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ABSTRACT
The aim of this study was to explore the potential molecular mechanisms of Gastric cancer (GC) and 
identify new prognostic markers for GC. RNA sequencing data were downloaded from the Gene 
Expression Omnibus database, and 418 differentially expressed genes (DEGs) were screened. 
Weighted correlation network analysis (WGCNA) was performed to identify six hub modules related 
to the clinical features of GC. Cytoscape software was used to identify five hub genes in the co- 
expression network, including CST1, CEMIP, COL8A1, PMEPA1, and MSLN. The TCGA database was 
used to verify hub gene expression in GC. The overall survival in the high CEMIP expression group 
was significantly lower than that of patients in the low CEMIP expression group. CEMIP expression 
was also found to be negatively correlated with B cell and CD4 + T cell infiltration. Further, 
associated in vitro experiments confirmed that CEMIP downregulation suppressed the proliferation 
and migration of GC cells and impaired the chemoresistance of GC cells to 5-fluorouracil.

Our study effectively identified and validated prognostic biomarkers for GC, laying a new 
foundation for the therapeutic target, occurrence, and development of gastric cancer.
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Introduction

Gastric cancer (GC) is one of the most common 
malignancies of the digestive system. According to 
the latest statistics of the World Health Organization 
(WHO), the incidence and mortality rates of GC in 
2018 ranked fifth and third, respectively, among all 
malignant tumors [1]. In 2020, the United States 
expected 27,600 new cases and 11,010 deaths from 
GC [2]. The high incidence and mortality rates in 
GC has made it a public health concern, especially in 
developing countries [3]. Although recent advances 
in endoscopic techniques, imaging techniques, sur-
gical techniques, and the use of targeted drugs have 
extended the overall survival of patients with GC to 
a certain extent, most patients already have advanced 
GC by the time they are diagnosed, and the 5-year 
overall survival rate for patients with the disease is 
only 5% [4]. Therefore, it is important to find rele-
vant biomarkers that have good predictive accuracy 
for use in the early detection of GC, to screen 

appropriate patients who can receive targeted thera-
pies for GC, and for the accurate prediction of GC 
prognoses.

The rapid development and widespread use of 
high-throughput technologies has produced 
a large amount of gene expression profile data 
and made them publicly available, where many 
studies have identified DEGs by comparing gene 
expression data from tumor and para-cancerous 
tissues [5]. However, previous research has 
focused more on the role of single DEGs than on 
the complex connections between DEGs. 
Weighted correlation network analysis 
(WGCNA) based on RNA sequencing data can 
be used to mine functional gene modules and 
identify hub genes that could be potential cancer 
biomarkers and therapeutic targets [6]. Previous 
studies have mined public databases for potential 
prognostic biomarkers in GC. For example, Zhou 
et al. have identified 14 independent prognostic 
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DEGs in gastric cancer and have constructed 
a prognostic signature with good predictive per-
formance [7]. Yang et al. used data from public 
databases to develop a prognostic prediction 
model of GC based on cGAS-STING pathway- 
related genes (CSRs) [8].

However, these studies have not explored the 
potential mechanisms of the target genes they 
identified in the development of GC, and no rele-
vant experiments were performed to verify their 
conclusions based on their bioinformatics ana-
lyses. The advantage of this study lies in the com-
bination of weighted gene co-expression network 
analysis to identify the biologically significant 
genes that are related to clinical characteristics, 
and validation experiments were conducted to 
improve the accuracy and clinical applicability of 
the results obtained.

The purpose of this study is to identify the core 
genes associated with the pathogenesis of GC by 
integrating multiple GEO data sets and WGCNA 
algorithms. Finally, we focused on one core gene, 
CEMIP. We observed that the expression of 
CEMIP was negatively correlated with the infiltra-
tion of B cells and CD4 + T tumor cells and that it 
is an independent risk factor for the prognosis of 
patients with GC. Further, the validation experi-
ments we performed confirmed that CEMIP 

downregulation suppressed the proliferation and 
migration of GC cells and impaired the chemore-
sistance of GC cells to 5-fluorouracil (5-FU). 
Therefore, CEMIP may be a new prognostic bio-
marker and therapeutic target for GC.

Materials and methods

Flow chart

Figure 1 shows the workflow of this study.

Data sourcing and preprocessing

The GSE84433 and GSE26942 data sets in the 
GEO database were selected for subsequent ana-
lyses [9]. The data type of each group was set as 
‘expression profiling by array,’ and the species was 
‘Homo sapiens.’ The GSE84433 data set annotation 
platform was GPL6947, and it included 357 GC 
samples. The GSE26942 data set annotation plat-
form was GPL570, and it included 12 normal 
tissue samples and 205 GC samples. The two 
data sets underwent batch correction procedures 
[10]. Data on GC and normal tissue samples 
obtained from the TCGA database were down-
loaded to evaluate the influence of the hub genes 
on GC prognosis.

Figure 1. Workflow diagram.
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Identification of DEGs

Using the limma package [11] in R v4.0.0, the 
DEGs between the control and GC groups were 
identified. The threshold value was set to |log(fold 
change)| >2, p < 0.01 to identify the DEGs. 
According to the mRNA expression levels of the 
different samples, they were analyzed via hierarch-
ical cluster analysis using the pheatmap package 
in R.

Construction of the WGCNA network

To select the DEGs and construct the correspond-
ing WGCNA network, the outliers were removed 
and the remaining samples were used to construct 
a co-expression network under the premise of 
ensuring the reliability of the network structure. 
The pickSoftThreshold function of the WGCNA 
was used to identify the appropriate soft threshold 
(β) value to obtain a scale-free network. 
A hierarchical clustering tree was constructed 
based on the cluster analysis results. Gene modules 
were obtained via dynamic tree cutting. The depth 
segmentation parameter was set to 2, and the 
minimum size cutoff was set to 10. Highly similar 
modules were clustered together with a height cut-
off value of 0.25.

Identification of modules with clinical 
significance

Two parameters, including module characteristic 
gene (ME) and gene significance (GS), were used 
to distinguish the modules related to the clinical 
features of GC. The ME parameter was a major 
component of each module. Correlations between 
the ME and clinical features were determined 
using Pearson chi-squared tests, where we 
screened for highly relevant modules (p < 0.05). 
The GS parameter represented the expression of 
each gene and its degree of correlation with 
a clinical feature. The module member (MM) mea-
sured the correlation between each gene in the 
module and the ME of the module. By analyzing 
the relevance between the GS and MM, modules 
with significant clinical significance were further 
screened out.

Function and pathway enrichment analyses

A Gene Ontology (GO) function analysis and 
Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathway enrichment analysis were per-
formed to explore the potential molecular 
mechanisms these modules are involved in 
(p < 0.05).

Identification and verification of the hub 
genes in the key modules

Hub genes with high connectivity were identified 
using the cytoHubba plug-in of Cytoscape v3.7.0 
[12]. The genes in the network were arranged from 
high degree scores to low degree scores. The five 
nodes with the highest scores were chosen as the 
candidate hub genes.

We also conducted survival analysis using 
Kaplan-Meier Plotter (http://kmplot.com) to 
determine whether each hub gene was associated 
with prognosis [13]. GEPIA (http://gepia.can 
cerpku.cn/) is an online database designed to ana-
lyze gene expression in normal and cancerous 
tissues [14]. In addition, the differentially 
expressed hub genes between the different histo-
logical types of GC tissues and normal tissues 
were analyzed using the Oncomine database 
(https://www.oncomine.org/resource/login.html#) 
[15]. Differences in gene expression levels were 
considered statistically significant when the 
p-value was <0.05. The differentially expressed 
hub genes between GC tissues and normal tissues 
were analyzed using the Human Protein 
Atlas (HPA).

LinkedOmics database

The LinkedOmics database [16] contains multi- 
group and clinical data of 11,158 patients with 32 
cancer types. The co-expressed genes were statis-
tically analyzed using the Pearson correlation coef-
ficient, and volcano and heat maps were 
constructed.

TIMER database analysis

The TIMER database is an effective tool to infer 
the abundance of tumor-infiltrating immune cells 
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from the expression profiles of target genes [17]. 
The TIMER database contains 897 samples of 32 
cancer types from the TCGA database, thus the 
clinical characteristics of different immune cells in 
different types of cancer can be analyzed. The 
infiltration levels of six types of immune cells (B 
cells, macrophages, CD8 + T cells, CD4 + T cells, 
dendritic cells, and neutrophils) can be calculated 
using this tool. Using the ‘gene’ module, correla-
tions between hub gene expression and immune 
cell infiltration were analyzed using Spearman’s 
correlation. Furthermore, the ‘survival’ module 
was used to construct Kaplan-Meier diagrams 
related to the hub genes and show the relationship 
between immune cell infiltration and hub gene 
expression.

Flow cytometry

Cells were washed with phosphate-buffered saline 
(PBS) after being digested with trypsin, then an 
Annexin V-FITC Apoptosis Detection Kit 
(Beyotime) was used to detect cell apoptosis, 
according to the manufacturer’s instructions. 
Apoptotic cells were dual-stained with annexin 
V-fluorescein isothiocyanate (FITC) and propi-
dium iodide (PI) using an Annexin V/FITC Kit 
(Thermo Scientific, Shanghai, China). A BDTM 
LSR II flow cytometer (BD Biosciences, San Jose, 
CA, USA) was used to sort the cells according to 
their apoptosis status and CellQuest software (BD 
Biosciences) was used for data analysis.

Wound healing and Transwell assays

For the wound-healing assay, cells were seeded on 
six-well plates and cultured until 95% confluence. 
A sterile 200-μL plastic pipette tip was used to 
scratch the cell monolayer gently. The wound 
was then photographed. The wound was photo-
graphed again after 24 h. For the Transwell assays, 
2 × 104 cells suspended in serum-free medium 
were seeded in the upper chamber membrane, 
which was or was not coated with Matrigel (BD 
Biosciences) for the Transwell migration and inva-
sion assays, respectively. The lower chamber was 
filled with 500 μL of a culture medium containing 
10% fetal bovine serum. After 24 h of incubation, 
the underside of the membrane was fixed for 

30 minutes and stained with 0.1% crystal violet. 
A cotton swab was used to wipe the inner side of 
the membrane. The number of cells that migrated 
were then quantified under a microscope.

Western blot analysis

Cancer cells were collected and lysed in NP-40 
lysis buffer for 30 min at 4°C after washing twice 
with cold PBS. A bicinchoninic acid assay kit 
(Thermo) was used to measure the total protein 
concentration. Protein extracts were separated via 
electrophoresis in pre-made 8–12% sodium dode-
cyl sulfate-polyacrylamide gels containing tris-
(hydroxymethyl)aminomethane hydrochloride 
and then transferred to a polyvinylidene difluoride 
membrane. The membrane was further incubated 
with the indicated antibodies and detected using 
the chemiluminescence method.

Results

From the analyses we performed, 418 DEGs were 
identified using the GSE84433 and GSE26942 data 
sets, of which 53 were upregulated and 365 were 
downregulated. WGCNA was then used to identify 
the mRNA modules related to the clinical features 
of GC and six gene modules were obtained. The 
blue module was positively correlated with adju-
vant chemotherapy, tumor type, tumor location, 
and overall survival, and the genes in this module 
were mainly involved in the biological processes of 
cell adhesion, multicellular organism development, 
cellular differentiation, among others. The degree 
of each node in the blue module was calculated 
using Cytoscape software. The five nodes with the 
highest scores were selected as the candidate genes: 
CST1, CEMIP, COL8A1, PMEPA1, and MSLN. 
The high expression level of these five hub genes 
was associated with poor prognosis in GC. The 
prognostic value of CEMIP was further validated 
using the TCGA database. The overall survival of 
patients in the high CEMIP expression group was 
significantly lower than those in the low CEMIP 
expression group. CEMIP expression was also 
negatively correlated with B cell and CD4 + T 
cell infiltration. Further, our experiments con-
firmed that CEMIP downregulation suppressed 
the proliferation and migration of GC cells and 
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impaired the chemoresistance of GC cells to 
5-fluorouracil. Hence, CEMIP may become a new 
prognostic biomarker and therapeutic target 
for GC.

Database analyses showed that 418 DEGs were 
identified between the normal group and the GC 
group

The GSE84433 and GSE26942 data sets included 
12 normal controls, 574 GC samples, and 25,077 
genes. Differences in the mRNA expression 
levels between the GC and control groups were 
then obtained. It was found that there were 418 
DEGs in the GC samples when compared with 
the control samples, 53 of which were upregu-
lated and 365 were downregulated. Heatmaps 
and volcano plots were constructed to present 
these DEGs (Figure 2).

Five hub genes were identified based on WGCNA

The flashClust package in R was used to perform 
a hierarchical clustering of the selected genes, as 
shown in Figure 3(a). A total of 11 outlier samples 
were removed, and the remaining 558 samples were 
used to construct a co-expression network. β-values 
from 1 to 20 were used to calculate the indepen-
dence and average connectivity between samples. 

When β = 4, the independence was greater than 
0.85, and the corresponding average connectivity 
was close to 0, indicating that the network satisfied 
the requirements of scale-free network distribution. 
The adjacent gene modules were identified and 
combined using the dynamic tree cutting method. 
Finally, we obtained six gene modules. The gray 
module included genes that were not co-expressed 
with other genes (Figure 3(b)). By correlating the 
gene modules with the clinical features, we selected 
the module that was significantly associated with 
certain clinical features (Figure 3(c)). The blue mod-
ule was positively correlated with adjuvant che-
motherapy, tumor type, tumor location, and 
overall survival (p = 5e-04, p = 1e-04, p = 2e-09, 
and p = 4e-04, respectively). Further analysis 
showed that there was a significant correlation 
between the GS and MM in the blue module 
(cor = 0.45, p = 0.00013; cor = 0.48, p = 4e-05; 
cor = 0.66, p = 1.2e-09; cor = 0.55, p = 1.4e-06). 
Thus, the blue module may be associated with GC 
(Figure 3(d-g)). GO enrichment analysis was per-
formed to determine the biological significance of 
the genes in the blue module. The results showed 
that the genes in this module mainly involved the 
biological processes of cell adhesion, multicellular 
organism development, cellular differentiation, 
among others (Figure 4). The degree of each node 
in the blue module was calculated using Cytoscape 

Figure 2. Differentially expressed mRNAs in the first 50 genes identified in the GEO database. (a) Volcano map of the mRNA 
expression values between gastric cancer samples and adjacent normal samples (red represents upregulated genes, green represents 
downregulated genes). (b) Hierarchical clustering heat map of differentially expressed mRNAs.
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software. The five nodes with the highest scores 
were selected as the candidate genes: CST1, 
CEMIP, COL8A1, PMEPA1, and MSLN. Figure 5 
shows the blue module network.

Expression and clinical significance of CST1, 
CEMIP, COL8A1, PMEPA1, and MSLN in GC

Survival analysis showed that the high expression 
of the obtained core genes CST1, CEMIP, 
COL8A1, PMEPA1, and MSLN was associated 
with poor prognosis (p < 0.05; Figure 6(a)). The 
expression of these genes in GC tissues was sig-
nificantly higher than in normal tissues (p < 0.05; 
Figure 6(b)). By setting the p-value to < 0.01, the 
|log(fold change)| to > 2, and the gene rank to 
10%, the expression of each of these five hub 
genes in different types of cancer were analyzed. 
The results showed that CST1, CEMIP, COL8A1, 

PMEPA1, and MSLN were upregulated in most 
cancers and were downregulated in a few 
(Figure 6(c)). According to the HPA database, 
the five hub genes were upregulated in GC tis-
sues (Figure 6(d)). The expression of CEMIP and 
COL8A1 in different stages of GC was also found 
to be significantly different (Figure 6(e)).

The prognosis prediction value of CEMIP was 
verified using the TCGA database

At present, there are only a few studies regarding the 
expression and relationship of CEMIP in GC, so we 
analyzed this gene in depth. We downloaded the 
gene expression data and related clinical informa-
tion of the TCGA-STAD cohort. We found that the 
expression of CEMIP in GC tissues was significantly 
higher than in normal tissues (Figure 7(a)). Taking 

Figure 3. WGCNA analysis. (a) Sample hierarchical clustering map. (b) Gene tree (top) and gene modules with different colors 
(bottom). (c) Heat map showing correlations between the modules and clinical features of GC. The numbers represent the 
correlations, with red showing positive correlations and green showing negative correlations. (d) Scatter plot of the correlations 
between the blue module genes and the tumor location. (e) Scatter plot of the correlations between the blue module genes and 
adjuvant chemotherapy. (f) Scatter plot of the correlations between the blue module genes and overall survival. (g) Scatter plot of 
the correlations between the blue module genes and tumor type.
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Figure 4. Enrichment analysis of the blue module genes. The length of the bar represents the enrichment score. A higher score 
means that more genes are enriched.

Figure 5. Gene network of the blue module genes. The blue nodes represent the genes in the blue module and the gray lines 
represent the co-expression relationships between these genes. The larger the blue node, the higher its degree score. Green 
represents the hub genes, and blue represents the non-hub genes.
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the median CEMIP expression as the threshold, half 
of the samples with the higher CEMIP expression 
was considered as the high-expression group, and 
the other half was considered the low-expression 
group. Survival analysis showed that the overall 
survival of the high-expression group was signifi-
cantly lower than that of the low-expression group 
(Figure 7(b)). Multivariate Cox analysis suggested 
that age (HR = 1.04, p < 0.05) and high CEMIP 
expression (HR = 1.03, p < 0.05) were independent 
risk factors for prognosis in patients with GC 
(Figure 7(c)).

Molecular mechanisms of CEMIP in GC

To investigate the potential biological roles and 
molecular mechanisms of CEMIP in GC, we 

analyzed the genes co-expressed with CEMIP in 
GC using LinkedOmics. A total of 8,562 genes 
(dark red dots in Figure 8(a)) were significantly 
positively correlated with CEMIP, while 11,664 
genes (dark green dots in Figure 8(a)) were sig-
nificantly negatively correlated with CEMIP. We 
then selected the top 50 genes that were posi-
tively and negatively associated with CEMIP 
(Figure 8(b and c), respectively). GO enrichment 
analysis showed that the genes positively corre-
lated with CEMIP were mainly involved in the 
collagen catabolic process and collagen fibril 
organization (Figure 8(d)). The genes negatively 
associated with CEMIP were involved in the 
regulation of neurotransmitter transport, 
response to antibiotics, and other life processes 
(Figure 8(e)).

Figure 6. Survival analysis and differential expression of the hub genes. (a) Survival analysis of the hub genes in gastric cancer. (b) 
Analysis of the differential expression of the hub genes using the GEPIA database. The box diagram shows the mRNA expression 
values of the hub genes in gastric cancer tissues (red) and normal tissues (gray). *p < 0.05. (c) Analysis of the differential expression 
of the hub genes in different tumors using the Oncomine database. (d) Protein expression of the hub genes between normal and 
tumor tissues. (e) Expression of CEMIP and COL8A1 in different stages of gastric cancer from the HPA database.
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Correlation between CEMIP expression and the 
immune microenvironment

To explore the potential relationship between CEMIP 
and the immune microenvironment in GC, we eval-
uated the relationship between CEMIP expression and 
immune cell invasion in the TCGA-STAD cohort 
using the TIMER database. CEMIP expression was 
negatively correlated with B cell and CD4 + T cell 
infiltration in patients with stomach adenocarcinoma 
(STAD) (r = −0.2042, p = 7.72e-05 and r = −0.13, 
p = 1.31e-0, respectively; Figure 9(a)). In addition, 
high macrophage infiltration in patients with STAD 
was significantly associated with poor prognosis 
(p = 0.0042; Figure 9(b)). The copy number variation 

of CEMIP was also significantly correlated with the 
infiltration of CD4 + T cells, B cells, CD8 + T cells, 
neutrophils, macrophages, and dendritic cells 
(Figure 9(c)). In addition to being upregulated in 
STAD, CEMIP expression was also upregulated in 
a variety of cancers, including lung adenocarcinoma, 
colon adenocarcinoma, and head and neck squamous 
cell carcinoma (Figure 9(d)).

Suppression of CEMIP expression inhibited the 
migration and invasion capacity of GC cells and 
chemoresistance to 5-FU

The results of the bioinformatics analyses were 
further confirmed in in vitro experiments. The 

Figure 7. (a) Validation of the differential expression of the hub genes in gastric cancer and para-cancerous normal samples based 
on the TCGA database. (b) Validation of the effect of the hub genes on prognosis based on the TCGA database. (c) Multivariate 
analysis showing that age and CEMIP expression were independent risk factors for the prognosis of GC.
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baseline expression of CEMIP was evaluated in 
four GC cell lines: BGC823, SGC7901, N87, and 
MKN45 (Figure 10(a)). Western blot analysis 
results showed that the baseline expression of 
CEMIP was the highest in the N87 cell line, 
which was used for subsequent experiments.

To investigate the cellular function of CEMIP, 
two shRNAs were used to knock down CEMIP 
expression, and their effect was confirmed via 
western blot analysis (Figure 10(b)). The results 
showed that CEMIP expression was knocked 
down successfully. To investigate the function of 
CEMIP in terms of cell migration and invasion, 
Transwell experiments were performed. After the 
knockdown of CEMIP, the migration and inva-
sion capacity of GC cells was suppressed 
(Figure 10(c)). These results were further con-
firmed through a wound-healing assay 
(Figure 10(d)). After knocking down CEMIP 
expression, the migration of GC cells was 
impaired significantly. The underlying mechan-
ism for this was confirmed via western blot ana-
lysis. Epithelial-mesenchymal transition (EMT) is 
an important phenomenon observed in cancer 
progression and is associated with the metastatic 
transformation of tumor cells. EMT-associated 

markers, such as Vimentin and Snail, were upre-
gulated after CEMIP was knocked down 
(Figure 10(f)), suggesting that CEMIP may pro-
mote GC cell migration by promoting EMT in GC 
cells.

The molecule 5-FU is currently used as 
a chemotherapeutic agent in several cancers, 
including GC. Thus, we studied the role of 
CEMIP on the acquisition of chemoresistance to 
5-FU. After the downregulation of CEMIP, the 
number of apoptosis of cancer cells increased, 
suggesting that the overexpression of CEMIP pro-
moted the chemoresistance of GC cells to 5-FU 
(Figure 10(e)).

Discussion

GC is a common malignancy that has caused consider-
able morbidity and mortality. In recent years, the use of 
PD-1 and PD-L1 checkpoint inhibitors have become 
the preferred immunotherapeutic strategy for mela-
noma [18], glioblastoma multiforme [19], and hepato-
cellular carcinoma [20]. However, due to the highly 
heterogeneous nature of GC, the efficacy of immu-
notherapy drugs and the responsiveness of patients to 

Figure 8. Co-expressed genes in STAD as determined from the LinkedOmics database. (a) CEMIP and the highly relevant genes 
identified from the Pearson’s chi-squared tests obtained from STAD samples. (b) Heat maps showing the top 50 genes in STAD that 
were positively associated with CEMIP. (c) Heat maps showing the top 50 genes in STAD that were negatively associated with CEMIP. 
(d) GO enrichment analysis results showing the top 50 genes that were positively correlated with CEMIP. (e) GO enrichment analysis 
results showing the top 50 genes that were negatively associated with CEMIP.

BIOENGINEERED 4675



these novel kinds of treatments vary considerably [21]. 
Therefore, it is of great importance to reveal the poten-
tial molecular mechanisms governing the initiation and 
development of GC, as well as to discover novel prog-
nostic markers and potential therapeutic targets to 
improve the survival outcomes of patients with GC.

In this study, WGCNA was used to comprehen-
sively analyze the screened DEGs in GC. The blue 
module genes were significantly positively corre-
lated with adjuvant chemotherapy, tumor type, 
tumor location, and overall survival. This module 

mainly involved key biological processes including 
cell adhesion, multicellular organism development, 
glial cell differentiation, among others.

The degree of each node in the blue module was 
calculated and the five nodes with the highest scores 
were selected as the candidate genes. Five hub genes 
(CST1, CEMIP, COL8A1, PMEPA1, and MSLN) were 
identified. Cystatin 1 (CST1) is a member of the cystatin 
superfamily and functions by inhibiting the proteolytic 
activity of cysteine protease [22]. CST1 was found to be 
highly expressed in GC. The knockdown of CST1 

Figure 9. Correlations between CEMIP expression and different immune cells. (a) Relationships between CEMIP expression and the 
presence of six immune cells (B cells, CD4 + T cells, CD8 + T cells, macrophages, neutrophils, and dendritic cells) in STAD. (b) Kaplan- 
Meier curves related to the six immune cells in the STAD cohort. (c) CEMIP copy number analysis showing that it affects the levels of 
B cells, CD8 + T cells, macrophages, and dendritic cells in STAD. * p < 0.05, ** p < 0.01, and *** p < 0.001. (d) Expression of CEMIP 
across several cancers. * p < 0.05, ** p < 0.01, and *** p < 0.001.
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Figure 10. Biological behavior of CEMIP in gastric cancer in vitro. (a) Baseline expression of CEMIP in four kinds of cancer cells. (b) 
Two shRNAs that target CEMIP were used to knock down CEMIP expression, and its effect was confirmed via western blot analysis. (c, 
d) The effect of CEMIP on cell migration and invasion was studied using Transwell and wound healing assays, respectively. (e) The 
effect of CEMIP on chemoresistance to 5-FU. (f) EMT-associated markers, such as Vimentin and Snail, were upregulated after knocking 
down the expression of CEMIP.
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reduced the proliferation of GC cells and increased the 
proteolytic activity of cathepsin. Therefore, CST1 can 
be used as a tumor marker for GC [23–26]. The protein 
HOXC10 directly binds to the promoter region of CST1 
to promote the proliferation and migration of GC cells 
[27]. The gene COL8A1 is highly expressed in GC and 
is associated with shorter overall survival. Collagen, 
type VIII, alpha 1 (COL8A1) participates in the malig-
nant biological behavior of GC by promoting the pro-
liferation of GC cells and inhibiting their apoptosis [28]. 
The transmembrane prostate androgen-inducible pro-
tein 1 (PMEPA1) is a single-pass transmembrane pro-
tein that is functionally involved in the TGF-β signaling 
pathway. PMEPA1 expression in the malignant tissues 
of GC has been observed to be significantly upregulated 
[29]. Mesothelin (MSLN) can be targeted by chimeric 
antigen receptor (CAR) T cells, and anti-MSLN CAR 
T cells have been used in the treatment of GC [30].

Cell migration-inducing and hyaluronan- 
binding protein (CEMIP) is a Wnt-related pro-
tein involved in memory and synapse formation, 
as well as in cancer and inflammatory processes. 
There are only a few studies on the role of 
CEMIP in GC [31], although it has already 
been demonstrated that CEMIP may promote 
the metastasis of GC cells by activating related 
signaling pathways [32,33]. However, these pre-
vious studies usually have limitations due to 
their small sample sizes. Here, we used the 
TCGA-STAD cohort to confirm the high expres-
sion of CEMIP in GC. The mean overall survival 
of patients in the high-expression group was 
significantly lower than those in the low- 
expression group. Previously, CEMIP was also 
found to participate in the degradation of hya-
luronic acid in rheumatoid arthritis [34]. In 
idiopathic pulmonary fibrosis, CEMIP silencing 
reduced the production of collagen, thereby 
reducing the ability of lung fibroblasts to prolif-
erate and migrate [35]. In this study, an analysis 
of the genes co-expressed with CEMIP showed 
that the genes that were significantly positively 
related to CEMIP were mainly involved in bio-
logical processes such as the collagen catabolic 
process and collagen fibril organization. It was 
suggested that CEMIP may interact with these 
co-expressed genes and participate in the malig-
nant biological behavior of GC cells by affecting 
the production of collagen.

Helicobacter pylori infection is thought to be the 
main cause of chronic gastritis, and the risk of GC in 
patients infected with H. pylori is about 1–3% [36,37]. 
The tumor microenvironment also plays an impor-
tant role in cancer and inflammation. To the best of 
our knowledge, this was the first time that the rela-
tionship between CEMIP and immune cell infiltra-
tion was explored. The results showed that the 
expression of CEMIP was negatively correlated with 
the infiltration of B cells and CD4 + T cells. To 
further investigate the effect of CEMIP expression 
on the development of GC, we carried out several 
confirmatory in vitro experiments, and the results 
confirmed that the downregulation of CEMIP sup-
presses the proliferation and migration of GC cells 
and impairs the chemoresistance of GC cells to 5-FU.

Despite these results, our study still has some 
limitations. First, the limited number of gastric 
cancer samples in the cohorts we chose may lead 
to selection bias. Second, our method of identify-
ing differentially expressed genes is mainly based 
on statistical analyses, therefore, other genes with 
biological significance may have been missed. To 
overcome the limitations of a retrospective design 
with a relatively small sample size, we suggest that 
a large-scale, multi-center, prospective study be 
performed to verify our results. Finally, more in- 
depth investigations regarding the mechanism of 
CEMIP function as well as animal studies are 
required lay a stronger theoretical foundation 
for the utility of this gene’s future clinical 
applications.

Conclusion

In conclusion, WGCNA was used to identify 
DEGs in GC, and CST1, CEMIP, COL8A1, 
PMEPA1, and MSLN were identified as the hub 
genes. These genes can be used as novel prognostic 
markers or therapeutic targets in GC. It was 
observed that CEMIP plays a significant role in 
the development of GC and may potentially be 
used to guide the individualized treatment of 
patients with GC.

Highlights

1. Six modules related to clinical characteristics of GC were 
determined by WGCNA.
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2.Five hub genes, including CST1, CEMIP, COL8A1, 
PMEPA1 and MSLN were identified.
3.CEMIP down-regulation inhibits the biological behavior of 
cancer cells.
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