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Abstract

Background: SRY (sex-determining region Y)-box 2 (SOX2) is a crucial transcription factor for the maintenance of embryonic
stem cell pluripotency and the determination of cell fate. Previously, we demonstrated that SOX2 plays important roles in
growth inhibition through cell cycle arrest and apoptosis, and that SOX2 expression is frequently down-regulated in gastric
cancers. However, the mechanisms underlying loss of SOX2 expression and its target genes involved in gastric
carcinogenesis remain largely unknown. Here, we assessed whether microRNAs (miRNAs) regulate SOX2 expression in
gastric cancers. Furthermore, we attempted to find downstream target genes of SOX2 contributing to gastric
carcinogenesis.

Methodology/Principal Findings: We performed in silico analysis and focused on miRNA-126 (miR-126) as a potential SOX2
regulator. Gain- and loss-of function experiments and luciferase assays revealed that miR-126 inhibited SOX2 expression by
targeting two binding sites in the 39-untranslated region (39-UTR) of SOX2 mRNA in multiple cell lines. In addition, miR-126
was highly expressed in some cultured and primary gastric cancer cells with low SOX2 protein levels. Furthermore,
exogenous miR-126 over-expression as well as siRNA-mediated knockdown of SOX2 significantly enhanced the anchorage-
dependent and -independent growth of gastric cancer cell lines. We next performed microarray analysis after SOX2 over-
expression in a gastric cancer cell line, and found that expression of the placenta-specific 1 (PLAC1) gene was significantly
down-regulated by SOX2 over-expression. siRNA- and miR-126-mediated SOX2 knockdown experiments revealed that miR-
126 positively regulated PLAC1 expression through suppression of SOX2 expression in gastric cancer cells.

Conclusions: Taken together, our results indicate that miR-126 is a novel miRNA that targets SOX2, and PLAC1 may be a
novel downstream target gene of SOX2 in gastric cancer cells. These findings suggest that aberrant over-expression of miR-
126 and consequent SOX2 down-regulation may contribute to gastric carcinogenesis.
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Introduction

The SOX2 gene encodes a member of the SRY-related HMG-

box (SOX) family of transcription factors involved in the regulation

of embryonic development and in the determination of cell fate

[1,2,3]. In particular, it is well known that SOX2 plays important

roles in maintenance of embryonic stem (ES) cell self-renewal and

pluripotency [4,5]. Among adult tissues, SOX2 is expressed in the

brain, retina, tongue, lung, esophagus and stomach, and plays

crucial roles in the differentiation and morphogenesis of these

organs [6,7,8]. We previously reported that SOX2 mRNA and

protein were expressed in normal gastric mucosae, but frequently

down-regulated in human gastric cancer tissues and cell lines, some

of which are due to aberrant DNA methylation [9,10]. We further

revealed that SOX2 plays important roles in growth inhibition

through cell cycle arrest and apoptosis, indicating that SOX2 may

have tumor-suppressive functions in gastric cancer cells [10].

However, the downstream target genes of SOX2 involved in gastric

carcinogenesis remain largely unknown.

MicroRNAs (miRNAs) are small, approximately 22-nucleotide,

noncoding RNAs that regulate the expression of hundreds of genes

by targeting their mRNAs posttranscriptionally [11]. miRNAs

bind to the partially complementary target sites in 39-untranslated

regions (39-UTRs) of mRNAs, inducing direct mRNA degradation

or translational inhibition [11]. To date, it has been reported that

the miRNA expression profiles differ between in normal tissues

and derived tumors, including gastric cancer, and many miRNAs

can act as tumor suppressors or oncogenes [12,13,14]. Recently, it

was reported that miRNA-134 and miRNA-145 repress SOX2

expression by targeting its coding region in mouse ES cells and the

39-UTR in human ES cells, respectively [15,16]. However, there

have been no reports on miRNA(s) that can regulate SOX2

expression in human gastric cancer.

In the initial step of this study, we performed immunohisto-

chemical analysis of the SOX2 protein in human gastric cancer

tissues, in which the DNA methylation statuses of SOX2 had

already been examined [10], and found that a certain number of

SOX2 expression-negative cases did not show DNA hypermethy-
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lation, leading us to the idea that there is another mechanism

underlying SOX2 down-regulation. Accordingly, in this study, we

aimed to find miRNAs that target SOX2 expression in human

gastric cancers. We found that miRNA-126 (miR-126) repressed

SOX2 expression by targeting its 39-UTR, and then performed

functional analyses of miR-126 in gastric cancer cells. To further

clarify the importance of miR-126-mediated SOX2 down-

regulation in gastric carcinogenesis, we attempted to identify

downstream target genes of SOX2 in gastric cancer cells.

Results

The SOX2 39-UTR is a predicted target of miRNA-126 and
-522

In order to find novel miRNAs that regulate SOX2 expression

in gastric cancer, we performed computational analysis using a

miRNA target database, MicroCosm Targets (formerly miRBase

Targets), and tried to identify miRNAs that target the SOX2 39-

UTR according to the following criteria. Considering the position,

number, and sequence conservation of miRNA target sites among

species, we selected two miRNAs, miR-126 and miR-522, as

potential miRNAs targeting the SOX2 39-UTR (Figure 1). miR-

126 has two predictive target sites, which are both near the stop

codon of the SOX2 open reading frame (ORF) in the 39-UTR,

whereas the predicted target site of miR-522 is highly conserved in

seven species and also located near the SOX2 ORF stop codon in

the 39-UTR (Figure 1).

miR-126 inhibits SOX2 expression in multiple cell lines
To validate the results of computational analysis, we examined

whether or not miR-126 and miR-522 can repress the expression

level of the endogenous SOX2 protein in SOX2-expression-

positive gastric cancer cell lines. As shown in the upper panel of

Figure 2A, transfection of the miR-126 mimic molecule (Pre-miR-

126) as well as SOX2 siRNA markedly reduced the endogenous

SOX2 protein level compared with a non-specific negative control

oligonucleotide (NC) in HSC43 cells, but the miR-522 mimic

molecule (Pre-miR-522) did not.

To generally evaluate the possibility that miR-126 inhibits

SOX2 expression, we transfected Pre-miR-126 and Anti-miR-126

inhibitor (Anti-miR-126) into multiple gastric cancer cell lines. We

used the following cell lines for transient transfection experiments:

MKN45 (SOX2 positive; miR-126 intermediate) and

TGBC11TKB (SOX2 positive; miR-126 negative) for Pre-miR-

126 transfection; and HSC43 (SOX2 positive; miR-126 positive)

and NUGC3 (SOX2 very low; miR-126 positive) for Anti-miR-

126 transfection (Table 1). Remarkable reductions of the SOX2

protein level were observed in Pre-miR-126-transfected MKN45

and TGBC11TKB cell lines (Figure 2A). Conversely, Anti-miR-

126 transfection up-regulated the SOX2 protein levels in both the

HSC43 and NUGC3 cell lines (Figure 2A), indicating that not

only exogenous Pre-miR-126 but also endogenous miR-126 can

regulate SOX2 protein levels in gastric cancer cells. We also

performed quantitative real-time RT-PCR analysis of SOX2

mRNA expression, and found that exogenous miR-126 modestly

but significantly suppressed the SOX2 mRNA level in HSC43 cells

(Figure 2B).

Because the SOX2 protein is known to be abundantly expressed

in ES cells, we examined whether or not miR-126 inhibits SOX2

protein expression in a mouse ES cell line (SOX2 positive; miR-

126 negative). Interestingly, exogenous miR-126 transfection dose-

dependently decreased the SOX2 protein level in the mouse ES

cells (Figure 2A), suggesting that miR-126 represses SOX2

expression in various species and cell lineages.

miR-126 directly targets the SOX2 39-UTR through two
predicted binding sites

To determine whether or not the predicted target sites for the

miRNAs in the 39-UTR of SOX2 mRNA are responsible for the

SOX2 down-regulation, we performed luciferase reporter assays

with a vector containing the SOX2 39-UTR downstream of the

luciferase reporter gene. As shown in Figure 3A, significant

repression of luciferase activities were observed in HEK293T cells

co-transfected with the pGL4-SOX2 39-UTR vector and Pre-miR-

126 or siRNA that targets the SOX2 39-UTR (Figure 1). On the

other hand, Pre-miR-522 had no significant effect on the luciferase

Figure 1. Schematic diagrams of predicted target sites of miR-126 and miR-522 in the SOX2 39-UTR. The predicted binding sites of miR-
126 and miR-522 are indicated (arrowheads) in the SOX2 39-UTR (1119 bp). The first nucleotide after the stop codon of SOX2 is defined as ‘‘1’’, and the
start- and end-positions of the complementary sequence between SOX2 and miRNAs are indicated above or beneath the arrowheads. *The
horizontal bar below the SOX2 39-UTR indicates the region targeted by the SOX2 siRNA. Sequence alignments of miR-126 and miR-522 with their
corresponding potential target sites in the SOX2 39-UTR are presented in each rectangle. The conservation status among species of the predicted
binding sites is also indicated in each rectangle.
doi:10.1371/journal.pone.0016617.g001
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activity of the pGL4-SOX2 39-UTR vector compared with NC

(Figure 3A). These results, combined with those of Western blot

analysis, indicate that miR-126 is a more potential candidate

miRNA that represses SOX2 expression in gastric cancer than

miR-522.

To examine the direct interaction of miR-126 with the potential

target sites in the SOX2 39-UTR, we carried out luciferase reporter

assays with the deletion mutant vector as to the putative miR-126

target sites. As shown in Figure 1, miR-126 has two predicted

binding sites, A and B, in the 39-UTR of SOX2 mRNA. We

therefore performed luciferase assays with the wild type pGL4-

SOX2 39-UTR vector (Wt), the vectors with each predicted miR-

126 target site deleted, A (Del-A), B (Del-B), or both sites, AB (Del-

AB). Intriguingly, each single deletion mutant vector exhibited a

low inhibitory effect on luciferase activity compared with the Wt

vector after Pre-miR-126 co-transfection (Figure 3B). Moreover,

the double deletion mutant vector, Del-AB, showed complete

reversal of the inhibitory effect of the Pre-miR-126 co-transfection

(Figure 3B), indicating that miR-126 directly inhibits SOX2

expression by targeting the two binding sites in the 39-UTR of

SOX2 mRNA independently.

The inverse correlation between miR-126 and SOX2
expression in some cultured and primary gastric cancer
cells

To assess the relationship between miR-126 and SOX2

expression in gastric cancers, we initially examined SOX2 mRNA

Figure 2. Effects of miR-126 and miR-522 on SOX2 expression. (A) Western blot analysis of SOX2 protein expression after transfection of a
negative control oligonucleotide (NC), Pre-miR-126 (126), Pre-miR-522 (522), SOX2 siRNA (siR), and Anti-miR-126 (A126) in the indicated gastric cancer
cell lines and mouse ES cells. The final concentrations were 50 nM for Pre-miRNAs and siRNA, and 100 nM for Anti-miR-126, respectively. a-tubulin
expression was used as a protein loading control. (B) Quantitative real-time RT-PCR analysis of SOX2 mRNA expression after transfection of the
negative control, Pre-miR-126 and SOX2 siRNA into HSC43 cells. The expression levels were normalized against internal GAPDH expression. The assays
were performed in triplicate, and the bars indicate s.d. *P,0.05.
doi:10.1371/journal.pone.0016617.g002

Table 1. Expression of SOX2 and miR-126 in gastric cancer
cell lines.

SOX2a

Cell line Protein mRNA miR-126b

TGBC11TKB +++ +++ -

HSC43 ++ +++ +++

MKN45 ++ +++ +

KATOIII + +++ -

AGS + +++ -

HSC44PE 6 ++ 6

NUGC3 6 + ++

GCIY - 6 ++

NUGC4 - - ++

HSC58 - - +++

aClassification of band intensity: -, completely invisible; 6, faintly visible; +,
visible; ++, clearly visible; +++, strongly visible.

bmiR-126 expression was measured with TaqMan and calculated by the delta-
delta Ct method using RNU6B as an internal control. The intensity of miR-126
to RNU6B was defined as follows: -, ,0.05; 6, 0.05,0.09; +, 0.1,0.79; ++,
0.8,2.0; +++, .2.0.

doi:10.1371/journal.pone.0016617.t001
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and protein levels by RT-PCR and Western blot analysis,

respectively, in 10 gastric cancer cell lines without DNA

methylation of SOX2 (Table 1) [10]. Five of the 10 cell lines

showed low or undetectable levels of the SOX2 protein, whereas

three of them exhibited a low SOX2 mRNA level (Table 1). We

subsequently examined miR-126 expression by TaqMan real-time

PCR analysis in these 10 gastric cancer cell lines. Four (NUGC3,

GCIY, NUGC4 and HSC58) of the 10 cell lines, whose SOX2

mRNA and protein levels were low, exhibited relatively high

expression of miR-126, whereas the other cell lines, except for

HSC43 cells, exhibited relatively low expression of miR-126 and a

high SOX2 mRNA level (Table 1). These data indicate that the

miR-126 expression level is mostly opposite to the SOX2 mRNA

and protein levels in gastric cancer cell lines.

To further compare the expression pattern of miR-126 with that

of SOX2 in primary gastric cancers, we initially examined the

expression levels of SOX2 protein in 15 primary gastric cancer

tissue samples without DNA methylation of SOX2 by immunohis-

tochemistry. We found that almost all non-cancerous mucosae

showed SOX2-positive signal only in the cell nuclei within the

neck of the gastric glands (Figure 4A), whereas nine of the 15 cases

exhibited low or undetectable levels of the SOX2 protein

compared with the paired non-cancerous mucosae (Figure 4).

Next, total RNA was isolated from these 15 gastric cancers and

paired non-cancerous tissues, and the miR-126 expression levels

were determined by TaqMan real-time PCR analysis. Four of the

15 cases exhibited significantly high levels of miR-126 expression,

whereas three of them did low miR-126 levels in comparison with

the adjacent non-cancerous mucosae (Figure 4B). Among the miR-

126-up-regulated cases, three (FG6, FG21 and FG24) exhibited

lower levels of SOX2 protein than paired non-cancerous mucosae

(Figure 4B), suggesting that high levels of miR-126 expression

contribute to low levels of SOX2 protein at least in some primary

gastric cancers. There was no significant correlation between the

miR-126 expression and sex, age, depth of tumor invasion or

histological type (data not shown).

miR-126 enhanced anchorage-dependent and -
independent growth of gastric cancer cells

We next evaluated the effect of miR-126 on tumor cell growth.

We initially examined the proliferation rates of SOX2-expression

positive gastric cancer cell lines, MKN45 and HSC43, after

transient transfection of Pre-miR-126. As shown in Figure 5A, the

Pre-miR-126-transfected-MKN45 and HSC43 cells exhibited

significant growth advantages compared with the control NC-

transfected-cells. Moreover, the SOX2 siRNA-transfected-

MKN45 cells, but not HSC43 cells, significantly increased

proliferation compared with the control cells (Figure 5A),

suggesting that miR-126-mediated growth stimulation may occur

in a SOX2-dependent manner, at least in MKN45 cells.

To determine the role of miR-126 in gastric tumorigenesis, we

next carried out soft agar colony formation assays of gastric cancer

cell lines after Pre-miR-126 transfection (Figure 5B and C). As

shown in Figure 5B, the Pre-miR-126- and SOX2 siRNA-

transfected-MKN45 cells formed larger colonies than the NC-

transfected cells in soft agar at 9 days after transfection. We then

performed soft agar colony formation assays using a CytoSelectTM

96-Well In Vitro Tumor Sensitivity Assay Kit, which can be used

Figure 3. Interaction between miR-126 and its binding sites in the SOX2 39-UTR. (A) Dual luciferase assay with the pGL4-SOX2 39-UTR
(1050 bp) reporter vector (Wt). 30 nM Pre-miRNAs or SOX2 siRNA, which targets the SOX2 39-UTR, was co-transfected with 10 ng of the indicated
reporter vector into HEK293T cells. (B) Dual luciferase assay with cotransfection of 10 ng of the reporter vectors containing the wild type SOX2 39-UTR
(Wt), single deletion mutant A (Del-A), single deletion mutant B (Del-B), or double deletion mutant AB (Del-AB), and 30 nM negative control or Pre-
miR-126 in HEK293T cells. The assays were performed in triplicate, and the bars indicate s.d. *P,0.05; **P,0.01; n.s., not significant.
doi:10.1371/journal.pone.0016617.g003
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to count the colony-forming cells by means of a colorimetric

method, such as the WST-8 assay, making the assays quick and

accurate. Exogenous miR-126 over-expression as well as SOX2

siRNA transfection significantly enhanced the anchorage-inde-

pendent colony formation of MKN45 and HSC43 cells compared

with the control cells at 9 to 10 days after transfection, respectively

(Figure 5C). These results suggest that miR-126 may promote the

tumorigenicity of gastric cancer cells through suppression of

SOX2 expression.

miR-126 controls novel SOX2 target genes in gastric
cancer cells

To further understand the potential effects of miR-126-

mediated SOX2 down-regulation on the gene expression change

in gastric cancer cells, we first attempted to identify candidate

downstream target genes of SOX2. We transiently expressed

exogenous SOX2 in NUGC3 cells by using an adenovirus system,

and changes in expression were determined by cDNA microarray

analysis (GEO accession No. GSE23589). Among 41,174 probes,

366 known genes were up-regulated (.2.0-fold) and 369 known

genes were down-regulated (,0.5-fold) by SOX2-over-expression

in NUGC3 cells compared with in control GFP-over-expressing

cells (Table S1). Representative microarray results are summarized

in Table 2, and we found the significant up-regulation of

exogenous SOX2 (.20.20-fold), supporting the validity of this

experiment. Intriguingly, there were many cancer-related genes

that could be novel downstream targets of SOX2 (for example,

LTF, PPP2R1B, TGFBR2, SERPINE1, MMP9, HMGA1, SOX9 and

PLAC1), and squamous cell differentiation markers KRT6E and

KRT6C, whose amino acid sequences are highly conserved among

the KRT6 family members and virtually identical to one of the

known SOX2 downstream genes, KRT6A (Table 2 and Table S1)

[17]. We validated the microarray results by RT-PCR analysis in

NUGC3 cells after SOX2 over-expression, and representative

results are shown in Figure 6A. Most of these genes also showed

changes in their expression after SOX2 over-expression at least in

one more gastric cancer cell line among the two to three cell lines

we investigated (data not shown).

To determine the target genes of SOX2 controlled by miR-126

in gastric cancer cells, we next performed SOX2 knockdown

experiments and further screened for candidate target genes.

SOX2 knockdown by Pre-miR-126 and siRNA was confirmed by

Western blot analysis in SOX2-expression-positive gastric cancer

cell lines MKN45 and HSC43 (Figure 2A), and the subsequent

expression changes of the putative SOX2 downstream target genes

were preliminarily analyzed by RT-PCR in these cell lines, and

then by quantitative real time RT-PCR in HSC43 cells. Among

over 20 cancer-related genes we investigated, only two showed

changes in expression after SOX2 knockdown (data not shown).

First, differentiation marker KRT6A expression, which was up-

regulated by SOX2 over-expression, was significantly down-

regulated by Pre-miR-126 as well as SOX2 siRNA transfection

in HSC43 cells (Figure 6B). Second, placenta- and tumor-specific

PLAC1 expression, which was down-regulated by SOX2 over-

Figure 4. Expression of SOX2 and miR-126 in human gastric cancer tissues. (A) Representative immunohistochemical staining of SOX2
protein in non-cancerous mucosa (Non-Ca) and gastric cancers (FG2 Ca and FG21 Ca). Original magnification: 6400. (B) Quantitative TaqMan real-
time PCR analysis for miR-126 was carried out by using the 15 human gastric cancer tissues (filled bars) and paired non-cancerous tissues (open bars).
The expression levels of cancer tissues were independently compared to those of paired non-cancerous tissues, which are normalized to 1, and the
bars indicate s.d. *P,0.05. The intensities of SOX2 expression were indicated beneath each case by x-axis. The expression levels were determined by
the following criteria: ‘‘++’’ for 10% or more cancer cells were strongly stained; ‘‘+’’ for 10% or more cancer cells were stained; ‘‘w+’’ for less than 10%
cancer cells were weakly stained; ‘‘–’’ for almost all cells were negatively stained.
doi:10.1371/journal.pone.0016617.g004
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expression, was significantly up-regulated by SOX2 knockdown

with Pre-miR-126 and siRNA in HSC43 cells (Figure 6B). These

results indicate that miR-126 can control KRT6A and PLAC1

expression by down-regulating SOX2 expression in gastric cancer

cells, and these genes might be downstream target genes of SOX2

contributing to gastric carcinogenesis.

Discussion

We previously reported that SOX2 expression was frequently

down-regulated in human gastric carcinoma tissues (about half of

the total cases), some of which was due to aberrant DNA

methylation (about 16% of the total cases) [10]. Therefore, the

mechanisms underlying loss of SOX2 expression have not yet

been defined in more than half of the cases. In this study, we

demonstrated that miR-126 decreased the SOX2 mRNA and

protein expression levels in gastric cancer cell lines. In addition, we

found that miR-126 expression was inversely correlated with

SOX2 expression in certain cultured and primary gastric cancer

cells without DNA methylation of SOX2, indicating that aberrant

miR-126 expression may be a novel mechanism underlying SOX2

down-regulation in gastric cancer. Furthermore, Pre-miR-126

over-expression promoted anchorage-dependent and -indepen-

dent growth of gastric cancer cells in vitro, and increased oncogenic

PLAC1 expression in a gastric cancer cell line. These findings

suggest that miR-126 may be an oncogenic miRNA that controls

SOX2 expression in gastric cancer cells. Besides gastric cancer,

Pre-miR-126 over-expression reduced the SOX2 protein level in

mouse ES cells, suggesting that miR-126 may generally control

SOX2 expression, at least in two species (human and mouse) and

various cell lineages, including ES cells.

MiR-126 is known as an endothelium-specific miRNA, and has

been reported to promote angiogenesis by targeting SPRED1 and

PIK3R2, which normally inhibit VEGF signaling [18,19,20].

Moreover, it has been reported that miR-126 inhibits apoptosis

of acute myeloid leukemia (AML) cells and enhanced the colony-

forming ability of mouse bone marrow progenitor cells through

targeting Polo-like kinase 2 (PLK2), a tumor suppressor [21]. On

the contrary, miR-126 has also been reported to be a tumor

suppressive miRNA, inhibiting tumor cell growth through

Figure 5. Effects of miR-126 expression on anchorage-dependent and -independent cell growth. (A) In vitro cell proliferation assays after
SOX2 knockdown by Pre-miR-126 or siRNA in gastric cancer cell lines. The number of viable cells was determined with a Cell Counting Kit-8 on days 1,
3, 5 and 7 after plating. (B) Representative phase contrast microphotographs of the colonies of MKN45 cells in soft agar at 9 days after transfection of
the negative control, Pre-miR-126 or SOX2 siRNA. Original magnification: 6100. (C) Soft agar colony formation assays for measurement of the
anchorage-independent growth of gastric cancer cell lines. The vertical axis (Absorbance) indicates the relative number of colony-forming cells, which
was determined by the colorimetric assay method. The assays were performed in quadruplicate, and the bars indicate s.d. *P,0.05; **P,0.01.
doi:10.1371/journal.pone.0016617.g005
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targeting p85beta in colon cancer cell lines, and targeting IRS-1 in

HEK293 and MCF-7 cells, respectively [22,23]. Although it is

controversial as to whether miR-126 is a tumor suppressive or

oncogenic miRNA, at least in the present study, we demonstrated

that miR-126 acts as an oncogene by targeting SOX2 in gastric

cancer cells. These functional differences in oncogenesis might be

considered to be a ‘‘lineage-dependency model for cancer’’, that is,

developmentally important genes also have crucial roles during

tumor progression in lineage-specific manners [24]. However,

further studies are needed to clarify the biological roles of miR-126

in gastric carcinogenesis and other tissues.

The initial computational analysis indicated that both miR-126

and miR-522 are candidate miRNAs that target the SOX2 39-

UTR. However, miRNA over-expression experiments showed

that Pre-miR-126 but not Pre-miR-522 reduced SOX2 protein

levels and SOX2 39-UTR luciferase activity. Moreover, loss-of-

function experiments and reporter assays involving deletion

mutants of SOX2 39-UTR luciferase vectors revealed that miR-

126 directly targets the 39-UTR of SOX2. This difference between

miR-126 and miR-522 as to SOX2 regulation is likely to be due to

the following reasons. First, the 59 region, which is called the

miRNA ‘‘seed’’ sequence (nucleotides 2–7), of miR-126 completely

matches the 39-UTR of SOX2, whereas miR-522 does not. It is

well known that perfect ‘‘seed’’ pairing is required for both target

site recognition and repression of the target transcript [25,26].

Second, miR-126 has two binding sites in the 39-UTR of SOX2

mRNA, but miR-522 has only one. It has been reported that when

a miRNA has multiple binding sites in the 39-UTR of its target

gene, the binding sites could be simultaneously targeted by the

miRNA [27,28]. These findings combined with our present data

suggest that the presence of multiple complementary target sites

and perfect matches between these ones and miRNA ‘‘seed’’

region are good indicators for finding functional miRNAs.

In this study, miR-126 expression was found to be relatively

high in SOX2-expression-negative gastric cancer cell lines, and

was aberrantly up-regulated in some primary gastric cancer cases

compared with the paired non-cancerous mucosae. However, the

mechanism underlying this aberrant miR-126 expression in gastric

cancer remains to be elucidated. It was previously reported that

the over-expression of miR-126 in a kind of AML, core-binding

factor (CBF)-AML, is associated with partial demethylation of the

CpG island but not with amplification or mutation of the genomic

locus [21,29]. In fact, we observed that some gastric cancer cell

lines exhibited restored miR-126 expression after treatment with a

demethylating agent, 5-aza-29-deoxycytidine (data not shown).

These findings indicate that miR-126 expression may be

epigenetically regulated in gastric cancer cells.

We performed cDNA microarray analysis to identify the

downstream target genes of SOX2 in gastric cancer cells, and

found that many tumor-associated genes exhibited significant

changes in expression after SOX2-overexpression (e.g., LTF,

PPP2R1B, TGFBR2, SERPINE1, MMP9, HMGA1 and SOX9).

Furthermore, most of them also exhibited changes in their

expression after SOX2-overexpression, at least in two gastric

cancer cell lines. These results indicate that SOX2 might regulate

the expression of these tumor-associated genes, thereby contrib-

Table 2. Representative results of microarray analysis by SOX2 over-expression.

Gene symbol Gene name Fold change

SPP1 secreted phosphoprotein 1 (osteopontin) 63.54

SOX2 SRY (sex determining region Y)-box 2 20.20

IL1R2 interleukin 1 receptor, type II 12.53

KRT6E keratin 6C (virtually identical to KRT6A) 10.52

LTF lactotransferrin 7.85

GSN gelsolin (amyloidosis, Finnish type) 5.97

KRT6C keratin 6C (virtually identical to KRT6A) 7.07

PPP2R1B protein phosphatase 2 regulatory subunit A beta isoform 3.86

KLK10 kallikrein-related peptidase 10 3.24

EPB41L1 erythrocyte membrane protein band 4.1-like 1 2.81

PRKAR2B protein kinase, cAMP-dependent, regulatory, type II, beta 2.75

TGFBR2 transforming growth factor, beta receptor II (70/80kDa) 2.73

SOCS1 suppressor of cytokine signaling 1 2.57

APAF1 apoptotic peptidase activating factor 1 2.22

IL7R interleukin 7 receptor 0.13

SERPINE1 serpin peptidase inhibitor, clade E, member 1 (PAI-1) 0.15

MMP9 matrix metallopeptidase 9 0.27

PLAC1 placenta-specific 1 0.28

PDZK1IP1 PDZK1 interacting protein 1 0.29

SERPINB2 serpin peptidase inhibitor, clade B, member 2 (PAI-2) 0.32

HMGA1 high mobility group AT-hook 1 0.37

SERPINA5 serpin peptidase inhibitor, clade A, member 5 (PAI-3) 0.38

H19 H19, imprinted maternally expressed untranslated mRNA 0.42

SOX9 SRY (sex determining region Y)-box 9 0.47

doi:10.1371/journal.pone.0016617.t002
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uting to gastric carcinogenesis. However, we could not observe any

significant changes in expression of these genes after SOX2

knockdown by Pre-miR-126 or siRNA, at least in the cell lines we

tested. There are some possible reasons for this discrepancy. First,

it has been reported that a different expression level of SOX2

switches the regulation of target gene expression from up- to

down-regulation, or vice versa [30,31]. In this study, the

expression levels of SOX2 were quite different among the cell

lines that were used for the over-expression and knockdown

experiments. Second, it is well known that stem cell transcription

factors, such as SOX2, OCT3/4 and Nanog, cooperatively

interact with their target genes’ promoters and control their gene

expression, being so-called ‘‘transcriptional cofactors’’. These

expression differences and/or transcriptional cofactors might also

be critical for control of expression of the downstream target genes

of SOX2 in gastric cancer cells, and further studies are necessary

to clarify the roles of SOX2 in the regulation of its target genes.

Expression of KRT6A and PLAC1 was significantly changed by

both SOX2 over-expression and knockdown, suggesting that

SOX2 is the critical regulatory factor for these two genes in gastric

cancer cells. KRT6A is a member of the cytokeratin gene family,

and recently it was reported that ectopic SOX2 over-expression

up-regulated the KRT6A mRNA level in a lung adenocarcinoma

cell line [17]. In the present study, we demonstrated the possibility

that KRT6A expression is also positively regulated by SOX2 in

gastric cells, but the role of KRT6A in gastric carcinogenesis

remains unclear. Thus, further investigations are necessary to

elucidate the roles of KRT6A in gastric carcinogenesis.

On the other hand, PLAC1, a recently described X-linked gene

exhibiting expression restricted to the placenta, is also expressed in

a wide variety of human cancers, including gastric cancer [32,33].

Koslowski et al. reported that siRNA-mediated knockdown of

PLAC1 decreased cell motility, migration and invasion, and

induced G1-S cell cycle arrest with nearly complete abrogation of

proliferation in breast cancer cell lines [34]. In this study, we

demonstrated that SOX2 negatively regulates PLAC1 expression

in gastric cancer cell lines, and propose a novel hypothesis that

miR-126 inhibits SOX2 expression and consequent changes in the

expression of some SOX2 target genes, such as PLAC1, thereby

contributing to gastric carcinogenesis.

In conclusion, for the first time, we demonstrated that miR-126 is

a novel oncogenic miRNA, which targets SOX2, and that

downstream pro-oncogenic target genes of SOX2, such as PLAC1,

may contribute to gastric carcinogenesis. These findings have

important implications for not only explaining the loss of SOX2

expression in gastric cancers, but also for understanding the

transcriptional regulatory mechanisms of SOX2 in other various

cell lineages, such as ES cells. Taken together, our findings may lead

Figure 6. Expression changes of predicted SOX2 target genes. (A) Changes in gene expression after adenovirus-mediated ectopic SOX2 over-
expression in NUGC3 cells. RT-PCR analysis was performed to validate the cDNA microarray results for Ad-GFP-infected (G) and Ad-SOX2-infected
NUGC3 cells (S). GAPDH expression was used as an internal loading control. (B) Quantitative real-time RT-PCR analysis of the KRT6A and PLAC1 mRNA
expression levels after SOX2 knockdown by Pre-miR-126 or siRNA in HSC43 cells. The expression levels were normalized against internal GAPDH
expression. The assays were performed in triplicate, and the bars indicate s.d. **P,0.01.
doi:10.1371/journal.pone.0016617.g006
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to new diagnostic and therapeutic approaches for gastric cancer, and

provide new insights into the transcriptional regulation of SOX2.

Materials and Methods

Ethics Statement
Written informed consent was obtained from all subjects, and

the study was approved by the Ethics Committee of Tokyo

Medical and Dental University.

Cell lines and tissue samples
We used 10 human gastric cancer cell lines (HSC43, MKN45,

TGBC11TKB, NUGC3, KATOIII, AGS, HSC44PE, GCIY,

NUGC4 and HSC58) and one human embryonic kidney cell line

(HEK293T) in this study, as described previously [10,35]. All the

cell lines were cultured in appropriate medium. Mouse ES cell line

BL6 was obtained from Dr. Hirobumi Teraoka (Tokyo Medical

and Dental University Medical Research Institute, Japan), and was

cultured as described previously [36]. A total of 16 primary gastric

carcinoma tissue samples and corresponding non-cancerous

gastric mucosae were obtained, as described previously [10].

miRNA mimic and inhibitor transfection
Gastric cancer cells were transfected with Precursor Molecules

mimicking miR-126 (Pre-miR-126), miR-522 (Pre-miR-522)

(Applied Biosystems, Foster City, CA), SOX2 siRNA (sense, 59-

GGAAUGGACCUUGUAUAGAUC-39; and anti-sense, 59-UC-

UAUACAAGGUCCAUUCCCC-39, Sigma-Aldrich, St. Louis,

MO), anti-miR inhibitor miR-126 (Anti-miR-126) (Dharmacon,

Lafayette, CO), or scrambled sequence miRNA (Pre-miR-NC)

(Pre-miR Negative Control #1, Applied Biosystems) to give a final

concentration of 10 to 100 nmol/L (nM) by using MicroPorator

MP-100 (Digital BioTechnology, Seoul, Korea), according to the

manufacturer’s instructions. At 24–72 h after transfection, cells

were harvested for Western blot or RT-PCR analyses.

Western blot
Western blot analyses were performed as described previously

[10]. The primary antibodies used were rabbit anti-SOX2

(1:1000: Cell Signaling Technology, Danvers, MA) and mouse

anti-a-tubulin (1:200; Santa Cruz Biotechnology, CA). The

secondary antibodies used were alkaline phosphatase-conjugated

anti-mouse IgG or anti-rabbit IgG (1:2000; Bio-Rad Laboratories,

Hercules, CA). Blots were developed with Immun-StarTM AP

Substrate (Bio-Rad Laboratories). We used a-tubulin as an

internal protein loading control, and the band intensities were

defined as described in the footnote of Table 1 when 100 mg of

protein was loaded per lane.

RT-PCR and quantitative real-time RT-PCR
Total RNA was extracted by using Trizol reagent (Invitrogen,

Carlsbad, CA) and treated with DNA-freeTM (Applied Biosys-

tems). RT-PCR and quantitative real-time RT-PCR were

performed as described previously [10]. The primer sequences

used for all genes are shown in Table S2. For semi-quantitative

RT-PCR, GAPDH expression was used as an internal loading

control, and the band intensities were defined as described in the

footnote of Table 1 under the conditions of 35 PCR cycles.

Dual luciferase reporter assay
The 39-UTR oligonucleotide of SOX2, a 1050 bp fragment

containing the last 36 bps of the SOX2 coding region and the

putative target sites of miR-126 and miR-522, was amplified by

PCR with the following primers: sense, 59-GCGCTCTAGAGC-

CATTAACGGCACACTGCC-39; and anti-sense, 59-GGCCT-

CTAGATACATGGATTCTCGGCAGAC-39. Luciferase con-

structs were obtained by ligating the wild type 39-UTR

oligonucleotide of SOX2 (Wt) or nucleotides with the miR-126

target sites deleted (Del-A, -B or -AB) into the XbaI site of the

pGL4.13 (luc2/SV40) firefly luciferase reporter vector (Promega,

Madison, WI). HEK293T cells were co-transfected using HiPer-

Fect (QIAGEN, Hilden, Germany) with 10 ng of the pGL4.13

vector containing or not containing the 39-UTR sequence (for

normalization of the non-specific effects on pGL4.13-39-UTR

vector of miRNAs), 4 ng of the pGL4.74 (hRluc/TK) renilla

luciferase control vector (for normalization of the transfection

efficiency), and 30 nM Pre-miR-126, Pre-miR-522, SOX2 siRNA,

or Pre-miR-NC. Luciferase activity was measured 24 h after

transfection using a Dual-Luciferase Reporter Assay System

(Promega). Relative luciferase activity was calculated by normal-

izing the firefly luminescence as to the renilla luminescence.

Immunohistochemistory
Paraffin-embedded tissue samples were sectioned, deparaffi-

nized, and then pretreated by autoclaving in 10 mM citric acid

buffer for 15 min to retrieve antigenicity. After the peroxidase

activity had been blocked with 3% H2O2-methanol for 15 min,

the sections were incubated with 10% normal goat serum in PBS

to block nonspecific protein binding, followed by incubation with

primary antibody against SOX2 (1:300; Millipore) at 4uC
overnight. Then, the sections were incubated with horseradish

peroxidase-labeled goat anti-mouse-rabbit antibody (Dako, Car-

pinteria, CA) for 30 min at room temperature, and the signal was

amplified and visualized with diaminobenzidine-chromogen,

followed by counterstaining with hematoxylin. Expression was

considered to be ‘‘positive’’ when 10% or more cancer cells were

stained.

Quantitative real-time RT-PCR of miRNA
Total RNA was extracted by using Trizol reagent (Invitrogen)

and then treated with DNA-freeTM (Applied Biosystems) for cell

lines. On the other hand, paraffin-embedded tissue samples were

sectioned into 10 mm-thick, deparaffinized under RNase-free

condition, and then total RNA was extracted by using Recover-

AllTM Total Nucleic Acid Isolation Kit (Applied Biosystems, Foster

City, CA) according to manufacturer’s instructions. Quantitative

real-time RT-PCR of miRNA was carried out using a TaqMan

Reverse Transcription Kit (Applied Biosystems), TaqMan Micro-

RNA Assays (Applied Biosystems), and a LightCycler TaqMan

Master (Roche Diagnostics, Mannheim, Germany), according to

the manufacturers’ instructions. The expression levels of miRNA

were calculated by the delta-delta Ct method using RNU6B as an

internal control.

Cell proliferation and soft agar colony formation assays
We transfected Pre-miR-126, SOX2 siRNA and Pre-miR-NC

into HSC43 and MKN45 cell lines to give a final concentration of

50 nM by using MicroPorator MP-100. After 48 hours, the

transfected cells were trypsinized, counted and replated in

quadruplicate on 96-well plates (56102 cells for HSC43,

2.56102 cells for MKN45 per well). Cell proliferation was

evaluated on days 1, 3, 5 and 7 after replating by determining

the number of cells with a Cell Counting Kit-8 (Dojindo,

Kumamoto, Japan), according to the manufacturer’s instructions.

For soft agar colony formation assays, we used a CytoSelectTM

96-Well In Vitro Tumor Sensitivity Assay Kit (Cell BioLabs, Inc.,

San Diego, CA), according to the manufacturer’s instructions.
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Briefly, the transfected cells, as described above, were trypsinized,

counted and plated in quadruplicate on 96-well plates with Agar

Matrix Layer (26103 cells for HSC43, 16103 cells for MKN45 per

well). After incubating the cells for 7 to 8 days at 37uC and 5%

CO2, the soft agar in each well was solubilized, and viable cells,

that is, colony-forming cells, were measured with Cell Counting

Kit-8 (Dojindo).

Microarray analysis
Adenovirus (Ad)-SOX2 and control Ad-GFP vectors were

generated as described previously [10], and used to infect NUGC3

cells at the optimum MOI (infectious units/cell) of 20. At 72 h

after infection, total RNA was extracted by using Trizol reagent

(Invitrogen) and then treated with DNA-freeTM (Applied Biosys-

tems). cDNA microarray analysis was conducted by DNA Chip

Research Inc. (Kanagawa, Japan) with Whole Human Genome

oligo DNA arrays (Agilent Technologies, Santa Clara, CA). The

microarray data is Minimum Information About a Microarray

Experiment (MIAME) compliant and has been deposited in a

MIAME compliant database, Gene Expression Omnibus (GEO).

The GEO accession number is GSE23589.

Supporting Information

Table S1 List of genes up- (.2.0-fold) and down-regulated

(,0.5-fold) by SOX2 over-expression.

(XLS)

Table S2 Sequences of RT-PCR primers used in this study.

(XLS)
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