifs that can be recognized by RNA-
binding proteins (RBPs) (162). For example, the unconven-
tional binding of miRNAs could lead to the formation of
hairpins in their targeting mRNAs that can serve as nucle-
ation sites for RBPs, thus provoking simultaneous and/or
sequential RBP-mediated regulation (163). This kind of in-
teraction suggests new regulatory functions of miRNAs,
and thus there is great interest to investigate the output of
those miRNA functions using mathematical models.

On the other hand, published models mainly focus on
temporal dynamics of gene regulation by miRNAs, but fu-
ture models of partial differential equations will be needed
to consider spatial information of miRNAs within cells, as
different subcellular locations (such as RNA granules, en-
domembrane, mitochondria and the nucleus) are required
for the processing and degradation of miRNA itself, or
for silencing or activation of miRNA targets (164). Fur-
thermore, it has been shown that miRNAs loaded into ex-
tracellular vesicles can circulate in body fluids (165–167),
so it will be interesting to model intercellular communica-
tion by means of the circulating miRNAs, even though the
small number of miRNAs in extracellular vesicles like exo-
some may undermine the practical ability of the miRNA-
based intercellular communication (168). Moreover, it is
worth noting that individual miRNAs have variants, also
called miRNA isoforms, and they are usually transcribed
from a single locus or homologous loci but heterogeneous
in length, sequence or both (169,170). These heterogeneities
may affect target selection, miRNA stability or loading ef-
ficacy into MIRISCs, and thus special attention should be
paid when modellers scrutinise them. Besides, a very recent
experimental study has shown that fever caused by infection

can increase the expression of miR-142–5p and miR-143,
and in turn both miRNAs attenuate body temperature by
targeting several cytokines that act as endogenous pyrogens
(171). This novel finding is worthy a modelling effort to pro-
vide a quantitative understanding of the negative feedback
mechanism that mediates fever.

In summary, we foresee numerous future challenges faced
by the modelling community, aiming at improving our un-
derstanding of miRNA regulation in gene regulatory net-
works.
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Tay,Y., Provero,P., Zecchina,R. and Pandolfi,P.P. (2013) Integrated
transcriptional and competitive endogenous RNA networks are
cross-regulated in permissive molecular environments. Proc. Natl.
Acad. Sci. U.S.A., 110, 7154–7159.

131. Bosia,C., Pagnani,A. and Zecchina,R. (2013) Modelling competing
endogenous RNA networks. PLoS One, 8, e66609.

132. Figliuzzi,M., Marinari,E. and De Martino,A. (2013) MicroRNAs as
a selective channel of communication between competing RNAs: a
steady-state theory. Biophys. J., 104, 1203–1213.

133. Figliuzzi,M., De Martino,A. and Marinari,E. (2014) RNA-based
regulation: dynamics and response to perturbations of competing
RNAs. Biophys. J., 107, 1011–1022.

134. Noorbakhsh,J., Lang,A.H. and Mehta,P. (2013) Intrinsic noise of
microRNA-regulated genes and the ceRNA hypothesis. PLoS One,
8, e72676.

135. Gérard,C. and Novák,B. (2013) microRNA as a potential vector for
the propagation of robustness in protein expression and oscillatory
dynamics within a ceRNA network. PLoS One, 8, e83372.

136. Nitzan,M., Steiman-Shimony,A., Altuvia,Y., Biham,O. and
Margalit,H. (2014) Interactions between distant ceRNAs in
regulatory networks. Biophys. J., 106, 2254–2266.

137. Yuan,Y., Liu,B., Xie,P., Zhang,M.Q., Li,Y., Xie,Z. and Wang,X.
(2015) Model-guided quantitative analysis of microRNA-mediated
regulation on competing endogenous RNAs using a synthetic gene
circuit. Proc. Natl. Acad. Sci. U.S.A., 112, 3158–3163.

138. Nyayanit,D. and Gadgil,C.J. (2015) Mathematical modeling of
combinatorial regulation suggests that apparent positive regulation
of targets by miRNA could be an artifact resulting from
competition for mRNA. RNA, 21, 307–319.

139. Martirosyan,A., Figliuzzi,M., Marinari,E. and De Martino,A.
(2016) Probing the limits to microRNA-mediated control of gene
expression. PLoS Comput. Biol., 12, e1004715.

140. Carletti,M., Montani,M., Meschini,V., Bianchi,M. and Radici,L.
(2015) Stochastic modelling of PTEN regulation in brain tumors: a
model for glioblastoma multiforme. Math. Biosci. Eng., 12, 965–981.

141. Cheng,F.H.C., Aguda,B.D., Tsai,J.-C., Kochańczyk,M., Lin,J.M.J.,
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GLOSSARY

ODE model Biochemical reaction networks can be described
using ordinary differential equations (ODEs). In
ODE models, model variables, such as concentrations
of proteins and RNAs, depend on the time. Given a
specific model configuration (e.g. parameter values
for kinetic rates and initial conditions for model
variables), a ODE model always yields the same
output (i.e. the model is deterministic). Non-linear
dynamics, such as bistability and oscillation, can be
an output of an ODE model accounting for specific
network motifs such as feedback loops.

PDE model In comparison to ODEs, partial differential
equations (PDEs) are used to describe a dynamic
system in which model variables depend both on time
and space.

Stochastic model A class of mathematical models which is used to
describe the time evolution of a biochemical reaction
network in a way that takes account of random
variations in model variables. In contrast to
deterministic models, the same model configuration
can yield different outputs.

Agent-based model A computational approach that models tissue
dynamics as a result of interplay of individual cells.
In these models, cells are represented by ‘agents’, and
their behaviours are determined by rules for their
movements and phenotypes. In a hybrid model, the
rules for determining cell phenotypes, such as
proliferation, apoptosis and metastasis, can be an
output of an ODE model.

Bi- or multistability Bi- or multistability is the co-existence of two or
multiple stable equilibria for molecular species.
Bistability creates two distinct cell states or
phenotypes in genetically identical cells.

Noise buffering Noise buffering refers to mechanisms that keep gene
expression stable and hence decrease the variation in
gene expression

Oscillation If the concentration of a molecular species oscillates
sustainably, its concentration cannot reach an
expected equilibrium but shows repetitive variation
around the equilibrium over time.


