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,e intraoperative registration of preoperative CT volumes is a key process of most computer-assisted orthopedic surgery (CAOS)
systems. In this work, is reported a newmethod for automatic registration of long bones, based on the segmentation of the bone cortical
in intraoperative 3D ultrasound images. A bone classifier was developed based on features, obtained from the principal component
analysis of the Hessian matrix, of every voxel in an intraoperative ultrasound volume. 3D freehand ultrasound was used for the
acquisition of the intraoperative ultrasound volumes. Corresponding bone surface segmentations in ultrasound and preoperative CT
imaging were used for the intraoperative registration. Validation on a phantom of the tibia produced encouraging results, with
a maximum mean segmentation error of 0.34mm (SD � 0.26mm) and a registration accuracy error of 0.64mm (SD � 0.49mm).

1. Introduction

,e use of image-guided surgery (IGS) systems has ex-
panded significantly for more than 20 years, in the number
of procedures performed and the variety of clinical appli-
cations, in part due to the continuous advancement of
computer power and medical imaging systems (as well as
tracking systems, registration methods, software develop-
ment frameworks, and visualization techniques). ,e main
clinical applications of IGS systems in orthopedics are
pedicle screw insertion, hip replacement, knee replacement,
and fracture alignment [1].

Scheufler et al. [2] reported the results of image-guided
instrumentation of the cervical, upper, and midthoracic
pedicles. ,e study considers the insertion of 248 pedicle
screws and reports safe and highly accurate results. Jeswani
et al. [3] reported the evaluation of CT image-guided nav-
igation of pedicle screws in small thoracic pedicles. ,e
results showed that image-guided navigation allows for safe,

effective, and accurate instrumentation of small (≤3mm)
to very small (≤2mm) thoracic pedicles. Deep et al. [4]
reviewed the literature on computer-assisted orthopedic
surgery (CAOS) for knee and hip arthroplasty; the authors
conclude that CAOS systems have gained a pivotal role in
lower limb arthroplasty. ,e use of image-guided surgery
(IGS) systems in trauma has been explored for the last eight
years approximately, and several methods and systems have
been developed with various levels of success [5].

,e recent development of minimally invasive arthro-
scopic procedures for fracture fixation in long bones has
substantially improved the accuracy of the procedures with
shorter patient recovery times. ,e success of the surgery
depends heavily on the skill and experience of the surgeon
[6]; however, the use of CAOS systems in fracture fixation
performed with arthroscopic procedures offers an improved
visualization of the surgical site with position feedback [7]. It
has also been reported that the use of CAOS, in arthroscopic
fracture reduction procedures, improves the accuracy of the
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surgery and achieves a shorter and more effective patient
recovery [8]. Buschbaum et al. [9] reported the development
of a virtual environment which helps the surgeon with
planning optimal reduction paths for femoral fractures. Weil
et al. [10] reviewed the literature on the evolution of image-
guided iliosacral screw placement, for the reduction of pelvic
ring fractures. 3D image-guided surgery is faster and more
accurate and uses less X-rays than conventional fluoroscopy-
guided surgery.,e authors stress the challenges of platform
interoperability, learning times, and cost reductions.

,e main stages of most CAOS systems are preoperative
image acquisition (usually computed tomography) of the
anatomic region of interest, computer-assisted modeling
and surgery planning, intraoperative image registration, and
finally surgery execution with some computer assistance
based on the surgical plan. Intraoperative registration is
a critical process of most CAOS systems, given that regis-
tration accuracy determines the precision of the surgical
visualization, planning, and navigation with respect to the
patient on the operating table [11].

Several methods have been developed for intraoperative
registration of preoperative CT volumes for CAOS, with
fiducial-based registration as the most widely used. Pre-
operatively, fiducial points are annotated in the medical
images or graphic models of the bones, and intraoperatively,
the same points are located in the bones of the patient using
a navigated tool [12]. Usually only a few anatomical land-
marks can be reliably selected; therefore, artificial fiducial
markers have been used. ,e marker is surgically attached
directly to the bone of the patient before the preoperative
study is acquired. ,is is an accurate registration approach;
however, it increases the complexity of the surgical pro-
cedure and the risk of complications due to the invasiveness
required to reach each fiducial point.

In order to minimize the invasiveness of the registration
process while maintaining high accuracy, image-based
methods have been developed. Image-based registration has
clear advantages: no need for artificial fiducials, therefore,
limiting bone exposure; high accuracy can be obtained through
registration of large surface areas. Fluoroscopy-based regis-
tration has been extensively used [7, 13, 14]. However, fluo-
roscopes are large and expensive and expose the patient and the
surgical staff to ionizing radiation. On the other hand, ultra-
sound is a convenient and safe intraoperative imaging mo-
dality; it is portable, low cost, and real time. Its main limitations
are low signal to noise ratio due to speckle, user-dependent
acquisition and interpretation, and inability to penetrate bones.

Previous studies have shown that the use of intraoperative
ultrasound is feasible to achieve errors that satisfy the ac-
curacy requirements of surgery. Herring et al. [15] reported
the use of spine phantoms submerged in water to locate fi-
ducial points in ultrasound images. Submillimetric accuracy
was reported for the registration of the fiducial points with the
spine phantom. Ionescu et al. [16] reported one of the first
registration methods based on the segmentation of the bone
cortical in ultrasound images. Yan et al. [17] achieved reg-
istration errors of less than 2.0mm in transpedicular screw
insertion in porcine cadaver experiments and also less than
1.0mm of error in phantom experiments.

Most methods for image-based registration of CT and
ultrasound can be classified as intensity-based or surface-
based methods. Surface-based registration requires a process
of feature extraction in both modalities, and registration
accuracy is then affected by feature extraction. Meanwhile,
intensity-based registration methods optimize a similarity
(objective) function. ,e following groups, Penney et al. [18],
Winter et al. [19], and Gill et al. [20], developed different
intensity-based registration methods and reported registra-
tion errors under 2.0mm. ,e most important difference
between both registration approaches (intensity or surface-
based) is its suitability for a specific surgical procedure.

In surface-based registration methods, the manual, or
automatic, segmentation of the bone surface in the intra-
operative ultrasound images is necessary. Kowal et al. [21]
developed an early automatic segmentation method for 2D
ultrasound images of bones, based on pixel intensity and
position, since bones usually appear bright and are located at
the top of the ultrasound images. ,e method is sensitive to
image contrast, having an average segmentation error of
0.42mm (SD � 0.19mm).

Beek et al. [22] reported a method for surface-based
registration during scaphoid fracture reduction surgery, 3D
ultrasound images are segmented semiautomatically with
the annotation of 10 seed points in the cortical of the bones,
registration is performed using iterative closest points, and
a segmentation error of 0.56mm (SD � 0.08mm) was re-
ported. Hacihaliloglu et al. [23] developed a bone segmentation
method for 3D ultrasound images, based on the Log-Gabor
filters and phase coherence, and a segmentation error of
0.28mm (SD � 0.24mm) was reported for validation in bone
phantoms.

In this work, is reported a new method for the auto-
matic segmentation of the bone cortical in 3D ultrasound
imaging. ,e method is based on a voxel classifier, trained
with features obtained from the eigenanalysis of the Hessian
matrix corresponding to every voxel in the ultrasound vol-
ume. ,e segmentation of the bone surface in an ultrasound
volume is subsequently used for intraoperative registration of
the corresponding surface segmented in a CT volume. In the
following sections, are reported the acquisition of 3D free-
hand ultrasound volumes of long bones, the segmentation of
the bone surface (cortical), and the registration of a pre-
operative CTvolume. Experimental validation was performed
on a phantom of the tibia.

2. Bone Segmentation and
Registration Methods

2.1. Freehand Acquisition and Reconstruction of 3D Ultra-
sound Volumes. 3D freehand ultrasound images were ac-
quired with a conventional 2D scanner (Aloka 1000, Hitachi
Aloka Medical America, Inc.) using a 7.5MHz probe. An
optical tracker (Polaris Spectra, Northern Digital, Inc.) was
used to navigate the ultrasound probe. Ultrasound B-mode
images were continuously acquired using a frame grabber
(Epiphan Systems Inc.). For the reconstruction of the 3D
ultrasound volumes, the probe was calibrated using the cross-
wire methodology [24], and 3D volumes were reconstructed
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using the pixel-based method reported in [25]. Full details of
the acquisition and reconstruction of 3D freehand ultrasound
images have been published elsewhere [26, 27].

2.2. Segmentation of the Bone Surface in 3D Ultrasound.
,e segmentation method has two main stages: bone surface
enhancement, using feature extraction based on differential
geometry, and surface segmentation using a Bayes classifier
and a region growing algorithm. Bone surfaces in an ul-
trasound image are identified as bright regions above dark
regions caused by the acoustic shadows produced by the
bone. High-intensity echoes produced by the bone surface
can be observed in ultrasound images as bright lines with
a width of 2–4mm. Jain and Taylor [28] have shown that
a good estimate of the bone cortical in an ultrasound image
lies at the center line of the bright echo line. ,e center line
of the ultrasound echoes corresponds to the maximum
principal curvature in the, orthogonal, gradient direction.
,is allows for the detection of the bone cortical using
a method based on ridge detection as described below.

2.2.1. Bone Surface Enhancement in 3D Ultrasound. ,e
second derivatives, in each direction around a voxel in an ul-
trasound volume, provide information about the type of geo-
metric shape to which the voxel belongs. ,e geometric shapes
could be blobs, tubes, or surfaces [29]. Shape information was
obtained from the principal component analysis of the Hessian
matrix calculated on each voxel I(x, y, z) in the volume. ,e
Hessian matrix (2) was constructed with the second partial
directional derivatives, which are approximated with the con-
volution of every voxel in the volume I(x, y, z) with
a Gaussian kernel (1) in each direction,

G(x, σ) �
1
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σ)n exp−

‖x‖2

2σ2
, (1)

where σ is the scale factor of the kernel. ,e size of the kernel
is determined as three times σ. ,e Hessian matrix of a voxel
is a symmetric matrix that contains the partial derivatives in
all the possible directions as shown in the following equation:
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where each zijI represents the second order partial de-
rivative of the voxel in the directions i and j. ,e principal
component analysis of the Hessian matrix results in three
eigenvalues λ1, λ2, and λ3 and the corresponding eigen-
vectors v1, v2, and v3, for each voxel in the ultrasound
volume. If λ1 ≥ λ2 ≥ λ3, there is a set of conditions that de-
termines the membership of a voxel to a certain type of
geometric shape which can be tubular, spherical, or a sur-
face. ,e conditions are shown in Table 1.

Based on the conditions shown in Table 1, voxels that
belong to a surface were chosen and assigned a new value
given by (3). ,is highlighted all the voxels that had a high
probability of belonging to a surface [29],
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Equations (3) and (4) represent the condition that one
voxel belongs to a surface.,e condition λ3≪ λ2≃ λ1≃ 0 was
expressed as λ3≪ λ2 ≃ 0 and λ3≪ λ1≃ 0; those inequalities
are described by (4) where the value of ω decreases with the
deviation from the condition λ1≃ 0. As recommended by
Sato et al. [29], we choose the values α � 0.5 and c � 1.

2.2.2. Bone Surface Extraction in 3D Ultrasound. A bone
segmentation algorithm based on a Bayes classifier was de-
veloped. ,e classifier was trained with features of the voxel
intensity and the first, second, and third moments of the en-
hanced voxel values previously calculated. ,ree classes were
considered for training: bone, soft tissue, and acoustic shadow
produced by the bone. For each voxel, a feature vector was
constructed as follows: x

→
(x, y, z) � [I(x, y, z), E(x, y, z),

μ, σ2, c], where I(x, y, z) and E(x, y, z) are the original
image and the enhanced image values at a specific position; μ,
σ2, and c are the mean, variance, and skewness in a (9× 9× 9)

window centered in E(x, y, z). For each vector x
→

(x, y, z),
the probability of membership to each class, bone, tissue, and
shadow, was estimated using the Bayes posterior probability
defined in the following equation:
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where P(Ck) is the a priori probability for each class ob-
tained from the training sample proportions and P( x

→
) is the

a priori probability of vector x
→. P( x
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|Ck) is the conditional

probability of x
→ given Ck. To estimate P( x

→
|Ck), we as-

sumed a normal distribution for each class (bone, tissue, and
shadow) as defined in the following equation [30]:
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Table 1: Basic conditions for geometric structure discrimination.

Structure Relation condition
Surface λ3≪ λ2≃λ1≃ 0
Tube λ3≃ λ2≪ λ1≃ 0
Sphere λ3≃ λ2≃ λ1≪ 0
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where 􏽐 is the covariance matrix and μ→ is the mean of a set of
vectors x

→ that belong to the class. Substituting (6) in (5) and
discarding P( x

→
), we can calculate a discriminant function Yk:
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Equation (7) allowed us to classify each voxel in an
ultrasound volume as follows: for each voxel, we calculate
the corresponding vector x

→ and evaluate (7) for each of the
classes: tissue, bone, and shadow. A voxel was labeled as
bone (i.e., labeled as “1”) if Ybone( x

→
)>Ytissue( x

→
) and

Ybone( x
→

)>Yshadow( x
→

); otherwise, it was labeled as back-
ground (i.e., labeled as “0”).

,e mean and covariance of each class (bone, tissue, and
shadow) were estimated on a small training volume (150 ×

150 × 150) which should include voxels of the three classes. To
produce one complete surface with a minimum of holes,
a region growing process was also applied [31]. Seed points
were selected from the 0.01 percent of the previously classified
bone voxels with the highest probability. Starting from these
seed points, the bone surface was segmented considering all
the neighboring voxels previously classified as bone.

2.3. Intraoperative Registration of CT Volumes. ,e bone
surface (cortical) was segmented manually in the pre-
operative CT volume, and automatically in the intra-
operative ultrasound volume, using the method reported in
the previous section. From each segmentation, the corre-
sponding mesh was generated using Marching Cubes [32],
and each mesh has around 2.5 × 105 vertices. Registration
was performed in two stages. First, a few points (three or
four) are selected manually with a coarse accuracy, in both
meshes, to have an initial rough alignment required by the
iterative closest point (ICP) method. ,en a subset of 2000
points was randomly acquired from both meshes. Mesh
registration was performed using iterative closest points [33].
,e software was developed using 3D Slicer [34] with spe-
cific modules developed for this research using ITK (http://
www.itk.org) and VTK (http://www.vtk.org).

3. Results and Discussion

,e accuracy of the bone segmentation and registration was
evaluated on a realistic phantom of the tibia, which was
constructed with a synthetic tibial bone (ERP #1117-42,
Sawbones Inc., Vashon, WA, USA) immersed in a hydrogel
made of polyvinyl alcohol (PVA) diluted in 95% of water. It
has been shown that PVA resembles the appearance and the
mechanical properties of soft tissue on ultrasound images
[35]. A passive tracking tool was firmly attached to the distal
end of the tibia phantom. Figure 1(a) shows a photo of the
PVA phantom of the tibia. ,e dimensions and shape of the
tibia phantom were accurately measured using microCT.

3.1. CT Image Acquisition. MicroCT (Nikon Metrology
XTH 225) with a 2048 × 2048 pixel matrix was used to scan

the phantom of the tibia including the tracking tool; imaging
settings were 220 kV, 61 µA, 3142 projections, and one image
per projection, and no physical filter was used.,e final volume
dimensions were 1042 × 1250 × 3201 voxels in (x, y, z) axes,
respectively, with an isometric voxel size of 0.115mm. ,e
acquired CT volume had a very high resolution that helps
improving the accuracy measurements due to a small reso-
lution error (0.057mm) in the CT data. Figure 1(c) shows
three orthogonal views of the acquired CT volume of the
phantom.

3.2. 3D Freehand Ultrasound Image Acquisition. 3D free-
hand ultrasound images were acquired from the tibia
phantom, and the volume was reconstructed as described in
Section 2.1.,e origin of our coordinate frame was located at
the center of one of the reflecting spheres of the tracking tool
attached to the tibial bone, shown in Figure 1(a), and the
voxel size for the reconstruction of the ultrasound volume
was the same of the CT: 0.115mm. ,e phantom was
scanned with the ultrasound probe using the same water-
based gel used for clinical ultrasound scans. ,e phantom
was scanned at different sections always including the tibial
plateau. In Figure 1(b), are shown three orthogonal views of
the acquired ultrasound volume of the phantom.

3.3. 3D Ultrasound Segmentation. A small ultrasound vol-
ume (150 × 150 × 150 voxels) was acquired from the test
phantom, for training of the segmentation method. Bone,
tissue, and shadow regions were manually annotated. ,e
corresponding voxel feature values were stored as the
training sample for the Bayes classifier described in Section
2.2. ,is training set was used for all the experiments re-
ported below, and the training process was performed only
once for all experiments.

,e accuracy of the bone segmentation of the intraopera-
tive ultrasound volumes was measured using as a reference
the manual segmentation of the bone in the high-resolution
CT data. ,is segmentation was approved by an expert ortho-
pedic surgeon. As previouslymentioned, all the intraoperative
ultrasound images were acquired with the origin of the navi-
gation reference frame located at the tracking tool attached to
the plastic bone. Since the position of the tracking spheres in
the corresponding CTvolume was determined, the CTand the
ultrasound images were accurately registered. All the remaining
errors between the bone surface in CT and ultrasound were
mainly due to segmentation errors of the bone cortical in the
ultrasound volume (as illustrated in Figure 2).

Twelve acquisitions of 3D freehand ultrasound volumes
were performed at different sections of the phantom of the
tibia, which was located each time at different positions and
orientations on the experiment table. ,e bone cortical on
each volume was automatically segmented, and the corre-
sponding mesh was constructed. Table 2 summarizes the
mean distances of each node of the ultrasound mesh to
the nearest node of the reference CT mesh. As can be
observed in Table 2, the maximummean segmentation error
was 0.334mm (SD � 0.257mm) for experiment four, and
Figure 3 shows graphically the segmentation errors. ,e
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overall mean segmentation error for the twelve experi-
ments performed was 0.21mm (SD � 0.061mm). ,e av-
erage processing time per experiment including volume
reconstruction and volume segmentation was about five
minutes. Holes in the segmentation, due to shadows in the
acquisition of bone ultrasound, were not taken into account.

3.4. Intraoperative Registration. Twelve registration exper-
iments were performed; on each one of them, the mesh
obtained from the manual segmentation of the bone

surface in the CT images of the phantom was registered
with the tibia phantom located at different positions on the
experiment table; using the method described in Section
2.3, the errors of the registration process were measured as
follows.

For each position of the phantom on the table, a 3D
freehand ultrasound volume of a different section of the tibia
was acquired. ,e bone surface in the ultrasound volume
was automatically segmented using the method described in
Section 2.2.2; from the resulting segmentation, a mesh called
MUS-intraop was constructed. ,e mesh constructed from the

(a)

(b)

(c)

Figure 1: Polyvinyl alcohol (PVA) phantom used in this study. (a) PVA phantom with the tracking tool attached. (b) ,ree orthogonal
views from a 3D ultrasound volume of the phantom acquired, with the 3D freehand ultrasound technique. (c) ,ree orthogonal views from
the CT volume of the phantom.
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manual segmentation of the bone surface in the CT images
of the phantom, called MCT-preop was registered with
MUS-intraop using iterative closest points as described in

Section 2.3. ,e resulting registered CT mesh was called
MCT-intraop (Figure 4(a)). In order to have a reference to
measure the registration error, MCT-preop was also registered
with the phantom on each position using the transformation
given by the optical tracker, and this accurately registered
CT mesh was called MCT-ref (Figure 4(b)). ,e accuracy of
each registration experiment was then measured between
the registered CT mesh (MCT-intraop) and the reference CT
mesh of the tibia phantom (MCT-ref ), as described below.

For each experiment, the same preoperative CT
mesh MCT-preop was registered against the tibia phantom by
two independent methods: MCT-intraop registered with the
method reported in Section 2.3 and MCT-ref exactly regis-
tered using the tracking tool. Target registration errors
(TREs) of each experiment were measured as the mean
distance between all corresponding vertices in both regis-
trations. Figure 5 shows the results of one experiment before
(Figure 5(a)) and after (Figure 5(b)) registration, the ref-
erence mesh is shown in yellow, the ultrasound generated
mesh is shown in blue, and both meshes are shown over-
lapping on one slice of the ultrasound volume. Figure 6
shows the errors for six experiments, showing the ultrasound

(a) (b) (c) (d) (e)

(f) (g) (h)

Figure 2: Results of the segmentation process. (a) One slice of the ultrasound volume of the tibia phantom. (b) Same slice in A with the CT
segmentation overlapped. (c) Same slice in A with the result of the ultrasound segmentation overlapped. (d) Same slice in A with the result of
the ultrasound and CTsegmentations overlapped. (e) Ultrasound and CTreference segmentations overlapped. (f) 3D reconstruction of the
resulting ultrasound segmentation of one experiment. (g) 3D reconstruction of the CT reference segmentation. (h) 3D reconstructions
ultrasound and CT overlapped.

Table 2: Segmentation errors of the twelve experiments performed.
For each experiment, the maximum, mean, and standard deviation
errors, as well as the number of mesh vertices resulting from the
segmented ultrasound volume are shown.

Experiment
number

Maximum
(mm)

Mean
(mm)

SD
(mm)

Number
of vertices

1 1.586 0.164 0.146 4.0E5
2 1.153 0.14 0.096 1.2E5
3 2.314 0.158 0.148 4.2E4
4 2.566 0.334 0.257 3.5E5
5 2.064 0.253 0.205 2.8E5
6 2.141 0.207 0.164 2.7E5
7 2.003 0.276 0.227 3.6E5
8 2.316 0.211 0.216 2.2E5
9 4.292 0.267 0.224 3.7E5
10 1.216 0.159 0.119 1.1E5
11 1.232 0.199 0.169 1.1E5
12 1.489 0.15 0.135 2.0E5
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registered mesh in red and the TRE in false color on the
reference mesh. ,e TRE values for all the experiments are
reported in Table 3 and are shown graphically in Figure 7.
,e average time taken by the registration process was
approximately two minutes.

3.5.Discussion. A fully automatic 3Dmethod was developed
for the segmentation of the cortical bone in 3D ultrasound
images, acquired with the 3D ultrasound freehand tech-
nique, which enables the acquisition of large volumes. ,e
eigenvalues, corresponding to the principal component
vectors, of the 3D Hessian matrix of each voxel in an ul-
trasound volume, were used to enhance the bone surface
following the work of Sato et al. [29]. A Bayes classifier
was trained with five features: the original and enhanced
voxel intensity values, as well as the first, second, and third
moments of the enhanced voxel values. Validation of
the segmentation method on a realistic phantom of the
tibia immersed in PVA, allowed for accurate estimates of
the segmentation errors, since PVA has mechanical prop-
erties similar to those of tissue in ultrasound imaging. ,e

acquisition of ultrasound images was performed with the
same water-based gel used clinically.

Segmentation errors were measured as the distances
between all the points of the segmented ultrasound mesh
and the nearest points in the reference CT mesh (Section
3.3). Table 2 summarizes the segmentation errors obtained
for twelve different ultrasound volumes of the same phan-
tom (approximate volume size of 850 × 850 × 850 voxels that
corresponds to 10 × 10 × 10 cm). A maximummean error of
0.334mm (SD � 0.257mm) for experiment four is shown.
Figure 3 shows the distribution of all the mean error values,
and the overall mean for the twelve segmentation experi-
ments performed was 0.21mm (SD � 0.061mm). ,ese
results show improvement over previously reported
methods for the segmentation of bones in 3D ultrasound.
Kowal et al. [21] reported the automatic segmentation of
bone contours in 2D ultrasound images, with a mean seg-
mentation error of the bone contour lines of 0.42mm
(SD � 0.19mm). Beek et al. [22] reported an IGS system for
the fixation of scaphoid fractures based on preoperative CT
and intraoperative ultrasound images. A semiautomatic
method was developed for the segmentation of bone
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Figure 3: Distribution of the segmentation errors. ,e height of each bar represents the mean distance error, and the black line represents
the standard deviation for each experiment. ,e mean error values are shown on top of each bar.
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Figure 4: (a) Registration of the preoperative CTmesh (MCT-preop) and the intraoperative ultrasound mesh (MUS-intraop); the registered CT
mesh (MCT-intraop) is shown in green. (b) Registration of the preoperative CT mesh (MCT-preop) using the tracking tool to achieve an
accurately registered mesh MCT-ref .
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contours in 2D ultrasound. Validation was performed on
plastic phantoms of the scaphoid bone immersed in water.
,e authors reported a mean segmentation error of 0.56mm
(SD � 0.08mm). Hacihaliloglu et al. [23] reported an au-
tomatic method for bone segmentation based on Log-Gabor
filters and phase coherence. A mean segmentation error of
0.28mm (SD � 0.24mm) was reported for validation on
a realistic bovine bone phantom immersed in solid gel.

,e bone surfaces, obtained from the automatic segmen-
tation of the ultrasound volumes, were used to register a high-
resolution CTmodel of the tibia using iterative closest points.
Twelve intraoperative registration experiments were performed

using the same tibia phantom located at different positions on
the experiment table. ,e target registration errors (TREs) of
each experiment were calculated as the distances between all
corresponding vertices in the registered CTmesh (MCT-intraop)
and a reference CTmesh (Mct-ref ). Table 3 shows a maximum
mean TRE of 1.541mm (SD � 0.229mm) for experiment two.
,e overall mean TRE for the twelve experiments was 0.64mm
which is smaller than other TREs previously reported: in the
work of Beek et al. [22], was reported a mean TRE of 3.32mm
(SD � 1.41mm) for three alumina beads of 3.0mm of di-
ameter, which includes the uncertainty to locate the exact
center of the alumina beads; Penney et al. [18] reported a RMS

(a)

(b)

(c)

Figure 5: (a) Orthogonal views of the ultrasound volume with the unregistered ultrasound mesh (shown in blue) and registered reference
CTmesh (shown in yellow). (b) Orthogonal views of the ultrasound volume with the registered ultrasound and CTmeshes overlapped.
(c) Ultrasound (blue) and CT (yellow) 3D meshes before (left) and after (right) registration.
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TRE of 2.4mm or less for 3 registration experiments on the left
and right femurs of cadavers.

Figure 6 shows the target registration errors (TREs) il-
lustrated in a false color scale, for each point on the surface of
the CT. As expected, smaller registration errors are obtained
when large areas of the tibia phantom are scanned with the

ultrasound probe.,e lower row of Figure 6 shows three cases
with mean target registration errors smaller than 0.24mm.

,e shape of the diaphysis (i.e., the middle section) in long
bones is very similar along the bone. ,is makes it difficult to
achieve an accurate registration if the scanned area contains
only the diaphysis of the bone. In order to obtain better accuracy
in the registration process, it is advisable to include part of the
epiphysis (i.e., ends of the long bone) into the scan since the
epiphysis contains features that can be capturedwith ultrasound
images. Figure 6 shows that when the scanned areas do not
contain part of the epiphysis, the registration error is larger.

,emean registration time including ultrasound volume
reconstruction, surface segmentation, and ICP registration
was approximately eight minutes. All computations were
made on a Mac Pro with a 2.8GHz Quad Core Intel Xeon
processor and 16GB of RAM.

4. Conclusions

Fast and accurate intraoperative registration is a critical stage of
most computer-assisted orthopedic surgery (CAOS) systems.
,e use of intraoperative ultrasound for image-guided regis-
tration in CAOS has several advantages: low cost, no exposure

Figure 6: Results of six different experiments. ,e result of the bone segmentation in the intraoperative ultrasound is shown in red. ,e
registered CTmesh is shown with a false color scale illustrating the target registration error (in mm), for each point on the surface of the CT.
,e mean target registration error, of each experiment, is shown as TRE on the top-right corner of each subfigure.

Table 3: TRE of the twelve experiments performed.

Experiment
number

Minimum
(mm)

Maximum
(mm)

Mean
(mm)

SD
(mm)

1 0.048 0.574 0.324 0.114
2 1.158 2.027 1.541 0.229
3 0.25 2.771 1.341 0.405
4 1.003 1.529 1.247 0.127
5 0.05 0.195 0.101 0.029
6 0.066 0.513 0.212 0.010
7 0.064 0.457 0.235 0.087
8 0.243 1.471 0.612 0.286
9 0.128 1.944 0.834 0.358
10 0.393 0.476 0.420 0.019
11 0.033 1.016 0.472 0.196
12 0.103 0.64 0.346 0.121
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to ionizing radiation, and compact size. However, the accurate
registration of CT and ultrasound of bones is still a research
challenge due to the low signal to noise ratio of ultrasound
imaging and its incapability to penetrate bones.

A new method for the intraoperative registration of
preoperative CT volumes of long bones was reported in this
work. ,e method is based on the automatic 3D segmen-
tation of the bone cortical in 3D freehand ultrasound im-
aging which, in turn, enables the acquisition of large bone
sections. ,e method is able to segment the bone surface in
large ultrasound volumes with an overall mean segmenta-
tion error of 0.21mm (SD � 0.061mm). ,e approximate
segmentation time per volume was 1min (for volumes of
850 × 850 × 850 voxels).,e corresponding preoperative CT
was manually segmented, and both meshes (ultrasound and
CT) were accurately registered using iterative closest points.
Accurate registration was achieved, with minimum user
interaction.,emaximum TRE was under 1.55mm, and the
mean maximum TRE was 0.64mm.

It has been observed that long bones have very similar
surface shapes in completely different locations. A con-
ventional nonnavigated 3D ultrasound probe can only scan
a small part of the bone. ,is makes 3D freehand ultrasound
as an optimal choice for intraoperative registration of long
bones since large parts of the bone can be scanned and
automatically segmented with the method reported. After
the acquisition of the 3D ultrasound images, the total
processing time was approximately 8min, with 5min. for
volume reconstruction, 1min. for bone segmentation, and
2min. for CT registration. Ultrasound volume reconstruc-
tion is suitable for parallel implementations which can
reduce significantly the total reconstruction times. Atesok
et al. [5] reported that, on average, 14min. of extra surgical
time are added for 2D fluoroscopic navigation in fracture
reduction surgery. ,is extra time is acceptable for the
surgeons given the localization advantages of navigated
instruments during minimally invasive procedures.

,e image segmentation and registration methods re-
ported here are suitable for minimally invasive surgery of
long bones such as fracture reduction of the femur and tibia.

Other arthroscopic surgical procedures such as total knee
replacement will be subject to the possibilities to scan the
surgical site with ultrasound imaging.
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