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NEURAL REGENERATION RESEARCH 

Modulation of mitochondrial bioenergetics as a 
therapeutic strategy in Alzheimer’s disease

Introduction
Alzheimer’s disease (AD) is a major health issue affecting 
over 46 million people worldwide. Without therapeutic 
breakthroughs, the number could reach 75 million in 2030 
and exceed 131.5 million by 2050 (www.alz.co.uk/worldre-
port2016). The current annual global economic cost associ-
ated with managing dementia exceeds US$818 billion, and 
AD will become a trillion-dollar disease by 2018 (https://
www.alz.co.uk/research/WorldAlzheimerReport2016.pdf).

AD is categorized into two major forms: sporadic AD (sAD) 
and familial AD (fAD) with < 10% of AD cases being familial 
(Thinakaran, 1999) and showing autosomal-dominant trans-
mission within affected families. Although sAD has a hetero-
geneous etiology and heritability of 70% to 80% (Gatz et al., 
2006; Wingo et al., 2012), age is its most prominent biological 
risk factor (Carr et al., 1997) with APOE4 gene being an addi-
tional risk factor (Dorszewska et al., 2016). Female gender is 
also an important contributor that is partially explainable by 
the fact that postmenopausal women lose the protection that 
estrogens confer to neuronal mitochondria against beta-am-
yloid (Aβ) toxicity. Older women are also more likely than 
age-matched men to suffer from metabolic diseases, such as 
diabetes and obesity, that increase their chances of developing 
AD (Vina and Lloret 2010). 

Most fAD patients have at least one affected first-degree 
relative (van Duijn et al., 1994; Campion et al., 1999; Jar-
molowicz et al., 2014), and in 10% to 15% the mode of in-
heritance is autosomal dominant transmission (Campion et 
al., 1999; Jarmolowicz et al., 2014). fAD is triggered by gene 
mutations of amyloid precursor protein (APP) (chromosome 

21), presenilin 1 (PSEN1) (chromosome 14), or presenilin 
2 (PSEN2) (chromosome 1). This elicits Aβ aggregation in 
earlier years and the onset of the disease is as early as 20–30 
years of age (Su et al., 2008; Muirhead et al., 2010) with the 
majority being diagnosed between 45 and 60 years.

Additional risk genes that have been identified by ge-
nome-wide association studies (GWAS) include: the gene 
for clusterin (CLU) also known as apolipoprotein J (local-
ized on chromosome 8), the gene encoding the complement 
component (3b/4b) receptor 1 (CR1) (chromosome 1), the 
gene encoding PI-binding clathrin assembly protein (PI-
CALM) (chromosome 11), the gene encoding the bridging 
integrator 1 (BIN1) (chromosome 2), and the disabled ho-
molog 1 (DAB1) (chromosome 1). Additional novel risk loci 
associated with sAD are: sortilin-like receptor 1 (SORL1), 
triggering receptor expressed on myeloid cells 2 (TREM2), 
the membrane-spanning 4-domains, subfamily A (MS4A), 
ATP-binding cassette transporter A1 and A7 (ABCA1 and 
7), methylenetetrahydrofolate dehydrogenase 1 (MTHFD1) 
and CD33 (Allen et al., 2012). These newly identified genes 
are involved in transport, lipid metabolism (Zhu et al., 2015; 
El gaamouch et al., 2016), immune response and APP me-
tabolism (De Strooper and Karran, 2016).

The drugs currently approved by the US Food and Drug 
Administration (FDA) for AD treatment include cholines-
terase inhibitors (CIs) such as galantamine which is indi-
cated for mild to moderate AD and rivastigmine, donepezil 
for all stages of AD (Kim et al., 2017). Tacrine, a centrally 
acting anticholinesterase and indirect cholinergic agonist 
is less prescribed due to its hepatotoxicity. Memantine, a 
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glutamate agonist is a therapeutic option for moderate to se-
vere AD (McShane et al., 2006; Jan et al., 2017). While these 
drugs ameliorate symptoms in the early stages of AD, they 
show no evidence of stopping or reversing the neurodegen-
erative process (De la Monte, 2012). This could be because 
they do not directly target the underlying pathology in the 
degenerating neurons and they may be more effective if ad-
ministered in the prodromal stages of the disease.

Of the 244 drugs for AD tested in clinical trials registered 
with clinicaltrials.gov, a National Institutes of Health (NIH) 
registry of publicly and privately funded clinical studies be-
tween 2002–2012, only one has successfully completed clini-
cal trials and received approval from the FDA (https://www.
alz.org/documents_custom/2017-facts-and-figures.pdf). So 
far, all clinical trials designed to lower levels of Aβ by either 
blocking activity of β or γ secretases, preventing Aβ aggre-
gation, or promoting Aβ clearance by immunotherapy have 
failed (Cummings et al., 2014; Feldman et al., 2014) empha-
sizing an urgent need to find new therapies for AD.

It is widely accepted that alterations in mitochondrial 
function and glucose metabolism are consistent antecedents 
leading to AD pathology including Aβ plaque and neuro-
fibrillary tangles (Gibson and Shi, 2010). This mitochondrial 
dysfunction is characterized by impaired biogenesis and 
inefficient bioenergetics i.e. defects the activity of key respi-
ratory enzymes and is accompanied by the generation and 
accumulation of reactive oxygen species (ROS) (Chen and 
Yan, 2010). As Aβ accumulates, it impairs cerebral blood 
flow (CBF). This leads to less glucose being available for en-
ergy expenditure continuing a vicious cycle that exacerbates 
the compromised CBF and resulting in the degeneration of 
neurons (Popa-Wagner et al., 2015). 

Additionally, Aβ impaired electron transport chain (ETC) 
function promotes the phosphorylation and polymerization 
of tau, a mitochondrial protein involved in microtubule 
assembly. This causes generation of more ROS that further 
stimulates tau phosphorylation leading to neurofibrillary tan-
gle formation and neurodegeneration (Simoncini et al., 2015). 
Post-mortem brains of AD patients have fewer mitochondria 
and increased presence of mitochondrial DNA (mtDNA) and 
mitochondrial proteins in the cytosol (Arun et al., 2016). 

Numerous positron emission tomography (PET) studies 
demonstrate a decline in glucose utilization in the hippo-
campal and entorhinal cortical regions that precedes the 
clinical diagnosis of AD by decades and predict the cogni-
tive decline in normal aging (Calsolaro and Edison, 2016) or 
the progression of patients from mild cognitive impairment 
(MCI) to AD (Chetelat et al., 2003) with high accuracy. 
Mitochondrial biogenesis is a highly regulated process that 
requires coordination and crosstalk between the nuclear and 
mitochondrial genomes and plays an essential role in main-
taining an adequate functional neuronal mitochondrial mass 
by compensating for damaged mitochondria that have been 
eliminated (Onyango et al., 2016).

To achieve better outcomes in patients with AD, a para-
digm that addresses the bioenergetic deficit in the vulnera-
ble neurons of affected brain regions is needed. This can be 

achieved by targeting mitochondria and alleviating mito-
chondrial dysfunction in AD.

The Mitochondrion
A mitochondrion contains 2–10 copies of mtDNA (Red-
dy, 2008). The human mtDNA consists of a 16.5 kb, dou-
ble-stranded, circular DNA molecule (Anderson et al., 
1981). mtDNA contains 13 polypeptide genes that encode 
essential components of the ETC. mtDNA also encodes the 
12S and 16S ribosomal RNA (rRNA) genes and the 22 trans-
fer RNA (tRNA) genes required for mitochondrial protein 
synthesis (Reddy and Beal, 2005). Nuclear genes encode 
the remaining mitochondrial proteins, metabolic enzymes, 
DNA and RNA polymerases, ribosomal proteins, and mtD-
NA regulatory factors, such as mitochondrial transcription 
factor A. Nuclear mitochondrial proteins are synthesized in 
the cytoplasm and are subsequently transported into mito-
chondria. mtDNA is inherited exclusively from the mother 
and is present in thousands of copies per cell. Mitochondrial 
number and morphology are controlled by an equilibrium 
of mitochondrial fusion and fission (Chan, 2006) that is vi-
tal for metabolism, energy production, Ca2+ signaling, ROS 
production, apoptosis, and senescence (Chen et al., 2005; 
McBride et al., 2006; Yu et al., 2006). Fusion allows the ex-
change of mitochondrial components including mtDNA be-
tween different mitochondria. mtDNA due to their proxim-
ity to the respiratory chain and a lack of protective histones 
have a very high mutation rate that is about ten times faster 
compared to the nuclear DNA (nDNA). 

New mtDNA mutations arise frequently in the maternal 
lineage and initially present as a mixture of the wild-type and 
mutant mtDNAs, defining the so-called heteroplasmic state. 
mtDNA mutations are most often heteroplasmic (mixed 
population of normal and mutant mtDNAs). During cellular 
divisions, the mutant mtDNAs will be randomly segregated 
into the daughter’s cells and the percentage of mutant mtD-
NAs in different cell lineages will drift toward either pure 
mutant or normal (or homoplasmy) (Stewart and Chinnery, 
2015). As the percentage of mutant mtDNAs increases in the 
cell, energy output falls, resulting in an overall mitochondrial 
dysfunction in the cell. Hence, the ratio of mutant to normal 
mtDNA contributes to the severity of the disease. Severe 
mitochondrial damage impairs fusion resulting in fragmenta-
tion of mitochondria that are then selectively removed by an 
autophagic process called mitophagy (Kim et al., 2007).

Mitochondria are structurally and functionally altered in 
AD (Burte et al., 2015; Cai and Tammineni, 2016; Onyango 
et al., 2016), and compounds that are able to induce and/
or restore their bioenergetic capacity present an attractive 
strategy AD therapy. Here we review nascent developments 
of mitochondrially targeted approaches that show promise 
for AD treatment.

Cellular Therapy
Cell-based therapies are a promising alternative currently 
being developed to enable the reversal of neurodegeneration 
in AD either directly by replacing injured neuron or indi-
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rectly by stimulating neuronal repair via paracrine signaling 
at the injury site (Baraniak and McDevitt, 2010). Neurons and 
glial cells have successfully been generated from embryonic 
stem cells (ESCs), neural stem cells (NSCs), neural progen-
itor cells (NPCs), mesenchymal stem cells (MSCs), induced 
pluripotent stem cells (iPSCs), induced neuronal cells (iN), 
induced neuronal progenitor cells (iNPCs). Transplantation 
of NSCs into animal models of neurodegenerative diseases, 
including AD, increases the total amount of mtDNA, messen-
ger RNA and protein levels of mitochondrial biogenesis-re-
lated factors as well as protein levels of mitochondrial fission 
genes. This results in a significant increase in the number of 
morphologically well-structured mitochondria in neurons 
and is associated with a reversal of cognitive defects, clinical 
improvement and life extension of these animals (Kim et al., 
2013; Zhang et al., 2015; Mendivil-Perez et al., 2017). While 
still in its formative phase, this new field shows great thera-
peutic promise for AD and other neurodegenerative diseases. 

Drug Therapy
Targeting ROS
Targeting detrimental neuronal ROS at the production 
stage without affecting ROS signaling would be ideal in pre-
venting and treating AD. In this regard, it has been shown 
that mitochondria-targeted antioxidants potently sequester 
reactive oxygen intermediates and confer greater protection 
against oxidative damage in the mitochondria than untarget-
ed cellular antioxidants. The ability of mitochondria-targeted 
antioxidants to confer greater protection against oxidative 
damage in the mitochondria than untargeted cellular antiox-
idants provide has been attributed to their ability to cross the 
mitochondrial phospholipid bilayer and eliminate ROS where 
it is being generated (Oyewole and Birch-Machin, 2015).

These mitochondria-targeted antioxidants such as 
(10-(6′-plastoquinonyl) decyltriphenyl-phosphonium) 
(SkQ1), MitoQ, MitoTEMPOL and MitoVitE prevent apop-
tosis by mitigating the oxidative damage more effectively 
than untargeted antioxidants such as 6-hydroxy-2,5,7,8-te-
tramethylchroman-2-carboxylic acid (Trolox) (Oyewole 
and Birch-Machin, 2015). Other such antioxidants include: 
4,5-dihydroxybenzene-1,3-disulfonate (Tiron), which has 
been engineered to accumulate within the mitochondria by 
permeabilizing the mitochondrial membrane (Fang et al., 
2012) and astaxanthin, a mitochondrion-permeable anti-
oxidant, that can penetrate the blood-brain barrier and is 
effective in preventing and treating macular degeneration 
(Piermarocchi et al., 2012; Wu et al., 2014). 

Various compounds, such as coenzyme Q10 (CoQ10), vita-
min E, curcumin, Gingko biloba, melatonin and lipoic acid, 
have been demonstrated to reduce Aβ accumulation, protect 
mitochondria from Aβ toxicity, restore mitochondrial func-
tion and attenuate cognitive impairment in animal models 
of AD possess mitochondrial restoring and anti-oxidant 
properties (Du and Yan, 2010; Zhang et al., 2015). 

Antioxidants can also be targeted to mitochondria 
through the use of small, aromatic-cationic sequence motif 
called Szeto-Schiller (SS) tetrapeptides which enables them 

to be delivered and localized to the inner mitochondrial 
membrane with an approximate 1,000–5,000-fold accumu-
lation (Smith and Murphy, 2011; Jin et al., 2014). Novel XJB 
peptides which consist of an electron and ROS scavenger 
(4-NH2-TEMPO) conjugated to the Leo-D-Phe-Pro-Val-Orn 
fragment of gramicidin S have been invented. This penta-
peptide fragment can specifically target the XJB peptides to 
mitochondria. One of these peptides, XJB-5-131, improved 
mitochondrial function and enhanced the survival of neurons 
in a mouse model of Huntington’s disease (Xun et al., 2012) 
and might offer a viable therapeutic opportunity in AD. An-
other approach of targeting mitochondria with small bioac-
tive molecules involves polymer based nano-carriers. These 
include biodegradable poly-lactide-co-gylcolide (PLGA) like 
PLGA-CoQ10 nanoparticles (Nehilla et al., 2008) although 
their biological effects are yet to be fully elucidated.

Targeting the inflammasome 
Mitochondria are capable of regulating the pro-inflamma-
tory response of the cell through activation of the inflam-
masome. The inflammasome is a multi-protein complex on 
which proIL-1β and proIL-18 processing occurs. The NLRP3 
inflammasome, detects the inflammatory aggregates of Aβ 
and inactive IL-1β, and responds by secreting caspase-1 
(Casp-1) to activate IL-1β (Saco et al., 2014).

NLRP3 activation is crucial in the pathogenesis of AD 
(Walsh et al., 2014) and has been proposed to be associated 
with mitochondrial dysfunction including: mitochondrial 
ROS (Zhou et al., 2011), mitochondrion-derived damage 
associated molecular patterns (mtDAMPs), such as oxidized 
mitochondrial DNA (Shimada et al., 2012; Wilkins et al., 
2015), and translocation of cardiolipin from the inner to the 
outer mitochondrial membrane (Iyer et al., 2013). Addition-
ally, extracellular ATP at various concentrations can activate 
microglia and induce neuroprotective or neurotoxic effects 
by expressing pro- or anti-inflammatory cytokines (Inoue, 
2002; Davalos et al., 2005). 

Several studies in cell lines, genetic rodent models, and 
humans indicate that redox control might serve as a bidi-
rectional link between energy metabolism, redox control 
and neuroinflammatory responses in the brain that might 
serve as an integrated mechanism for AD etiology (Yin et 
al., 2016). It has been reported that small molecule inhibi-
tors of the NLRP3 inflammasome ameliorate AD pathology 
in animal models of AD (Dempsey et al., 2017; Yin et al., 
2017). Further, CAD-31, a safe, orally active and brain-pen-
etrant neurotrophic drug that targets inflammation has been 
shown to reduce synaptic loss, normalize cognitive skills and 
enhance brain bioenergetics in genetic mouse models of AD 
(Daugherty et al., 2017).

Targeting the proteasome 
The ubiquitin proteasome system (UPS) and mitochondria 
systems are tightly interdependent. Once a vicious cycle of 
dysfunction starts in diseases such as AD, it is difficult to 
identify which system was the trigger. Mitochondrial dys-
function and impairment of the UPS are two hallmarks of 
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aging and both are implicated in AD (Riederer et al., 2011; 
Ross et al., 2015). Proteasome activation by small molecules 
is a promising strategy to treat or prevent neurodegenerative 
diseases characterized by the accumulation of toxic protein 
aggregates (Lee et al., 2010; Dantuma and Bott, 2014; My-
eku et al., 2016). As a proof of concept, it has been shown 
that proteasome activation by genetic manipulation ame-
liorates the aging process and increases lifespan in different 
models including C. elegans, human fibroblasts and yeast 
cells (Chondrogianni et al., 2015). Proteasome function is 
activated by a pathway involving protein kinase A and cyclic 
AMP (cAMP). Selective phosphodiesterase-4 inhibitors such 
as rolipram which increase cAMP levels have been shown to 
increase proteasome function, reduce aggregated tau levels, 
and improve cognitive performance and ameliorate the ear-
ly stages of neurodegeneration in a genetically engineered 
mouse model of tauopathy (Myeku et al., 2016). 

Proteosomal activity can also be enhanced by using Pyr-
azolone containing small molecules which block USP14, 
a proteasome-associated deubiquitinating enzyme that 
inhibits the processing of ubiquitin–protein complexes des-
tined for degradation by the proteasome (Lee et al., 2010). 
PD169316 is a novel small molecule p38 MAPK inhibitor 
and a very potent activator of proteasome activity enhanced 
Proteolysis Targeting Chimeric (PROTAC)-mediated and 
ubiquitin-dependent protein degradation and decreases the 
levels of both overexpressed and endogenous α-synuclein in 
a bimolecular fluorescence complementation (BiFC) assay 
(Outeiro et al., 2008), without affecting the overall protein 
turnover. It also increased the viability of cells overexpress-
ing toxic α-synuclein assemblies (Leestemaker et al., 2017).

Gene Therapy 
Targeting mtDNA 
mtDNA are relatively unstable and susceptible to damage 
because they lack histones and have limited enzymatic repair 
system, as well as their crucial role in oxidative phosphoryla-
tion (OXPHOS). As a result, mtDNA mutations accumulate 
with age (Smigrodzki and Khan, 2005; Casoli et al., 2015) and 
are a significant risk factor for AD (Swerdlow et al., 2014). 

(i) The clustered regularly interspaced short palindromic 
repeats (CRISPR)/associated protein 9 (CRISPR/Cas9) tech-
nology has now been developed to produce mitochondrial 
sequence-specific cleavage with the potential of targeting 
specific mitochondrial genes (Jo et al., 2015). It utilizes a 
custom single guide RNA (sgRNA) fragment that acts as a 
guide to find the piece of DNA to be modified and binds to 
it and recruits mitoCas9, whose localization is restricted to 
mitochondria matrix. This mitoCas9 could be applied to edit 
mtDNA together with gRNA expression vectors without af-
fecting genomic DNA.

(ii) Transcription activator-like effector nucleases 
(TALENs) comprise a non-specific DNA-cleaving nuclease 
fused to a DNA-binding domain that can be easily engi-
neered so that TALENs can target essentially any sequence. 
When directed specifically at the mtDNA, mitoTALENs 
(Bacman et al., 2013) can be used to cleave the mutated 

mtDNA, efficiently reducing the levels of the targeted patho-
genic mtDNAs in the respective cell lines. This enables cells 
with heteroplasmic mutant mtDNA to recover respiratory 
capacity and oxidative phosphorylation enzymes activity 
(Hashimoto et al., 2015). 

Targeting mitochondrial cholesterol 
The accumulation of cholesterol in mitochondria can lead 
to mitochondrial dysfunction and may be a key step in AD 
progression. This dysfunction includes reduced fluidity of 
mitochondrial membranes (Colell et al., 2003), reduced ATP 
generation (Echegoyen et al., 1993; Yu et al., 2005) and de-
creased mitochondrial glutathione (GSH) import (Marí et 
al., 2006; Garcia-Ruiz et al., 2009) and may be a key step in 
AD progression (Aufschnaiter, et al., 2016). Furthermore, 
there is a direct link between altered membrane lipids and 
mitochondrial function, which is detrimental for brain bioen-
ergetics (Rosales-Corral et al., 2012). Cholesterol turnover in 
the brain is modulated by cytochrome P450 46A1 (CYP46A1) 
which initiates the major pathway of its elimination. In the 
APP23 AD mouse model, Aβ peptides accumulate following 
inhibition of CYP46A1 expression resulting in widespread 
neuronal death compared to normal mice. On the other 
hand, decreasing CYP46A1 gene expression in hippocampal 
neurons of normal mice increases the cholesterol concentra-
tion in neurons with subsequent cognitive deficits and hippo-
campal atrophy due to apoptotic neuronal death (Djelti et al., 
2015). Preclinical pharmacological tests are ongoing for gene 
therapy targeting CYP46A1 as a means to restore cholesterol 
metabolism in AD brain (Djelti et al., 2015) with clinical trials 
anticipated to begin in 2021 (www.brainvectis.com).

Biologics
The human mitochondrial genome can be manipulated from 
outside the cell to change expression and increase mitochon-
drial energy production. Mitochondrial transcription factor 
A (TFAM), has been engineered to rapidly pass through cell 
membranes and target mitochondria. Expression of human 
TFAM (hTFAM) significantly improved cognitive function, 
reducing accumulation of both 8-oxoguanine, an oxidized 
form of guanine, in mtDNA and intracellular Aβ in 3xTg-
AD mice and increasing expression of transthyretin, known 
to inhibit Aβ aggregation (Oka et al., 2016). We previously 
showed that recombinant-human TFAM (rhTFAM) acts on 
cultured cells carrying a mtDNA disease (Iyer et al., 2012) 
as well as lab mice, energizing the DNA of the mice’s mito-
chondria, improving the memory of aged mice (Iyer et al., 
2009; Thomas et al., 2012) and enabling them to run two 
times longer on their rotating rods than a control group co-
hort (Thomas et al., 2012).

Caloric Restriction (CR) 
CR, i.e. the limitation of ingested calories without malnu-
trition, is known to enhance animal life span and prevent 
age-related diseases, including neurological deficits, brain 
atrophy, and cognitive decline (Colman et al., 2009). CR in-
duces mitochondrial biogenesis (Cerqueira et al., 2012) in a 
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Figure 1 Approaches to enhance bioenergetic capacity in 
Alzheimer’s disease (AD). 
Cellular therapy and biologics can enhance mitochondrial biogenesis. 
Drug therapy can be used to reduce detrimental reactive oxygen species 
(ROS) without altering ROS signaling, rejuvenate proteasome function, 
inhibit the inflammasome. Gene therapy can manipulate mitochondri-
al DNA (mtDNA) without altering genomic DNA and also be targeted 
at regulating mitochondrial cholesterol. Exercise and caloric restriction 
can enhance mitochondrial function by mitohormesis. mitoROS: Mi-
tochondrial ROS.

NO•-mediated manner that culminates in increased mitoph-
agy and the production of new, more efficient mitochondria 
that have reduced membrane potential, produce less ROS, 
consume increased levels of oxygen and exhibit an improved 
ATP/ROS ratio - leading to decreased energy expenditure 
(Onyango et al., 2010). In particular, the tissue-specific ef-
fects of CR include the prevention of the age-related loss 
of mtDNA in rat liver (Cassano et al., 2006) and the partial 
preservation of TFAM binding to mtDNA in rat brain with 
enhanced reserve respiratory capacity and improved surviv-
al in neurons (Picca et al., 2013).

Exercise
Endurance exercise (EE) is neuroprotective against AD. 
Exercise activates continuous oxidative stress that induces 
a series of counteractive mechanisms that enhance mito-
chondrial function and mitigate ROS-induced neurotoxicity 
i.e., mitohormesis (Onyango et al., 2010; Radak et al., 2016), 
and this is especially important in the hippocampus which is 
particularly sensitive to oxidative stress (Intlekofer and Cot-
man, 2013). In animal models of AD, physical exercise re-
duces the noxious effects of oxidative stress, the production 
of total cholesterol, and insulin resistance, while increasing 
vascularization and angiogenesis, improving glucose metab-
olism as well as neurotrophic functions, thereby facilitating 
neurogenesis and synaptogenesis, and as a consequence 
improving memory and cognitive functions (Paillard et al., 
2015; Chen et al., 2016; Koo et al., 2016).

A combination of CR and EE is reported to deliver more 
beneficial effects than either regimen alone in ameliorating 
neurological and cognitive deficits (Cherif et al., 2016).

Conclusion
Mitochondrial impairment and loss play a critical role in 
neuronal degeneration and disease progression in AD. 
Damaged mitochondria are less bioenergetically efficient 
and produce increased amounts of ROS with detrimental 
structural and functional consequences for the AD neu-
rons. Dysfunctional mitochondrial accumulate from the 
combination of impaired mitophagy, which can also induce 
injurious inflammatory responses, and inadequate neuronal 
mitochondrial biogenesis.

Identifying mechanisms that are critical in enhancing mi-
tochondrial quality control, reducing bioenergetic defects 
while limiting generation of detrimental quantities of ROS 
may provide therapeutic opportunities that preserve neu-
ronal viability and function and delay or reverse features of 
AD (Figure 1).
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