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Abstract: CRISPR/Cas-based genome editing technologies, which allow the precise manipulation
of plant genomes, have revolutionized plant science and enabled the creation of germplasms with
beneficial traits. In order to apply these technologies, CRISPR/Cas reagents must be delivered into
plant cells; however, this is limited by tissue culture challenges. Recently, viral vectors have been used
to deliver CRISPR/Cas reagents into plant cells. Virus-induced genome editing (VIGE) has emerged as
a powerful method with several advantages, including high editing efficiency and a simplified process
for generating gene-edited DNA-free plants. Here, we briefly describe CRISPR/Cas-based genome
editing. We then focus on VIGE systems and the types of viruses used currently for CRISPR/Cas9
cassette delivery and genome editing. We also highlight recent applications of and advances in VIGE
in plants. Finally, we discuss the challenges and potential for VIGE in plants.
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1. Introduction

The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-
associated protein (Cas) system is an adaptive immune mechanism against invading
nucleic acids in archaea and bacteria [1]. Based on their use of DNA–RNA recognition
and sequence-specific cleavage, CRISPR/Cas systems have been successfully developed
as programmable RNA-guided endonucleases for genome editing since 2012 [2]. After
a decade of development, CRISPR/Cas technology has become the most widely used
gene editing tool in gene function research, gene therapy, and molecular breeding for
crop improvement [3,4]. CRISPR/Cas technologies enable the precise and efficient genetic
manipulation of various crop species; thus, they may be applied to crop improvement, agri-
cultural breeding, and wild species domestication [5–7]. The CRISPR/Cas9 system can be
used to create insertions or deletions (indels) in the coding region of target genes, leading to
gene knock-out [8–10]. Multiplexed single-guide RNAs (sgRNAs) within a single construct
allow for the multiplex editing of one gene or multiple genes simultaneously [10,11]. The
fusion of a catalytically deficient Cas9 to different effectors allows for epigenomic editing
and gene regulation [12,13]. Furthermore, newly developed technologies with increased
precision (e.g., base editing and prime editing) have enabled the creation of predictable
nucleotide substitutions and targeted deletion and insertions, greatly expanding the scope
of genome editing [14–20]. The prerequisite for applying these technologies is delivery of
the CRISPR/Cas reagents into plant cells. Usually, they are delivered into plant cells using
Agrobacterium-mediated transformation, particle bombardment, protoplast transfection, or
viral vectors [21–23].

Plant viruses are obligate intracellular pathogens that have been developed both as
vectors for heterologous protein expression and as research tools for gene functional studies
in plants. Virus-induced gene regulation systems in plants include the virus-mediated
overexpression of heterologous proteins, virus-induced gene silencing, and host-induced
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gene silencing of pathogens or pests. These systems provide rapid, convenient, and high-
throughput research tools for functional genomic studies [24,25]. Recently, many plant
viral vectors have been successfully developed to deliver CRISPR/Cas reagents to both
model and non-model plants, and virus-induced gene editing (VIGE) has been used to
edit plant genomes. VIGE offers significant advantages over other technologies, including
higher editing efficiency, accuracy, and operability [26]. In this review, we first describe
CRISPR/Cas systems as genome editing tools. Next, we focus on VIGE and the types
of viruses used to deliver CRISPR/Cas reagents into plant cells, comparison of different
types of viral vectors for VIGE in plants, and the potential bottlenecks and future prospects
of VIGE.

2. CRISPR/Cas: A Useful Genome Editing Tool

CRISPR/Cas systems confer adaptive immunity against invading elements in archaea
and bacteria [1]. The defense process can be separated into three stages: CRISPR spacer
acquisition, CRISPR expression, and CRISPR interference [12,27]. When spacers in the
CRISPR RNA (crRNA) pair perfectly with an invasive nucleic acid, it initiates cleavage of
the invading DNA by Cas proteins. Therefore, CRISPR/Cas systems provide dynamic and
effective immunity against invading genetic elements. Sequence-specific RNA–DNA recog-
nition and cleavage by Cas nucleases make CRISPR/Cas systems useful as programmable
genome editing tools [28].

Type II CRISPR/Cas is the simplest and most well-studied system by far. It requires
a single protein, Cas9, which is guided by paired trans-activating crRNA (tracrRNA)
and crRNA molecules to introduce site-specific double-stranded breaks (DSBs) into a
target DNA sequence during the interference stage. The type II CRISPR/Cas system
from Streptococcus pyogenes has been developed as an RNA-programmable genome editing
tool CRISPR/Cas9 [2]. A sgRNA engineered from a dual tracrRNA:crRNA molecule
directs Cas9 to the target site. Then, Cas9 utilizes two distinct nuclease domains, HNH
and RuvC-like, to cleave both strands of the target DNA, generating sequence-specific
DSBs. This triggers two DNA repair systems, nonhomologous end-joining (NHEJ) and
homology-directed repair (HDR) [28]. NHEJ, which is prevalent in most cells, is an error-
prone pathway. It generates random indels at the break and thus frequently produces
knockout mutants. In comparison, HDR is a less-frequent but high-fidelity pathway. If
a homologous DNA template surrounds the break site, it may be repaired through HDR,
generating precisely desired modifications such as insertions, replacements, and point
mutations [3,29].

The current CRISPR/Cas9 system has been simplified and repurposed such that it
has two components: the Cas9 nuclease and sgRNA. Target recognition by Cas9 requires
both a 20-nucleotide sequence at the 5′ end of the sgRNA and a NGG protospacer-adjacent
motif (PAM). By changing the nucleotides in the sgRNA, desired mutants can be obtained.
Since the first application of CRISPR/Cas9 in plants [10,30,31], this technology has become
a mainstream gene editing tool and has been applied to a variety of plant species for the
functional annotation of genomes and genetic improvement of crops [4,15].

Genome editing technology is evolving rapidly. CRISPR/Cas12a, a type V CRISPR
system, has also been adapted for genome editing, including in plants [32]. Moreover,
recently developed base editors and prime editors allow for precise genome modifications.
Collectively, these technologies have already had an impact on plant biological research
and will play an important role in crop breeding [5–8].

The effective application of CRISPR/Cas technologies in plants requires delivery
of the CRISPR/Cas cassette into plant cells (Figure 1). CRISPR/Cas reagents, including
DNA, RNA, and ribonucleoprotein (RNP), are usually delivered into plant cells by Agrobac-
terium-mediated transformation, particle bombardment, or protoplast transfection [21–23].
However, these widely used delivery methods have limitations. For instance, protoplast
transfection is normally used for transient expression, whereas particle bombardment
requires expensive and specialized equipment, and it is restricted by a complex procedure
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and low efficiency. Similarly, the efficiency of Agrobacterium-mediated transformation is
dependent on genotype, with few cultivars being amenable to transformation. Furthermore,
none of these methods avoids complex tissue culture procedures. As an alternative to
these methods, plant viruses have been harnessed to deliver CRISPR/Cas reagents into
plant cells.

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 3 of 12 
 

 

dependent on genotype, with few cultivars being amenable to transformation. Further-
more, none of these methods avoids complex tissue culture procedures. As an alternative 
to these methods, plant viruses have been harnessed to deliver CRISPR/Cas reagents into 
plant cells. 

 
Figure 1. Schematic illustration of the major steps in plant genome editing. DNA, RNA-encoding 
CRISPR/Cas reagents, or RNPs (composed of Cas9 and an in vitro-transcribed sgRNA) can be de-
livered into plant cells using Agrobacterium cells, a gene gun, polyethyleneglycol, or viruses. In the 
nucleus, the CRISPR/Cas reagent creates site-specific DSBs, which may be repaired through the 
NHEJ or HDR pathways. NHEJ generates uncontrolled, but predictable indels. In the presence of a 
donor template, breaks may be repaired through HDR, generating precise modifications. Gene-ed-
ited plants are identified from among the regenerated plants through genotyping. 

3. VIGE and Its Application in Plants 
After nearly 10 years of development, VIGE systems utilizing numerous DNA and 

RNA viruses have been developed and applied to a variety of host plants, with excellent 
outcomes in genome editing (Table 1). VIGE has several advantages, including (a) multi-
ple virus species or variants that may be combined with different host species or geno-
types; (b) a high copy number of sgRNAs, which improves the editing efficiency; (c) rapid 
infection, leading to faster acquisition of the edited genotype; and (d) no integration of 
exogenous DNA, thus reducing off-target effects [33,34]. VIGE vectors can be classified 
into two categories according to their cargo capacity and the reagents that may be deliv-
ered (Figure 2). The first category includes VIGE vectors that express a sgRNA, infect 
plants that stably express Cas9, and yield gene-edited Cas9 transgenic seeds. The progeny 
can then be crossed with wild-type plants to remove the Cas9-encoding gene [35,36]. The 
second category includes VIGE vectors that deliver both Cas9 and the sgRNA, and spread 
systemically in plants. It requires tissue culture from infected leaves to regenerate gene-
edited plants, which subsequently produce gene-edited seeds [37–39]. 

Figure 1. Schematic illustration of the major steps in plant genome editing. DNA, RNA-encoding
CRISPR/Cas reagents, or RNPs (composed of Cas9 and an in vitro-transcribed sgRNA) can be
delivered into plant cells using Agrobacterium cells, a gene gun, polyethyleneglycol, or viruses. In
the nucleus, the CRISPR/Cas reagent creates site-specific DSBs, which may be repaired through the
NHEJ or HDR pathways. NHEJ generates uncontrolled, but predictable indels. In the presence of a
donor template, breaks may be repaired through HDR, generating precise modifications. Gene-edited
plants are identified from among the regenerated plants through genotyping.

3. VIGE and Its Application in Plants

After nearly 10 years of development, VIGE systems utilizing numerous DNA and
RNA viruses have been developed and applied to a variety of host plants, with excellent
outcomes in genome editing (Table 1). VIGE has several advantages, including (a) multiple
virus species or variants that may be combined with different host species or genotypes;
(b) a high copy number of sgRNAs, which improves the editing efficiency; (c) rapid
infection, leading to faster acquisition of the edited genotype; and (d) no integration of
exogenous DNA, thus reducing off-target effects [33,34]. VIGE vectors can be classified into
two categories according to their cargo capacity and the reagents that may be delivered
(Figure 2). The first category includes VIGE vectors that express a sgRNA, infect plants
that stably express Cas9, and yield gene-edited Cas9 transgenic seeds. The progeny can
then be crossed with wild-type plants to remove the Cas9-encoding gene [35,36]. The
second category includes VIGE vectors that deliver both Cas9 and the sgRNA, and spread
systemically in plants. It requires tissue culture from infected leaves to regenerate gene-
edited plants, which subsequently produce gene-edited seeds [37–39].
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Table 1. Virus delivering CRISPR/Cas9 reagents or sgRNAs to plant cells for genome editing.

Virus Receptor Plants Virus Insert Cargo Target(s) Tissue Culture Mutations Heritable Refs.

Tobacco rattle virus
(TRV)

Cas9-expressing N.
benthamiana sgRNAs (+/−FT) NbPDS, NbAG No Yes [33]

TRV Cas9-expressing
Arabidopsis sgRNAs AtGL1, AtTT4 No No [34]

TRV Cas9-expressing N.
benthamiana sgRNAs NbPDS3, NbPCNA No Yes [35]

TRV Cas9-expressing
Arabidopsis sgRNAs (+/−FT or tRNA) AtFWA No Yes [36]

TRV Cas9-expressing N.
benthamiana sgRNAs NbPDS3 No Yes [40]

Potato virus X (PVX) Cas9-expressing N.
benthamiana sgRNAs (+/−FT or tRNA) NbXT2B, NbPDS,

NbFT Yes Yes [41]

PVX N. benthamiana Cas9 and sgRNAs NbTOM1 Yes Yes [37]

Barley yellow striate
mosaic virus (BYSMV)

GFP-expressing N.
benthamiana Cas9 and sgRNAs GFP No No [38]

Sonchus yellow net
rhabdovirus (SYNV)

N. benthamiana
(WT or GFP expressing) Cas9 and sgRNAs GFP, NbPDS,

NbRDR6, NbSGS3 Yes Yes [39]

Pea early browning
virus (PEBV)

Cas9-expressing N.
benthamiana sgRNAs NbPDS No No [34]

Apple latent pherical
virus (ALSV)

Cas9-expressing N.
benthamiana

soybean
sgRNAs NbPDS, EPSPS,

GmGW2 No No [36]

Barley stripe mosaic
virus (BSMV) Cas9-expressing wheat sgRNAs (+/−FT or tRNA) TaGW2, TaUPL3,

TaGW7, TaQ No Yes [42]

BSMV N. benthamiana;
Cas9-expressing wheat sgRNAs (+/−FT or tRNA) TaPDS, TaGW2,

TaGASR7 No Yes [43]

BSMV N. benthamiana;
Cas9-expressing wheat sgRNAs (+/−FT or tRNA) TaHRC No Yes [44]

BSMV

N. benthamiana
(WT or GFP expressing);

Cas9-expressing
wheat/maize

sgRNAs NbPDS, GFP
GASR7, TMS5 Yes Yes

No [45]

Beet necrotic yellow
vein virus (BNYVV)

Cas9-expressing N.
benthamiana sgRNAs NbPDS3 No No [46]

Cotton leaf crumple
virus (CLCrV)

Cas9-expressing
Arabidopsis sgRNAs (+/−FT) AtBRI1, AtGL2 No Yes [47]

Foxtail mosaic virus
(FoMV)

Cas9-expressing N.
benthamiana S.viridis, Maize sgRNAs NbPDS

SvCA2, ZmHKT1 No No [48]

FoMV N.benthamiana Cas9, sgRNAs (+/−P19) NbPDS No No [49]

Cabbage Leaf Curl
virus (CaLCuV)

Cas9-expressing N.
benthamiana sgRNAs NbIspH, NbPDS Yes No [50]

Tobacco etch virus
(TEV) and PVX N. benthamiana Cas12a and sgRNAs,

respectively NbXT1, NbFT No No [51]

Bean yellow dwarf
virus (BeYDV) Tobacco Cas9 and sgRNAs AtADH1 Yes Yes [52]

BeYDV Potato Cas9 and sgRNAs StALS1 Yes Yes [53]

BeYDV Tomato Cas9 and sgRNAs SlANT1 Yes Yes [54]

BeYDV Tomato Cas9 and sgRNAs SlCRTISO, SlPSY1 Yes Yes [55]

Wheat dwarfing virus
(WDV) Wheat Cas9 and sgRNAs GFP, BFP Yes Yes [56]

WDV Rice Cas9 and sgRNAs GFP Yes Yes [57]

Tobacco mosaic virus
(TMV)

GFP-expressing N.
benthamiana Cas9 and sgRNAs GFP, NbAGO1 No No [58]

TMV GFP-expressing N.
benthamiana Cas9 and sgRNAs GFP No No [59]
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Figure 2. Overview of the methods available to create heritable edits in plants. (a) VIGE through
sgRNA expression. Agrobacterium cells carrying viral vectors expressing sgRNAs are agroinfiltrated
into the leaves of Cas9-overexpressing plants. The CRISPR/Cas9 complex induces targeted genome
editing in individual plant cells, which can be used for regeneration. Alternatively, genome editing
occurs as the virus moves systemically throughout the plant. Gene-edited Cas9 transgenic seeds are
then obtained. After crossing with wild type (WT), Cas9 can be segregated out, and gene-edited
DNA-free seeds are produced. (b) VIGE through Cas9 and sgRNA expression. Agrobacterium cells
carrying viral vectors expressing Cas9 and sgRNAs are agroinfiltrated into the leaves of wild-type
plants. The CRISPR/Cas9 complex induces targeted genome editing in individual plant cells, which
can be used for regeneration. Gene-edited DNA-free seeds are produced by the regenerated plants.

3.1. Viral Vectors Expressing sgRNAs

Due to a limitation in the carrying capacity of foreign genes, VIGE strategies are mainly
focused on the delivery of sgRNAs to plants that constitutively overexpress Cas9. This
not only ensures a systemic viral infection, it also increases the sgRNA concentration [40].
Currently, several plant viruses have been tested as vectors for the delivery of sgRNAs
to create targeted knockouts, including tobacco rattle virus (TRV), potato virus X (PVX),
cotton leaf crumple virus (CLCrV), barley stripe mosaic virus (BSMV), foxtail mosaic virus
(FoMV), tobacco mosaic virus (TMV), pea early browning virus (PEBV), and beet necrotic
yellow vein virus (BNYVV) (Table 1).

TRV (genus Tobravirus, family Virgaviridae) is a positive single-stranded RNA (+ssRNA)
virus with a bipartite genome composed of RNA1 and RNA2 [60]. TRV has a wide host
range, and its genome can be easily manipulated. Therefore, it has been widely used as a
VIGE vector in functional genomic studies in plants [61]. Recently, a TRV RNA2 genome-
derived vector was constructed and optimized for sgRNA delivery. After co-infiltrated the
engineered TRV RNA2 with sgRNAs and RNA1 genome into N. benthamiana overexpressing
Cas9, single or multiplex editing of targeted genes was achieved. Germinal transmission
was detected. However, it was only in progeny seed from early flowers, indicating that
the TRV infection and persistence in meristematic cells need to be optimized [40]. Further
studies have demonstrated that TRV can successfully edit the AtGL1 and AtTT4 genes in
Arabidopsis [34]. To improve the heritability of the TRV-based VIGE, Ellison et al. fused
Arabidopsis FLOWERING LOCUS T (FT) mRNA to the 3′ end of sgRNA. It promotes
the entry of sgRNAs to reproductive organs. Through expressing sgRNAs augmented
with mobile RNA sequences, high editing efficiency (90–100%) was observed in infected
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tissues. More importantly, the efficiency of the inheritable genome edits (65–100%) was
significantly increased [33]. Moreover, TRV-based sgRNA delivery systems function quickly
and efficiently in terms of transcriptional activation and epigenomic editing [62].

PVX is the type member of the genus Potexvirus that infects 62 plant species, including
important crops in the family Solanaceae. The PVX virion is a flexuous rod with a 6345-
nucleotide (+) ssRNA genome, which is frequently manipulated and used as a plant RNA
virus expression vector [41]. Recently, PVX was engineered to a vector expressing one or
more sgRNAs in solanaceous plants. This PVX-based vector successfully delivered one or
several sgRNAs into Cas9 transgenic N. benthamiana, achieving highly efficient multiplex
editing in adult plant tissues. Furthermore, whole plants carrying indels at the target genes
were regenerated from PVX infected tissues. This PVX VIGE vector allows efficient and
multiplex genome editing and will be a useful tool for functional genomics and breeding in
important crops of the family Solanaceae [41].

Cotton leaf crumple virus (CLCrV) is a two-component DNA virus composed of the
CLCrV-A and -B genome. It was developed to deliver sgRNAs into Cas9 overexpression
Arabidopsis. This CLCrV-mediated VIGE enabled targeted editing of endogenous genes in
Arabidopsis. Furthermore, sgRNAs fused with FT mRNA at the 5′ end enabled effective and
heritable gene editing, with an efficiency of 4.35–8.79% [47]. This allowed heritable gene
editing avoiding tissue culture and stable transformation in Arabidopsis, suggesting broad
application prospects in crops.

Genome editing in plants usually relies on conventional genetic transformation and re-
generation procedures, which can be inefficient. However, virus-mediated sgRNA delivery
systems show advantages in monocots such as maize and wheat. Barley stripe mosaic virus
(BSMV) is a positive-sense RNA virus with three genome components (designated alpha,
beta, and gamma) that infects many economically important monocot species. A BSMV-
based sgRNA delivery system was developed that greatly simplifies CRISPR/Cas9-based
gene editing in wheat and maize [45]. Due to continuous improvement and upgrades,
the BSMV-based sgRNA delivery vector is capable of highly efficient, heritable genome
editing in Cas9-transgenic wheat. The BSMV vector can carry multiple sgRNAs, and
multiplex mutagenesis has been reported in the progeny. Furthermore, BSMV-infected
Cas9-transgenic wheat pollen grains were crossed with wild-type wheat, leading to F1
progeny. After selfing the F1 mutants, Cas9-free wheat mutants were generated [43]. In
one recent study, the BSMV-mediated sgRNA delivery system was used to edit TaHRC,
improving Fusarium head blight resistance in wheat with no genotype limitation [44].

Foxtail mosaic virus (FoMV) is another useful viral vector in monocots [63]. FoMV suc-
cessfully delivered a functional sgRNA into Cas9 transgenic maize. The sgRNA expressed
from a duplicated promoter mediated successful edits in the maize HKT1 gene. Moreover,
the efficiency of editing could be enhanced in the presence of synergistic viruses and a viral
silencing suppressor. However, because the edited plants described above were grown in a
growth chamber and exhibited severe symptoms, the heritability of the mutations was not
tested [48].

Overall, the combination of VIGE and transgenic Cas9 plants has resulted in high
editing efficiency and simplified the process of generating gene-edited plants.

3.2. Viral Vectors That Can Express Both Cas9 and a sgRNA

Although the delivery of sgRNAs with viral vectors could induce high-frequency gene
editing in plants that constitutively overexpress Cas9, delivery of the entire CRISPR/Cas
reagents with viral vectors would be ideal to avoid the process for transgene entirely. Some
viruses, with large cargo capacities and high gene stability, have been tested as vectors for
the delivery of Cas9 and sgRNAs into plants to generate targeted knockouts, including
PVX, barley yellow striate mosaic virus (BYSMV), and sonchus yellow net virus (SYNV)
(Table 1).

The PVX virion is a flexuous rod. The filamentous, flexible structure of the PVX makes
it unlikely that gene insert size is physically limited in the PVX vector [64]. Therefore, the
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entire CRISPR/Cas9 cassette can be inserted into the PVX vector. Following agroinoculation,
targeted gene mutagenesis and base editing were successfully achieved in N. benthamiana.
The genome editing efficiency (62%) in PVX-inoculated leaves was markedly higher than
that in routine binary expression vector-agroinfiltrated leaves; the T-DNA integration
rate was only 18%, which is a much lower acquisition rate than in the transgene-free
genome-edited plants [37].

To avoid the possible integration of exogenous DNA into the plant genome during
gene editing, mechanical inoculation with virions based on the PVX vector was applied to
N. benthamiana leaves. Genome-edited regenerated shoots were obtained. Although the
efficiency (~3%) was much lower than that with agroinoculation, this highlights the great
potential of a PVX-based system for transgene-free gene editing in commercially important
crops such as potato, tomato, eggplant, and pepper, which are natural hosts of PVX [37].

FoMV, another virus in the genus Potexvirus, has been used as an alternative expression
vector for CRISPR/Cas reagents. First, Cas9 and sgRNA sequences were cloned into the
FoMV vector respectively. Following the co-agroinfiltration of germinating N. benthamiana
seeds, the plants developed evident systemic viral symptoms, and successful targeted
mutagenesis of PDS was obtained. Moreover, co-delivery of the gene silencing suppressor
p19 markedly enhanced the levels of Cas9 in young leaf tissues and led to efficient systemic
gene editing of the target. However, no data showing heritable editing were obtained; this
still needs to be further improved [49].

Mixed-infection with two or more viruses is frequently used to study virus–plant
host/vector interactions. Recently, it has also been applied to construct VIGE vectors for
genome editing. PVX and (tobacco etch virus, TEV) are two compatible viruses that can
replicate and proliferate in the same host cells. The TEV was used to express Cas12a nucle-
ase by replacing the NIb gene in the TEV genome. Another PVX virus vector expressing
both sgRNAs and the TEV-deleted NIb gene was constructed. This dual virus-based vector
system exhibited 20% indels in wild-type N. benthamiana [51]. This novel two compatible
RNA virus-based system broadens the toolbox of VIGE.

Plant negative-stranded RNA (NSR) viruses have not been extensively used as expres-
sion vectors because of difficulty in engineering infectious cDNA clones [65,66]. However,
compared to positive-strand RNA or DNA viruses, NSR viruses have large cargo capacities
and high gene stability, making them suitable candidates for expressing large foreign se-
quences (e.g., CRISPR/Cas9 cassette). To date, two NSR viruses, BYSMV and SYNV, have
been engineered to deliver the complete CRISPR/Cas9 cassette into plant cells for genome
editing [38,39].

BYSMV belongs to the genus Cytorhabdovirus. It has been used as a model to develop
the first recombinant cytorhabdovirus from cloned cDNAs. The BYSMV vector was also
engineered and developed to simultaneously deliver Cas9 and sgRNAs to N. benthamiana.
Various indels were obtained at the target site in the infected leaves, indicating that BYSMV-
based vectors could mediate genome editing in N. benthamiana. However, it did not work
in cereal plants [38].

SYNV, belonging to the genus Nucleorhabdovirus, family Rhabdoviridae, is the first plant
NSR virus used to establish a reverse genetics system with cloned cDNAs [66]. SYNV has
been used to simultaneously express Cas9 and sgRNAs in N. benthamiana. SYNV-mediated
genome editing can generate single mutations, multiplex mutagenesis, and chromosome
deletions with high efficiency. The viral vector remains stable during systemic infection
or even after mechanical transmission, and it can be eliminated from edited plants during
regeneration or after seed-setting. DNA-free and virus-free genome-edited plants have
been regenerated from symptomatic upper leaf tissues. Although the restricted host range
of SYNV limits its application to various species, it is a robust DNA-free method for
generating heritable edits through leaf inoculation [39].
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3.3. Geminivirus-Based Replicons for Genome Engineering

To increase their cargo capacity, some viral vectors have been deconstructed into non-
infectious replicons (GVRs) by deleting non-replication-related genes, including movement
protein- and coat protein-coding sequences; thus, they are not infectious on their own [67].

Geminiviruses, single-stranded circular DNA viruses of the family Geminiviridae, are
widely distributed, transmitted by insects, and can infect a variety of plants worldwide [68].
Geminiviruses require only one replication-associated protein to achieve replication in a
host cell; they also replicate efficiently and produce a high copy number of replicons [69].
Using the GVR strategy, only replication-associated blocks are kept. Geminivirus-based
replicons can be used to deliver CRISPR/Cas9 cassette and supply adequate donor repair
templates to facilitate gene targeting (GT).

The first Geminivirus vector was developed based on bean yellow dwarf virus
(BeYDV). It was used to express CRISPR/Cas9 components and repair templates for
genome editing in tobacco. The resulting targeted point mutations in the endogenous ALS
gene enabled the regenerated tobacco plants to acquire herbicide resistance, and the effi-
ciency was higher than that with conventional Agrobacterium-mediated transformation [52].
The BeYDV replicon was also used to deliver CRISPR/Cas reagents targeting ALS1 and
repair templates in potato. A targeted point mutation was obtained, and the regener-
ated transformed plantlets exhibited a reduced herbicide susceptibility phenotype [53].
Furthermore, the BeYDV vector was used to precisely integrate the strong 35S promoter
upstream of an anthocyanin synthesis gene (ANT1) in tomato. Heritable modification was
obtained at frequencies 10-fold higher than with traditional DNA delivery methods (i.e.,
Agrobacterium) [54].

Geminivirus replicon-mediated genome editing has also been successfully achieved
in monocots. A deconstructed version of wheat dwarf virus (WDV) was developed for
genome editing in cereal crops. In one study, WDV replicons carrying both CRISPR/Cas
cassette and a donor template achieved GT at an endogenous wheat locus at frequencies
12-fold higher than that with non-viral delivery methods. Targeted integration by HDR
was achieved in all three of the homoeoalleles (A, B, and D). Additionally, multiplexed
GT within the same cell was achieved at frequencies of 1% [56]. Similarly, by combining
CRISPR/Cas9 and geminiviral vectors, precise and efficient DNA knock-in mutants have
been generated in rice [57].

Geminivirus-based replicons enable highly efficient genome engineering. Compared
to DNA virus replicons, RNA virus vectors have the advantage of completely avoiding
integration into plant genomes and producing exogenous DNA-free plants, thus avoiding
raising additional safety concerns.

3.4. Comparison of Different Types of Viral Vectors for VIGE in Plants

Due to a limitation in the carrying capacity of foreign genes, VIGE vectors are mainly
focused on the delivery of sgRNAs to plants, which need to be in conjunction with Cas9-
overexpressing host plants to induce genome editing. Targeted genome editing occurs in
individual plant cells, which can be used for regeneration. Then genome-edited plantlets
are generated through screening. Alternatively, sgRNAs spread systemically in the plants,
generating inheritable mutagenesis. Although these gene-edited seeds harbor Cas9 over-
expressing, it can be segregated out through backcrossing [43]. Currently, viral vectors
expressing sgRNAs are widely used in both dicots and monocots (Table 1).

Viral vectors expressing both Cas9 and sgRNAs are ideal to avoid the process for
transgene entirely. However, it requires viruses to have large genomes and flexible viri-
ons, and only a few are available (Table 1). These viruses (e.g., BYSMV, SYNV) have
restricted host ranges [38,39], limiting its application to various species. With further ex-
ploration, those types may be widely used because of their large carrying capacity and
convenient operation.

Geminiviruses are widely distributed and infect a variety of plants. To express both
Cas9 and sgRNAs, non-replication-related genes are deleted. Geminivirus-based replicons
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can deliver CRISPR/Cas9 cassette and supply adequate repair templates to improve gene
editing efficiency and facilitate gene targeting [54]. However, this strategy is completely
dependent on Agrobacterium delivery and tissue culture.

4. Challenges and Perspectives for VIGE in Plants

As described above, VIGE systems offer several advantages, including an improved
editing efficiency by increasing sgRNA expression, time savings by avoiding lengthy and
laborious tissue culture procedures in favor of invading and editing meristem cells directly,
and the rapid acquisition of gene editing-induced phenotypes through viral infection.
Additionally, VIGE largely avoids off-target effects, especially RNA virus-mediated VIGE
systems, since they do not integrate into the host genome.

However, bottlenecks and defects in current VIGE systems exist. The biggest problem
is that the cargo capacities of plant DNA or RNA viruses are limited [33,43]. The greater the
length of the foreign gene, the less stable the viral genome is; Cas9 cannot be co-encoded
with the sgRNA by such viruses. Therefore, stable transgenic Cas9-overexpressing lines
are required and they must be infected with RNA viral vectors expressing a modified
sgRNA for genome editing [33,43,47,50,70]. Moreover, few RNA viruses with excellent
genome stability and a high delivery capacity can be engineered to deliver the entire
CRISPR/Cas9 cassette to achieve genome editing in plants [37–39]. Recently, smaller RNA-
guided nucleases such as Cas12e (986 amino acids), Cas12j (700–800 amino acids), and
Cas12f (400–600 amino acids) have been demonstrated to introduce site-specific DSBs in
target DNAs and characterized as useful genome editing tools for eukaryotic cells [71–73].
Although their efficiency should be further optimized, these miniature nucleases may help
to overcome viral genome packaging constraints. A VIGE system employing these newly
identified compact Cas proteins should be explored for plant genome editing.

Another defect is that intact viruses cannot enter meristem cells or reproductive
tissues, making it difficult to achieve heritable gene editing in plants. To solve this problem,
researchers have cleverly added endogenous mobile RNA sequences (e.g., FT or tRNAs) to
the 3′ end of sgRNAs [33]. These mobile elements have greatly increased the movement
of sgRNAs into the shoot apical meristem, resulting in heritable editing without tissue
culture [43,44]. However, this strategy requires Cas9-overexpressing lines, and it improves
the mobility of the sgRNA but not Cas9 into meristem cells. Therefore, the development of
viral vectors with a large genome cargo size and the ability to infect meristem or germline
cells is still needed.

CRISPRed DNA-free plants are not different from those generated by natural or
random mutagenesis. Therefore, they may accelerate the process of crop breeding. In many
countries such as the United States, Japan, and Australia, gene-edited DNA-free crops are
exempt from restrictive policies applied to GMO legislation [74]. Recently, China’s Ministry
of Agriculture and Rural Affairs has issued a guideline for the regulatory approval of
gene-edited crops. According to the guideline, gene-edited DNA-free crops may require
much less complicated safety evaluations compared to GMOs and may contribute to
sustainable agriculture and grain security in China. Recently, a negative-strand RNA virus
delivering the entire CRISPR/Cas9 cassette was used to generate DNA-free genome-edited
tobacco [39]. This viral delivery system seems to be the most convenient method to obtain
CRISPRed DNA-free plants; however, the apparent limitation is the viral host range. Given
the reverse genetic tools available for an increasing number of similar viruses, this strategy
may be applicable to other rhabdoviruses that infect diverse crop species.

5. Conclusions

CRISPR/Cas-based genome editing technologies have revolutionized plant science
and enabled the creation of germplasms with beneficial traits. Currently, numerous plant
viruses have been engineered to deliver CRISPR/Cas reagents into plant cells, with excellent
outcomes in genome editing in a variety of host plants. Although there are some bottlenecks
and defects in current VIGE systems, we expect that an ideal VIGE system with high
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efficiency, which is DNA-free, and which shows strong heritability will be developed with
further exploration. We also believe that the use of viruses to deliver CRISPR/Cas reagents
will hold enormous promise for creating elite crop varieties that will promote future global
food security.
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