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It remains an important challenge to apply machine learning in material discovery with limited-scale
datasets available, in particular for the energetic materials. Motivated by the challenge, we developed
a Property-oriented Adaptive Design Framework (PADF) to quickly design new energetic compounds
with desired properties. The PADF consists of a search space, machine learning model, optimization
algorithm and an evaluator based on quantum mechanical calculations. The effectiveness and generality
of the PADF were assessed by two case studies on the heat of formation and heat of explosion as the
target properties. 88 compounds were selected as the initial training dataset from the search space
containing 84 083 compounds generated. SVR.lin/Trade-off coupled with E-state + SOB and KRR/KG
coupled with CDS + E-state + SOB were determined to be the best combination pairs for the heat of
formation and the heat of explosion, respectively. Most of the ten compounds selected from the first ten

iterations exhibit better properties than the optimal sample in the initial dataset. Besides, the heat of
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with high detonation performance. In particular, a new compound selected at the 3rd iteration exhibits
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1 Introduction

The discovery of novel materials with desired properties can
bring tremendous improvement in science and technology.
However, the material exploration has historically been driven
by the trial-and-error process, imposing high requirements for
both resources and equipment. With rapid advances in
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T Electronic supplementary information (ESI) available: Table S1: the Chemical
structures and SMILES (simplified molecular input line entry specification) of
88 parent rings. Table S2: the chemical structures and SMILES of 13
substituents. Table S3: the chemical structures and descriptor matrix of 88
initial compounds. Table S4: comparison of prediction accuracies for different
combinations of five types of descriptors and six regression algorithms for the
heat of explosion as the target property. Fig. S1: the relationship between the
average values predicted by KRR coupled with E-state + SOB + CDS for 20
repeated tests and calculated values derived from the QM method and
empirical equation for the heat of explosion. Fig. S2: comparison of
performance for the 10 regressor/optimizer combination pairs on different
initial dataset randomly selected from the 88 samples labeled for the heat of
explosion, derived from 20 repeated tests. Fig. S3: the calculated heat of
explosion derived from the QM calculation and empirical equation of 50
compounds selected from the first 50 iterations by means of the KRR/KG
combination pair. See DOI: 10.1039/d1ra03715¢
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computing power and mathematical algorithms, artificial
intelligence (AI) has become a powerful tool in guiding experi-
mental research studies." As an important subfield of AI,
machine learning (ML) techniques could capture important
information and map relationships underlying complicated
data so that they show fascinating promise in diverse fields such
as computer vision, medicine and chemistry.>® In material
fields, ML techniques are also utilized to probe relationships
between structures/compositions and properties.*® It is known
that ML is a data-driven method, and the number of training
data is a crucial factor for the robustness of the constructed
inference model. However, compared with medicine and
computer vision, labeled datasets in the material field are
generally limited, in particular for energetic materials due to
harsh and hazardous experimental conditions.®

As is known, the energetic materials have played a vital role
in the military and civilian fields.”® With ever-growing needs for
industry and military, research on the energetic materials has
entered from the traditional compound stage into a new stage
of high energy density materials (HEDMs). HEDMs composed
of nitrogen-rich skeletons and energetic substituents exhibit
promising potential for explosives.'” However, purely experi-
mental investigations possess long cycle, high costs and risk,
thus limiting the development of HEDMs. In order to assist
experiments, quantum mechanics (QM) methods have been
applied to obtain structural and energy-related properties as
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well as reaction mechanisms over decades."** In spite of high
accuracy of the QM calculations, it is computationally expensive
to explore the enormous space of unknown energetic
compounds. Thus, some ML-based works were utilized to
quickly predict some properties of energetic materials, such as
decomposition temperature, melting point,’® autoignition
temperature,'® sensitivity and density.””*®* However, as
mentioned above, the labeled data of the energetic compounds
are very limited. Consequently, the applications of ML in the
energetic materials generally suffer from prediction uncer-
tainties when extrapolated to unknown chemical space. In
addition, most of the previous ML-related works focused on the
property prediction based on the structure, lacking the
property-oriented structure design with higher efficiency.
Recently, the Few-Shot Learning (FSL) paradigm was proposed
to enable ML models to generalize with small-scale samples
from the aspects of data, model and algorithm.*® Active learning
is a typical framework of FSL, which utilizes an adaptive design
strategy to help relieve the burden of obtaining large-scale data
by means of machine learning prediction results coupled with
an optimization algorithm, which can recommend the high-
performing compound for the next test. Practically, the active
learning paradigm has been successfully applied to some
material fields like high entropy alloys, energy storage materials
and piezoelectrics, which were validated by experimental
synthesis.>**

Motivated by the issue, we, in this work, developed a prop-
erty-oriented adaptive design framework based on a small
amount of datasets labeled, which can rapidly screen potential
energetic compounds with desired properties from a vast
chemical space unexplored. We name it Property-oriented
Adaptive Design Framework (PADF). The PADF consists of
a search space, a ML-based regression model (also called
a regressor), an optimization function (also called an optimizer)
and an evaluation system based on quantum mechanical
calculations. Specifically, the search space unlabeled is gener-
ated by combining energetic parent rings and energetic
substituents. The ML-based regression model is constructed
based on a small-amount of labeled datasets to predict the
unexplored samples in the search space. Combining the
predictive value from the ML model and the uncertainty derived
from the optimization function, a highly informative sample is
screened from the unknown space and added into the training
set to decrease uncertainty in the ML-based regression. Finally,
the QM-based calculation is applied to validate the energetic
properties. After iterative cycles, an efficient self-adaptive design
framework could be constructed, through which the predictive
ability of the ML model could be improved and the high-
performing candidate could be quickly searched from the
huge unknown space. Herein, we mainly focus on the two
important energetic properties: heat of formation (HOF) and
heat of explosion (Q). In fact, HOF often serves as a general
target in the material domains, which is closely associated with
the stability and the energy of materials, like perovskite solar
cells,” ionic liquids,* and especially energetic materials.”® The
heat of explosion is a specific and important property for the
explosives. We first construct the PADF for the heat of
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formation. Then, we extend the PADF to the heat of explosion in
order to further assess its performance on one side. On the
other hand, we also hope to evaluate which property as the
desired target is more beneficial to search the explosive with
high performance.

2 Computational details

Our proposed PADF is constructed according to the flow chart
in Fig. 1. The search space unexplored is generated by
combining 88 parent rings and 13 energetic substituents, from
which a small-scale initial dataset is selected to be labeled in
order to train the ML-based regressor. In each iteration,
a candidate compound will be selected from the search space in
terms of the combination pair of the regressor and the opti-
mizer. Then it is added into the initial training set after verifying
its property by QM calculations. Accordingly, a feedback loop
can be constructed to iteratively recommend candidates and
improve the predictive capacity of the regressor.

2.1 Search space

The implementation of the PADF begins with a search space
containing vast potential energetic compounds unexplored.
Due to the lack of an existing energetic dataset, we constructed
it by combining the 88 parent rings and the 13 energetic
substituents collected from the literature involving energetic
materials. Tables S1 and S27 show the chemical structures of
the 88 parent rings and the 13 substituents. Substitution sites of
each parent ring were identified by the RDKit library (RDKit:
open-source cheminformatics software. https://www.rdkit.org).
All possible combinations of backbones and energetic substit-
uents were enumerated by self-compiled python scripts. Herein,
only the mono-substitutions and di-substitutions were chosen
to test the PADF, considering the difficulty of the synthesis.
Checking structures and removing duplications, we finally got
a search space composed of 84 083 samples, including 2944
mono-substituted compounds and 81139 di-substituted
compounds.

2.2 Generation of an initial dataset labeled

A small amount of dataset was selected from the search space,
which served as the initial dataset labeled. To ensure that each
substituent and parent ring makes an equal contribution to the
initial training set, several rules were applied during the selec-
tion process: (1) each parent ring appears one time, leading to at
most 88 samples; (2) the number of the mono-substituted and
di-substituted compounds is determined to be 3 and 85,
respectively, according to the ratio of mono-substituted
compounds to di-substituted compounds in the search space
(2944: 81 139); (3) based on the former two rules, the total
number of each substituent appearing in the initial dataset is
determined to be twelve or thirteen to ensure the representa-
tivity of each substituent. Consequently, the initial dataset was
composed of 88 compounds. Their 3D structures were obtained
using Simplified Molecular Input Line Entry System (SMILES)
strings with the RDKit library.
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Fig.1 The flowchart of the Property-oriented Adaptive Design Framework (PADF), which consists of a search space, a ML-based regressor, an
optimizer, and an evaluation system based on quantum mechanical calculations.

2.3 Feature descriptors

In the work, four types of descriptors were considered to char-
acterize the molecular structure.

(1) Sum over bonds (SOB). It is generated by enumerating
all of the bond types in the data set and then counting the
number of each bond in every molecule.>® There are a total of 22
bond types in 84 083 compounds: N=N, N=0, C:N, C:0, C:C,
C-0, C-N, C-H, C-C, C/C, N:0, N:N, C/O, C/N, N/N, 0-0, C=0,
C=N, H-N, N-N, N-O, C=C (‘~’ for single bond, ‘=" for double
bond, ¢/’ for directional bond and ‘:’ for aromatic bond).

(2) Extended connectivity fingerprint (ECFP). It is currently
one of the most popular graph-based fingerprints, representing
local connectivity over groups of atoms. ECFP usually only
characterizes the presence or absence of the unique groups
through a binary representation and has user-controlled
length.”” In this work, 2048-bit ECFPs are used.

(3) E-state fingerprint (E-state). It is based on electro-
topological state indices, which encodes information involving
functional groups, graph topology, and Kier-Hall electronega-
tivity for each atom. E-state has been successfully applied to
predict the drug-target bioactivity and the ecotoxicity of phar-
maceuticals.”® Different from traditional fingerprints, the elec-
tronic fingerprints have fixed-length and contain a vector with
counts of 79 atom types. The E-state fingerprint is shorter in
length, which is more suitable for a small amount of labeled
data to avoid overfitting. Our 84 083 compounds only involve
thirteen atom types, so we threw out the vectors that are always
zero and truncated the descriptors to a length of thirteen.

(4) Custom descriptor set (CDS). It contains fifteen kinds of
features involving the types of N and O atoms and the
elementary composition. N and O atoms are categorized in
terms of how they incorporate into a molecule. For the 84 083
compounds generated, there are seven types of N and three
types of O, such as C-NO,, N-NO,, O-N=0, O-NO,, C-N=N,
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C=N-0, C-NH,, N-O-C, N=0 and C=0. The number of each
type is counted. In addition to the ten descriptors, CDS also
includes oxygen balance, counts of N, C and H, and the ratio
between nitrogen and carbon atoms.

Table S37 representatively shows the data matrix for SOB, E-
state and CDS descriptors of the initial 88 samples, and source
codes calculating all the four descriptors under study are
available at https://github.com/Alan-Xie/PADF/blob/main/Code/
descriptors.py.

2.4 Machine learning based regression models

Since our proposed PADF is mainly based on the 88 compounds
labeled, traditional machine learning models are more suitable
than deep learning. Thus, we tested six traditional machine
learning algorithms, which exhibited good performance in
learning the structure-property relationship for the small-scale
dataset: a linear regression model (Lin),>® a least absolute
shrinkage and selection operator regression model (LASSO),*
a kernel ridge regression model (KRR),*' a support vector
regression model with a linear kernel (SVR.lin) and with a radial
basis kernel (SVR.rbf),** and a Gaussian process regression
model (GPR).*?

Lin and LASSO are linear regression methods while the other
four models are nonlinear algorithms. Lin aims at predicting
properties by linear combination of two or more variables, and
the training process on the linear regression model does not
require complex calculations. Compared to Lin, the LASSO
regression involves a penalty term, which enables the regression
model to be trained on limited-scale datasets without severe
overfitting. The feature vector in KRR is projected onto the
solution space, thus, coefficients in non-linear relationship are
easier to obtain. SVR is a version of a support vector machine for
regression, which addresses non-linear problems by imple-
mentation of kernel trick. It maps the original feature space of
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the given data into a hyperplane in a high-dimensional space,
where the optimal hyperplane could minimize the total devia-
tion of all the sample points. According to the types of kernel
trick, SVR can be categorized as SVR.lin (linear kernel) and
SVR.rbf (radial basis kernel), which are both used in this work.
GPR is a Bayesian-based approach, which adopts a Gaussian
distribution of functions to match the observed variables.

The machine learning models mentioned above were
implemented with Python scripts by utilizing the open-source
scikit-learn package.** For each machine learning model, the
metrics were averaged over 20 training and test sets obtained
using shuffle split with 80/20 splitting. The model hyper-
parameters were optimized using the grid search method with
nested 5-fold cross validation. Mean absolute error (MAE), root
mean square error (RMSE), and coefficient of determination
(R?) values were calculated to evaluate the performance of these
machine learning models:

1 n N
MAE = =3 I, —, 1)
j=1
RMSE = (2)
R=1-"1 (3)

In the equations above, n is the number of samples, J; is the
real value, y; is the predicted value and ); is the mean value.

2.5 Optimizers

To recommend candidates from the unexplored space, the
PADF needs to consider the ML-based prediction values and
uncertainties using the optimization functions. Herein, we
considered five optimizers and tested their performance in
order to select the most efficient one:

(1) Exploitation. It selects the candidate with the maximum
predicted value from the unknown search space.

(2) Exploration. It selects the sample with the largest vari-
ance in the model prediction. Because the initial data set only
contains 88 compounds labeled, this work uses the “bootstrap”
method sampling 1000 times to calculate the average (u),
standard deviation (¢) and variance (¢®) of the target property
for each selected compound. Eqn (4) shows the calculation for
the variance of each compound:

1000
2 1

o= WZ(%*M)Z (4)

where y; is the predicted value of each bootstrap sample and u is

the mean value of predicted values over the 1000 bootstraps.
(3) Trade-off between exploitation and exploration (trade-

off). It balances the trade-off between exploitation and
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Table 1 Heats of formation for C, H, O and N atoms, derived from the

CBS-4M calculation (H;atoms.zgs)) and the experimental determination
(AH[ '

atoms.298))

Atom H(oamms_ZQS) [au] (Hartree per particle)  AH g 205) (K] mol )

H —0.500991 218.2
C —37.786156 717.2
N —54.522462 473.1
(6] —74.991202 249.5

exploration to maximize the “expected improvement” (EI). EI
can be calculated using both the mean value and variance, as
shown by eqn (5) and (6):

El = olp(z) + &(2)] (5)
z=(n— uHlo (6)

where u* is the best-so-far property in the training dataset, and
¢(2z) and @(z) are the standard density and cumulative distri-
bution functions, respectively.®

(4) Knowledge gradient algorithm (KG). It is similar to the
trade-off between exploitation and exploration, where the u* is
replaced by maximum over all the search space.

(5) Random selection. It randomly selects the candidate
from the unknown search space without any guidance.

2.6 Calculation of two target properties

(1) Heat of formation. The heat of formation (k] mol™")
could be computed according to the atomization energy
method, which breaks down molecules into atoms and uses
known isolated atoms to solve the heat of formation and CBS-
4M electronic enthalpies,**® as expressed by eqn (7):

AH, £(298) — H (molecule.298) — Z H (atoms,298) + Z AH, f(atoms,298) (7)

Himolecule,208) 18 the calculated value of the heat of formation of

molecules at 298 K. ZHzammsvz%) is the sum of calculated heat

of formation over all atoms at 298 K and ) AH;(

atoms,298) is the
sum of the experimental values of standard heat of formation
over all atoms at 298 K. To use the atomization energy method
to calculate the heat of formation for the energetic compounds,
it is necessary to acquire the data of the standard heat of
formation of each atom at 298 K. Table 1 lists the heat of
formation values of the C, H, O and N atoms, derived from CBS-
4M methods and the experiment.*

(2) Heat of explosion. The heat of explosion refers to the
total amount of energy released in the explosive reaction and is
of great significance for validating the efficiency of HEDMs. The
heat of explosion (cal g ") of the energetic compound C,H,0.N,
can be obtained by the calculation methods listed in Table 2.

2.7 Calculation of three properties associated with
detonation performance

In order to estimate the detonation performance of the selected
compound, we also calculated oxygen balance (OB), detonation
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Table 2 Calculation methods of heat of explosion (Q), the mole of detonation gases per gram explosive (N) and the average molecular weight of

the gaseous products (M) for the energetic compound C,H,ON*

Explosive compositions

P t =2 Jré é<’<2 +é - <2 +é
arameter c=1da 5 5 =c a 5 C a 5
1073 28.9b + 94.05a + 0.239AH b 57.8¢ +0.239AH.
Qx +280%a+ 298K 28.95 + 94.05( < — 2 + 0.239A Haos 278+ 0.2PA sk
M 274 M
M
N 57.8¢ + 0.239AH293K b+2c+2d b+d
M aM M
M aM 56d + 88¢ — 8b 2b + 28 + 32¢
b+2c+2d b+2c+2d bt+d

% M is the molecular mass (g mol™*) of C,H,O.Ny.

velocity (D) and detonation pressure (P). OB refers to the
amount of oxidizer inherent in the energetic materials required
for the decomposition process. For an explosive reaction, the
energy density of the material would be increased when it
approaches the oxygen balance (i.e. OB is zero). The OB of C,-
H;ON,; compound can be calculated by eqn (8):

b

1 —2a— =

600><(c a 2)
My

OB (%) =

My, is the molar mass of the compound.

The detonation velocity refers to the stable speed of the
explosion shock wave while the detonation pressure denotes the
stable pressure after the explosion impact. Here the Kamlet-
Jacobs equations are used to calculate the detonation velocity D
(m s™") and the detonation pressure P (GPa),*’ as defined by eqn
(9) and (10). It was reported that the calculated values obtained
from the equations are very close to the experimental values.**

D = 1.01(NM*30%%)%3(1 + 1.30p) (9)

P = 1.558p>NM">Q°? (10)

Table 3 Comparison of prediction accuracies between different combinations of the four types of descriptors and the six regression algorithms

Models® Descriptors MAE,;ain” MAE st RMSEain’ RMSE s’ Rirain’ Rees® &
Lin SOB 37.4 4 2.0 68.2 & 15.0 49.4 4+ 2.5 87.7 +19.6 0.98 =+ 0.00 0.92 + 0.06
ECFP 18.7 + 18.8 107.8 + 44.4 24.7 £+ 24.7 136.5 + 54.8 0.99 + 0.01 0.79 £ 0.16
E-state 34.8 £ 27.5 104.6 + 37.7 44.4 4 34.5 132.0 4 47.4 0.97 + 0.02 0.81 + 0.15
SOB + E-state 33.5 + 24.0 95.6 & 37.4 43.2 + 30.0 122.5 + 46.4 0.98 £ 0.02 0.83 & 0.14
LASSO SOB 39.2 + 3.6 73.4 £ 20.5 50.6 + 3.7 95.7 + 30.2 0.98 =+ 0.00 0.89 + 0.12
ECFP 60.4 + 32.3 115.7 + 46.5 77.5 + 41.6 144.7 + 56.2 0.94 + 0.06 0.76 & 0.19
E-state 62.9 + 26.7 109.6 + 40.2 80.4 + 34.3 137.6 + 49.3 0.94 + 0.05 0.78 £ 0.17
SOB + E-state 55.9 & 26.2 98.5 + 40.6 71.3 £+ 33.7 124.5 + 49.7 0.95 + 0.05 0.82 £ 0.17
KRR SOB 35.9 + 10.0 72.8 +13.4 46.0 + 12.2 94.7 + 18.3 0.98 + 0.01 0.91 =+ 0.07
ECFP 43.6 + 135.8 195.3 + 167.0 53.7 & 165.2 242.4 + 190.9 0.75 & 1.03 0.12 + 2.12
E-state 75.7 + 13.3 105.0 + 21.9 95.1 + 15.0 132.4 + 29.1 0.92 =+ 0.03 0.81 + 0.11
SOB + E-state 19.7 + 8.0 64.1 & 13.0 25.5 & 10.0 85.0 + 18.0 0.99 + 0.00 0.92 £ 0.05
SVR.lin SOB 39.2 +4.5 66.6 & 16.9 53.1 + 3.1 86.4 +24.3 0.98 + 0.00 0.92 =+ 0.06
ECFP 11.0 £ 14.5 148.2 + 22.1 15.1 + 16.6 186.5 + 28.6 1.00 =+ 0.00 0.66 & 0.12
E-state 69.0 + 5.3 101.3 + 19.7 87.6 + 5.1 129.9 + 30.7 0.94 + 0.01 0.82 + 0.12
SOB + E-state 32.7 + 4.4 61.7 + 15.3 4544+ 4.2 81.1 +19.1 0.98 + 0.00 0.93 £ 0.06
SVR.rbf SOB 56.4 + 14.9 134.6 + 28.9 75.8 + 13.6 170.2 + 37.5 0.95 + 0.02 0.70 £ 0.17
ECFP 172.5 + 116.7 209.7 + 81.8 213.6 + 138.4 254.1 + 92.0 0.48 + 0.48 0.30 & 0.44
E-state 150.9 + 100.6 197.0 + 72.5 188.8 + 118.9 244.9 + 82.9 0.60 + 0.43 0.35 + 0.43
SOB + E-state 124.8 4+ 98.3 175.8 + 74.1 157.6 + 116.4 219.3 + 86.0 0.69 + 0.40 0.46 + 0.43
GPR SOB 0.11 =+ 0.01 110.3 + 21.4 0.16 + 0.02 149.3 + 30.5 1.00 =+ 0.00 0.76 & 0.17
ECFP 0.06 =+ 0.05 133.4 + 33.6 0.10 £ 0.07 173.6 & 40.8 1.00 =+ 0.00 0.69 & 0.17
E-state 0.08 =+ 0.04 135.1 + 32.7 0.12 + 0.06 174.5 + 40.5 1.00 =+ 0.00 0.68 & 0.19
SOB + E-state 0.09 £ 0.04 120.9 + 38.2 0.13 £ 0.07 157.8 + 47.1 1.00 £ 0.00 0.73 + 0.19

“ The ShuffleSplit method was used to divide the training set and the test set of 88 compounds (80% of the data set was used for the training set and
20% for the test set). The data set was divided 20 times in total to obtain the average value of the model evaluation index. > Mean average error on the
training set.  Mean average error on the test set. ? Root mean squared error on the training set. ¢ Root mean squared error on the test set.” Averaged
R? of the training set. ¥ Averaged R” of the test set.
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In the two equations, N is the mole of detonation gases per
gram explosive. M is the average molecular weight of the
gaseous products, which is calculated by the method presented
in Table 2. p is the loaded density of the explosive (g cm ), and
the theoretical density is usually used due to the complexity of
density testing of experimental charges. The theoretical density
is obtained by an improved equation proposed by Politzer
et al.,” as shown in eqn (11):

M

_ 2
P=“V0.001) Bvow’) +7

(11)

M is the molecular mass (g mol™") and V (0.001) is the
volume of the 0.001 electrons per bohr® contour of electron
density of the molecule (cm® per molecule). v describes the
degree of balance between the positive and negative potentials
on the isosurface, and o, is a measurement of the variability
of the electrostatic potential on the surface. The coefficients «,
6 and vy are 0.9183, 0.0028 and 0.0443, respectively. Multiwfn
software is used to calculate the surface electrostatic potential
in eqn (11).*

2.8 Calculation of bond dissociation energy

In order to assess the thermal stability of the energetic
compounds, we also calculated bond dissociation energy (BDE).
BDE refers to the energy required for bond homolysis, which
represents the stability of the covalent bonds. The bond disso-
ciation energy at 298 K and 1 atm corresponds to the enthalpy of
reaction A-B(g) — A’(g) + B'(g). A" and B’ are two radicals,
which are generated from the rupture of the molecule A-B.**
Thus, at 0 K, the homolytic bond dissociation energy can be
defined by eqn (12)

BDE(A-B) = Eg(A) + Eg(B) — Eo(A-B) (12)
where Eo(A") and Eo(B°) denote the total energies of the radicals
A’ and B’ at 0 K, respectively. The calculations of Ey(A"), Eo(B")
and E(A-B) are performed at the level of B3LYP/6-31G**.

All quantum mechanical calculations mentioned above were
carried out using the Gaussian 09 program.** The structural
optimization was performed at the level of CBS-4M and vibra-
tion frequency analysis at the same level was used to further
confirm that the optimized structure is the minimum on the
potential energy surface.

3 Results and discussion

We first selected the heat of formation as the desired property to
adaptively design and search explosives with high heat of
formation due to its importance in the energetic materials and
some other domains like perovskite solar cells and ionic
liquids. Then, we further assessed the generalization capacity of
our strategy by extending it to the heat of explosion as the other
target property.

© 2021 The Author(s). Published by the Royal Society of Chemistry
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3.1 Construction of a machine learning based regressor for
the heat of formation

In order to quickly estimate the heat of formation for the
unlabeled compounds in the vast search space, we need to
construct a regressor based on the small amount of dataset
labeled (88 representative compounds), which is an advantage
of the PADF in the limited dataset. Due to the small-scale
dataset, traditional machine learning methods are more
appropriate than deep learning ones. Herein, we considered six
machine learning algorithms (Lin, LASSO, KRR, SVR.lin,
SVR.rbf, and GPR), which exhibited good performance in
mapping the structure-property relationship for the small-scale
dataset.** As is known, the informative descriptors and effi-
cient machine learning algorithms are critical to map the rela-
tionship between the descriptors and the targeted property.
Thus, we tested the six traditional ML models and the four types
of descriptors (SOB, ECFP, E-state and SOB + E-state) for the 88
initial samples labeled. Herein, “SOB + E-state” means the
combination of the descriptor SOB (sum over bonds) and E-
state (E-state fingerprint). Table 3 summaries predictive
performances for 24 combinations for the 88 initial samples. As
reflected in Table 3, ECFP coupled with the six regression
models presents the worst performance. The six ML models
coupled with the descriptor E-state characterizing the electro-
topological state are poorer than those coupled with SOB.
Judging from Re*, MAE and RMSE in Table 3, SVR.lin coupled
with the combinatorial descriptor of SOB + E-state exhibits the
best performance. Fig. 2 further shows high correlation between
the heats of formation predicted by SVR.lin and ones calculated
by the DFT method. Thus, SVR.lin coupled with the “SOB + E-
state” descriptor is selected as the regressor to predict the heat
of formation for the unexplored search space in the next step.
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Fig. 2 The correlation between the average values predicted by
SVR.lin coupled with E-state + SOB descriptors over 20 repeated tests
and the heat of formation calculated at the level of CBS-4M. The
training data and the testing data are represented by green spheres and
orange triangles, respectively.
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3.2 Combination of the regressor and the optimizer

Although we can quickly estimate the heat of formation for the
unexplored compounds in the vast search space using the
regressor constructed, the regressor trained on the small-scale
dataset labeled may suffer from large prediction uncertainty.
Thus, it is a key question how to effectively select the desired
compound from the vast search space. We hope that the
compound has high heat of formation and can significantly
improve the performance of the regressor when it is added into
the initial training set. Consequently, the search needs to
consider the ML-based prediction value and the uncertainty
using an optimization function. Herein, we consider four opti-
mization functions (exploitation, exploration, trade-off and KG).
As mentioned in the section of Computational details, Exploita-
tion selects the candidate with the maximum predicted value
from the unknown search space while exploration selects the
samples with the largest variance on the model predictions. The
trade-off method is to balance the trade-off between exploitation
and exploration to maximize the “expected improvement” (EI)
while KG is similar to the trade-off between exploitation and
exploration (see 2. Computational details). In addition, we also
employ the random selection as a reference. In order to figure out
the best optimization function, we test the performance of four
optimization methods combined with SVR.lin as a function of
the size of the training set. Specifically, the samples are randomly
selected from the 88 labeled compounds as a training set in
a given number (s = 5-20) while the remaining part of the 88
compounds acts as the search space. We use a combination pair
of the SVR.lin regressor and each of the five optimizers to search
the next compound from the search space, and count the number
of iterations to find the compound with the highest heat of
formation in the initial 88 samples. We repeat this process 1000
times for each initial set selected randomly with a specific
number of samples ranging from 5 to 20, and calculate the
average value of the number of iterations over the 1000 times.

The metric to evaluate the regressor/optimizer combination
pair is the number of iterations required to find the best
compound among the 88 samples labeled. Fig. 3 shows the
performance of different regressor/optimizer combination
pairs. It can be seen that the number of iterations gradually
decreases with increasing number of the initial samples, except
for exploration. Compared to the four optimizers, the random
selection is the least efficient as it takes the most iteration
times. Trade-off and KG that yield a compromise between
exploration and exploitation show almost identical perfor-
mance and are better than the other optimizers. As observed
from Fig. 3, when the number of initial samples is beyond eight,
the performance of SVR.lin/Trade-off and SVR.lin/KG becomes
relatively stable. For the initial dataset containing eight
samples, only five iterations are needed to find the optimal
candidate from the remaining compounds, exhibiting high
efficiency of the proposed PADF. Considering that SVR.lin/
trade-off slightly outperforms SVR.lin/KG, the combination
pair of SVR.lin/trade-off is finally determined to be the best
combination pair, which will be used in searching the unknown
space with more than eighty thousand samples.
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Fig. 3 Comparison of performance for the 10 regressor/optimizer
combination pairs on different initial datasets randomly selected from
the 88 samples labeled. The x axis represents the number of initial
samples randomly selected from the 88 compounds to establish
a statistical inference model. The y axis represents the average number
of iterations required to find the best compound (i.e. the compound
with the highest heat of formation) in the 88 samples. The standard
deviation of the results over 20 repeated tests is marked by the error
bar. The best regressor/optimizer combination pair is able to find the
highly informative compound at the least number of iterations. The
results show that the combination of SVR.in/trade-off (vide the
continuous red line) is the best regressor/optimizer pair.

3.3 Adaptive discovery for the target compound from the
vast search space

After determining the best combination of the ML-based
regressor and the optimizer, we apply them to select the
desired compound with high heat of formation from the 83 995
compounds unexplored in the search space. Specifically,
SVR.lin is used to train the 88 samples labeled as the initial
dataset, and applied to predict the heat of formation of the
83 995 unlabeled compounds in the search space. Fig. 4 shows
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Fig. 4 Distribution of the heat of formation calculated at the level of
CBS-4M for the 88 initial samples. The blue line denotes the cumu-
lative percentage of the heat of formation.
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the distribution of HOFs calculated by QM for the 88 samples. It
can be seen that the HOF values of the initial dataset are not
evenly distributed and samples with high heat of formation are
relatively scarce. As is known, the regression models trained on
the limited-scale and unbalanced dataset generally produce
large prediction uncertainty and hardly avoid the local
optimum. However, the optimization function could improve
the predictive capacity of the regressor to the most extent
through finding the highly informative sample to augment the
training data with the aid of a self-adaptive cycle. For example,
based on the EI scores obtained from the optimization function,
the heat of formation of the beneficial compound selected from
the unknown space would be calculated and added into the
training set. Consequently, in the next iteration, the number of
samples in the training set is increased to 89, while the
prediction set contains 83 994 molecules. We continuously
repeat the above process for the next round of the regression
and selection. Consequently, the data distribution in the
training set could be adjusted, in turn improving the learning
ability of the regressor, as evidenced by Fig. 5. It can be seen that
compared to the initial dataset containing 88 samples, R>
almost presents an upward trend as the number of samples
with high heat of formation in the training set is increased by
the iteration, despite some fluctuations within the ten itera-
tions. All the iterations present higher R* than original 88
training data. In addition, the standard deviation over the 20
repeated tests on every iteration is also lowered with increasing
the number of iterations, as reflected by the error bar in Fig. 5,
which implies an improvement in the prediction performance
of the ML-model. The results clearly confirm that our self-
adaptive strategy could efficiently improve the learning
capacity of the regressor based on the small amount of training
dataset to better map the relationship between the structure
and the target property.
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Fig. 5 The coefficient of determination R? for the first ten iterations,
derived from the SVR.lin regressor for 20 training and test sets ob-
tained by the shuffle split method. Iteration O means that the training
set is the initial 88 compounds, where the average value of R? is 0.93.
The standard deviation of the results over the 20 repeated tests is
marked by the error bar for every iteration.
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Fig. 6 shows the EI scores of the ten compounds selected at
the first ten iterations by the SVR.lin/trade-off combination pair.
It can be seen that the EI score keeps a downward trend before
the 5th iteration. After that, the EI scores approach an equilib-
rium. Fig. 6 also displays the calculated heat of formation by
QM for the compound selected at each iteration. It can be seen
that the heat of formation presents to some extent fluctuation
with increasing number of iterations. The heat of formation
reaches a peak value (1150.08 k] mol ") at iteration 5, and then
drops in subsequent iterations. It can be seen that the ten
compounds selected from the unexplored space at the first ten
iterations all present higher values than the maximum one
(847.92 k] mol™') of the initial training set containing 88
compounds and those of the two classic explosives HMX and
RDX. The result clearly shows that our PADF can quickly search
the energetic compounds with high heat of formation from the
vast unknown space, only needing several iterations.

Chart 1 presents the 2D structure and molecular formula of
the ten compounds (al-a10) selected from the first 10 itera-
tions. Comparing the ten compounds selected, it can be seen
that they all include the substituent of -NHNO,, except for the
compound a9. In addition, eight compounds, except for a1 and
al10, possess the same parent ring, i.e., 6-(1H-pyrazole-4-amino)-
[1,2,4]azole[4,3-b]-1,2,4,5-tetrazine, indicating the highly ener-
getic property of the parent ring. The substituted sites of the
substituents are the same for the compounds a5 and a6, but the
heat of formation of a5 substituted by two -NHNO, is higher
than that of the compound a6 substituted by one -NHNO, and
—-ONO,, indicating higher energetic potential of the substituent
-NHNO, than -ONO, for the heat of formation. The compound
al was synthesized by Fischer and considered to be a promising
powerful explosive, judging from some computational
evidence.*® The heat of formation of the parent ring of a10 was
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Fig. 6 The heat of formation calculated by CBS-4M and El scores of
the ten compounds selected by the SVR.lin/trade-off combination
pair. lteration O means that the training set is the initial 88 compounds,
where the maximum value of the heat of formation is 847.92 kJ mol ™.
For each iteration (starting from 1), a new compound will be selected
from the remaining unexplored space and verified by the CBS-4M
calculation. Then it is added to the training set for the next iteration
(see 2. Computational details).
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as the target property.

calculated to be 164.56 k] mol~* by Bo,”” much lower than that
of a10 (949.87 kJ mol ') substituted by two -NHNO,. The heat of
formation of the compound with the same parent ring as a2-a9
but with two -NO, substituted at the carbon atom of pyrazole
was reported to be 550.84 k] mol™",*® significantly lower than
those of the eight compounds (a2-a9) with the same parent
ring, indicating the energetic characteristics of the -NHNO, and
-ONO, substituents.

3.4 Detonation performance

To further evaluate the detonation performance of the ten
compounds selected from our PADF, we calculate several

detonation properties, i.e., the oxygen balance, the detonation
velocity and the detonation pressure. The calculated results are
summarized in Table 4, along with the corresponding proper-
ties of the two classic explosives RDX and HMX. The two
explosives generally serve as the benchmark for HEDMs.”® It can
be seen that the ten compounds selected are significantly
higher than RDX and HMX for the heat of formation. However,
their detonation velocities and detonation pressures are lower
than those of the two classic explosives. Furthermore, their
oxygen balances are also lower than those of HMX and RDX,
except for al. The compound a5 possesses the highest heat of
formation, but its oxygen balance, detonation velocity and
detonation pressure are in the last second order of the ten

Table 4 The detonation performance of compounds al-alO selected from the heat of formation as the target property and two classic

explosives
Compounds AH (k] mol™) OB (%) D (ms™) P (GPa) BDE® (k] mol™)
al 1006.68 —6.20 9113.69 37.10 103.54
a2 1087.55 —51.92 8381.64 31.55 64.37
a3 1092.59 —44.42 8428.66 32.03 28.55
a4 1112.74 —74.77 7789.38 26.60 97.55
a5 1150.08 —51.98 8142.99 29.42 95.29
a6 1088.93 —44.42 8377.83 31.49 26.84
a7 1057.16 —36.35 8434.83 32.22 92.01
a8 1041.62 —36.35 8348.48 31.35 79.18
a9 1033.76 —36.90 8762.72 34.76 28.61
alo0 949.87 —23.52 8822.93 34.80 114.36
RDX calc’ 185.73 —21.61 9047.12 36.20 140.79
Exp® — — 8750 34.00 —
HMX calc’ 228.78 —21.61 9247.75 38.93 164.40
Exp® — — 9100 39.00 —

“ Heat of formation (k] mol™"). ” Oxygen balance (%). ¢ Detonation velocity (m s~*). ¢ Detonation pressure (GPa). ¢ Bond dissociation energy (kJ
mol )./ The values were calculated using the same method as the ten compounds. ¢ The experimental values were obtained from a literature

study.*
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compounds, much lower than those of RDX and HMX. In
contrast, the compound al with the heat of formation in the last
second order outperforms RDX and is close to HMX for the
detonation velocity and pressure, and its oxygen balance is close
to zero. The observation indicates that the heat of formation
cannot well reflect the detonation performance of the explo-
sives. Generally, the energetic materials require not only excel-
lent detonation properties, but also thermal stabilities, which is
associated with the safety in practical applications. As accepted,
the bond dissociation energy (BDE) is related to the thermal
stability. Thus, we also calculate BDEs of the ten compounds
and the two classic explosives, as shown in Table 4. It was
proposed that if the bond dissociation energy is greater than
80 kJ mol™", the compound meets the basic requirements for
the stability of the energetic compound; if it is greater than
120 kJ mol *, then the energetic compound possesses excellent
stability.*® Judging from the rules, the compounds a1, a4, a5, a7
and a10 are thermally stable.

3.5 Generalization of the PADF to search energetic
compounds with high heat of explosion

To evaluate the generalization capacity of the PADF for other
target properties, we extend it to the heat of explosion as the
desired property. The heat of explosion of each initial sample is
calculated in terms of the methods listed in Table 2. Similarly,
we test different descriptors, regression models and optimizers
in order to construct the best PADF for the heat of explosion. In
the case of HOF, the ECFP descriptor presents the poorest
performance in the regression model while the SOB coupled
with E-state performs best. Thus, in the part, we exclude the
ECFP descriptor. However, as reflected by Table S4 in the ESIL, T
SOB, E-state and SOB + E-state used in the heat of formation all
exhibit poor prediction accuracies, indicating that these
descriptors do not completely characterize features associated
with the heat of explosion. Thereby, we add another type of
descriptor called the custom descriptor set (CDS). The CDS
includes fifteen kinds of features involving the types of N and O
atoms and elementary composition. The N and O atoms are
categorized according to how they incorporate into a molecule,
including C-NO,, N-NO,, O-N=0, O-NO,, C-N=N, C=N-O,
C-NH, and N-O-C, which are not involved in SOB. In addition,
the CDS also includes oxygen balance, counts of N, C and H, and
the ratio between nitrogen and carbon atoms. These features
are considered to be associated with the explosion process.*® As
shown in Table S4 and Fig. S1 in the ESI,{ the combinatorial
descriptor E-state + SOB + CDS coupled with the KRR model
outperforms other descriptors like SOB, E-state, CDS, and SOB +
E-state for the test set. Its prediction accuracy reaches 0.90R;cs”
with 69.5 cal ¢! MAE g

In addition, the combination of KRR/KG is found to be the
best combination of the regressor and the optimizer, evidenced
by Fig. S2 in the ESIL.{ Then ten iterative loops are conducted to
search the unknown space with more than eighty thousand
compounds, using the KRR/KG combination. Fig. 7 depicts the
iteration results. It can be seen that there are six selected
compounds (i.e. b2, b3, b4, b5, b7 and b8) within the first ten
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Fig. 7 The heat of explosion derived from the QM calculation and
empirical equation and El scores of 10 compounds selected by the
KRR/KG combination pair. Iteration O means that the training set
consists of the initial 88 compounds, where the maximum value of the
heat of explosion is 1775.19 cal g~*. For each iteration (starting from 1),
a new compound will be selected from the remaining unexplored
space and further verified by the QM-based evaluation system, which
will be added into the training set for the next iteration (see 2.
Computational details).

iterations presenting higher heat of explosion than the highest
one (1775.19 cal g~ ') among the initial 88 samples in the
training set, exhibiting good performance. However, compared
to the heat of formation above, the search performance is lower.
For the heat of formation, all the ten compounds selected are
superior to the one with the highest value among the initial
samples. As shown in Table S4, the determination coefficient
on the test set Rees;” of the heat of explosion is 0.90 + 0.05, lower
than the heat of formation (0.93 £ 0.06). The observation
indicates that the ML-based prediction on the heat of explosion
has relatively larger uncertainty (i.e. variance) than that on the
heat of formation. Consequently, there are relatively more
compounds selected that are inferior to the best compound of
the initial dataset, compared to the heat of formation. The
result indicates that the prediction performance of the ML-
based regressor could influence the search efficiency of the
optimizers like trade-off and KG used in our PADF. It is not
unexpected since the trade-off and KG optimizer are based on
maximizing the “expected improvement” (EI) that takes both
the average prediction value (1) and uncertainty (o) into
consideration. The lower the ML model prediction performance
the larger the prediction uncertainty. In order to maximize the
EI value, the optimizer tends to select samples with large
uncertainty from the search space, as reflected by eqn (5) and
(6). The adaptive design strategy also hopes to add the
compound with large uncertainty to the training set so that the
prediction performance of the ML models could be efficiently
improved through further training.”® To confirm the search
efficiency of the PADF, we continuously conduct 40 iterations
after the first ten iterations, as shown in Fig. S3.7 It can be seen
that the heat of explosion of the selected compounds almost
presents a downward trend for the first 50 iterations despite
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Chart 2 The 2D structure and molecular formula of the six
compounds (b2, b3, b4, b5, b7 and b8) with higher heat of explosion
than the maximum value of the initial 88 compounds.

some fluctuations. Furthermore, the heats of explosion of the
latter 40 selected compounds are lower than the maximum
value of the first 10 iterations (1940.71 cal g~ ). It further
confirms that our PADF can quickly screen high-performing
samples from the unknown search space in very few itera-
tions. It is noted that if the ML-based regressor has higher
prediction accuracy, there would be more compounds selected
with better properties than the initial training set.

Chart 2 shows 2D structures of the six compounds. A
comparison of chemical structures between the six compounds
and the ten compounds al-al0 selected from the heat of
formation clearly shows that they are completely different in
either parent rings or substituents. The six compounds derived
from the heat of explosion commonly contain substituents
-ONO, and -NO,, and do not have the -NHNO, group existing
in the compounds al-a10. In some literature studies involving

Paper

energetic materials, the heats of explosion of compounds with
the same parent ring as b2, b3 and b7 but with the two
substituents -CH,ONO, and two substituents -NHNO,, at the
same substitution site were reported to be 1540.86 cal g~ and
1651.21 cal g ',>* respectively, whereas the lowest heat of
explosion of the b2, b3 and b7 compounds is 1786.43 cal g~ .
The heat of explosion of the compound with the same parent
ring as b4 but with one -NO, substituted at the triazole ring was
reported to be 1253.57 cal g~ ', significantly lower than the
1821.60 cal g of b4. The compound, which has an identical
parent ring and substitution site to b5 but substituted by two
-NHNO, (rather than the two -ONO, like b5), was reported to
have 1545.21 cal g~ ' for heat of explosion,* lower than the
1791.24 cal g~ of b5. The heat of explosion of the compound
with the same parent ring as b8 but substituted by two
-CH(NO,), was reported to be 1622.42 cal g~ ',* significantly
lower than that of b8 substituted by two ~-ONO, (Q: 1869.22 cal
¢~ "). These observations show the high energetic performance
of -ONO, for the heat of explosion.

Table 5 also lists the detonation performance calculated for
the six compounds. Compared to the two classic explosives
HMX and RDX, the six compounds exhibit higher heat of
explosion. Furthermore, their oxygen balances are also better
than those of HMX and RDX. Except for b8, the other five
compounds have higher detonation velocities and detonation
pressures than HMX and RDX. These observations indicate that
the heat of explosion as the target property could better select
compounds with high detonation performance than the heat of
formation. However, except for b3, BDEs of the other five
compounds are much lower than 80 k] mol™", exhibiting low
thermal instability. Interestingly, the compound b3 not only has
higher detonation performance than HMX and RDX, but also
presents excellent thermal stability with 141.33 kJ mol " for
BDE, exhibiting high potential as a new explosive with high
performance.

4 Conclusions

In this work, we developed a property-oriented adaptive design
framework to quickly discover the target molecule from the vast

Table 5 The detonation performance of six compounds selected from the heat of explosion as the target property and two classic explosives

HMX and RDX
Compounds Q% (calg™) OB’ (%) D (ms™) P (GPa) BDE® (k] mol ™)
b2 1940.71 0.00 9567.64 42.17 54.05
b3 1889.24 —5.88 9414.28 40.76 141.33
b4 1821.60 -3.09 9441.44 40.63 34.43
b5 1791.24 —-9.30 9096.66 37.92 14.37
b7 1786.43 —7.25 9298.34 39.75 26.22
b8 1869.22 0.00 8983.56 35.56 28.36
RDX cale” 1553.89 —21.61 9047.12 36.20 140.79
Exp® — — 8750 34.00 —
HMX cald’ 1549.78 —21.61 9247.75 38.93 164.40
Exp® — — 9100 39.00 —

“ Heat of explosion (cal g~*). » Oxygen balance (%). ¢ Detonation velocity (m s~*). ¢ Detonation pressure (GPa). ® Bond dissociation energy (kJ
mol ). / The values were calculated using the same method as the six compounds. ¢ The experimental values were obtained from a literature

study.*
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space unexplored in the case of limited scale datasets available.
The performance of the design framework is validated by two
case studies on discovering energetic materials with high heat
of formation and high heat of explosion. The framework
proposed is composed of a ML-based regressor, an optimizer
and a validation system based on quantum mechanics calcu-
lations. We only utilized around 0.1% (88 samples) of the vast
unexplored space as the initial dataset to label their properties.
Based on the small dataset labeled, the machine learning model
is trained to obtain the regressor in order to predict the target
property for the remaining compounds in the vast search space.
Then different optimization algorithms are used to help select
the high-performing compound from the search space. Tests on
different combination pairs of the regressors and the opti-
mizers indicate that the best pairs are SVR.lin/Trade-off coupled
with E-state + SOB descriptors for the heat of formation and
KRR/KG coupled with CDS + E-state + SOB descriptors for the
heat of explosion. Most of the selected compounds within the
first ten iterations present better performance in the target
property than the initial dataset. For these selected compounds,
we also further evaluated their oxygen balances, detonation
velocities, detonation pressures and bond dissociation ener-
gies, which are closely associated with the detonation perfor-
mance and the thermal stability of the explosives. The results
show that the compounds selected from the two different target
properties are completely different, either in the parent ring or
in the substituent. The substituent -NHNO, favors the high
heat of formation, but disfavors the high heat of explosion. The
substituent -ONO, exhibits an advantage in improving the heat
of explosion. Furthermore, the heat of explosion as the target
property outperforms the heat of formation in designing new
explosives with high detonation performance. Also, it is worthy
of note that the compound b3 selected at the 3rd iteration based
on the heat of explosion exhibits better performance (heat of
explosion: 1889.24 cal g~ ', detonation velocity: 9414.28 m s,
detonation pressure: 40.76 GPa and oxygen balance: —5.88%)
than the two benchmark explosives RDX and HMX. Further-
more, the bond dissociation energy calculation further indi-
cates that the compound b3 has excellent thermal stability.
These lines of evidence demonstrate the high potential of the
compound b3 as a low-sensitivity HEDM. The observations
indicate that our PADF constructed can quickly design energetic
compounds with desired properties. The successful application
of the PADF in the two cases confirms its generalization ability,
indicating that the design framework could be extended to
other fields limited by the small-scale labeled dataset. Despite
the encouraging results, our findings still need further experi-
mental validation.
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