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Strengths and limitations of this study

►► The findings of this study might inform decision-
makers redesigning emergency medical services 
about preferences of potential users of that service.

►► Participants were randomly sampled from specific 
population groups registered with Healthwatch or 
Northumbria Healthcare National Health Service 
(NHS) Foundation Trust, and therefore may not rep-
resent the general population.

►► The attributes used in the discrete choice experi-
ment and their levels were framed to closely rep-
resent emergency care in NHS England; however, 
some other important attributes may have been left 
out.

Abstract
Objectives  It is desirable that public preferences are 
established and incorporated in emergency healthcare 
reforms. The aim of this study was to investigate 
preferences for local versus centralised provision of all 
emergency medical services (EMS) and explore what 
individuals think are important considerations for EMS 
delivery.
Design  A discrete choice experiment was conducted. The 
attributes used in the choice scenarios were: travel time 
to the hospital, waiting time to be seen, length of stay in 
the hospital, risks of dying, readmission and opportunity 
for outpatient care after emergency treatment at a local 
hospital.
Setting  North East England.
Participants  Participants were a randomly sampled 
general population, aged 16 years or above recruited 
from Healthwatch Northumberland network database of 
lay members and from clinical contact with Northumbria 
Healthcare National Health Service Foundation Trust via 
Patient Experience Team.
Primary and secondary outcome measures  Analysis 
used logistic regression modelling techniques to 
determine the preference of each attribute. Marginal 
rates of substitution between attributes were estimated to 
understand the trade-offs individuals were willing to make.
Results  Responses were obtained from 148 people (62 
completed a web and 86 a postal version). Respondents 
preferred shorter travel time to hospital, shorter waiting 
time, fewer number of days in hospital, low risk of death, 
low risk of readmission and outpatient follow-up care in 
their local hospital. However, individuals were willing to 
trade off increased travel time and waiting time for high-
quality centralised care. Individuals were willing to travel 
9 min more for a 1-day reduction in length of stay in the 
hospital, 38 min for a 1% reduction in risk of death and 
112 min for having outpatient follow-up care at their local 
hospital.
Conclusions  People value centralised EMS if it provides 
higher quality care and are willing to travel further and 
wait longer.

Background
The National Health Services (NHS) in the 
UK faces growing service demands and costs 
which threaten its sustainability and financial 
stability.1 A radical and transformative change 
is essential for the NHS to maintain safety and 

quality, but this may reduce immediate access 
to care for some patients. Increased funding 
could be a part of the solution but the NHS 
budget is limited. While all areas of health-
care face challenges and major changes in 
service provision, those faced by acute hospi-
tals are significant because outcomes can 
depend on time-critical treatments, demand 
is rising annually and they are supported by a 
major proportion of the healthcare budget.2

In the UK, consolidation of specialised 
medical care is one of the service models envis-
aged by the NHS ‘five year forward view’.3 It is 
recommended that emergency care be recon-
figured into larger specialised emergency 
units providing earlier multidisciplinary 
expertise and associated facilities.4 While 
there exists some condition specific evidence 
that centralisation of specialist services yields 
better clinical outcomes and savings,5–7 there 
are arguments against centralisation in terms 
of poorer access, increased travel time and 
costs, as well as preferences expressed by 
patients and the public around the provision 
of local services.8–12

Understanding public preferences about 
the location and nature of healthcare 
providers has become an important influ-
ence on policy and many European coun-
tries have incorporated this information 
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Table 1  Attributes and levels used in the discrete choice experiment

Attributes Levels

Travel time to hospital <30 min,1 hour, 1 and half hours, 2 hours or more

Waiting time in the A&E department to be seen by a 
doctor or nurse who can provide treatment

30 min,1 hour, 2 and half hours,4 hours or more

Length of stay at the hospital before going home 1 day or less, 3 days, 5 days,
6 days or more

Risk of dying from the illness Low (less than 1 in 100 patients),
Mild (3 in 100 patients),
Moderate (5 in 100 patients),
High (more than 7 in 100 patients)

Risk of being readmitted to the hospital after going 
home

Low (less than 1 in 100 patients),
Mild (3 in 100 patients),
Moderate (5 in 100 patients),
High (more than 7 in 100 patients)

Outpatient care after emergency treatment At your local hospital,
At a hospital which is about an extra 1 hour travel time from your local 
hospital

A&E: Accident and Emergency

into decisions about the organisation of their health-
care systems.13 Incorporating patient views in healthcare 
policy decisions may improve the uptake and efficiency of 
services. Including patient/public views may also lead to 
better quality research on treatments and service provi-
sion. However, little is known about preferences for the 
centralisation of emergency medical services (EMS).

The aim of this study was to examine public preferences 
for the different attributes of centralised EMS in England, 
reported using tradeoffs between attributes which reflect 
the key consequences.

Methods
A discrete choice experiment (DCE) was used to explore 
preferences. DCEs provide rich data sources for economic 
evaluation and decision-making and offer several other 
advantages compared with other stated preference elic-
itation methods.14 15 DCEs involve presenting individuals 
with a series of hypothetical choices which differ in attri-
butes (characteristics) and their magnitude or levels, and 
ask them to choose the alternative they prefer in each 
set. The choices that individuals make from a DCE survey 
enable researchers to understand the value that individ-
uals place on various levels of healthcare provision attri-
butes. A DCE also allows quantification of the relative 
importance of attributes in terms of willingness to pay 
and marginal rates of substitution (MRS).16

Attributes and level
The attributes associated with centralisation were iden-
tified from literature17–21 and also reflected the key 
performance measures commonly used in EMS22 and 
key quality indicators in NHS England (table 1).10 23 24 A 
long list of attributes and their levels was identified from 
the literature, but the list was shortened based on their 

relative importance in our study and for the NHS. After 
discussions within the research team which also consisted 
of an experienced senior clinician working in emergency 
medicine, the identified attributes were assigned discrete 
levels that were likely to be applicable within the UK 
NHS and closely reflected the reality.25 The design was 
kept as simple as possible so that respondents can make 
a tradeoff easily.

Questionnaire design
A full factorial design incorporating all possible combi-
nations of attributes and levels would have resulted in 
2048 (ie, 45×21) possible scenarios. Therefore, an effi-
cient design, which maximises the statistical efficiency 
of designs by minimising the predicted standard errors 
of the parameter estimates (usually the D-error statistic), 
was used.26 An efficient fractional factorial design26 27 
still generated 20 choice sets. To minimise the potential 
cognitive burden to the respondents, the choice sets were 
blocked into 2, with each block having 10 choice sets 
(see figure 1 for a choice set example). The generation 
of efficient design requires a priori knowledge of attri-
butes used in the choice model.28 The prior28 estimates 
of attribute coefficients used in the final efficient design 
were derived from a pilot survey (see below). A further 
three choice sets were added to each block as tests of tran-
sitivity29 30 and monotonicity29—which are tests of theo-
retical validity and rationality of choice sets used in the 
DCE. Theoretical validity and rationality checks assessed 
whether the parameters moved in the expected direction. 
For example, it was expected that shorter travel time to 
a hospital is preferred over longer travel time duration. 
Further details on transitivity and monotonicity tests used 
are in the online supplementary file.
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Figure 1  Example of choice sets used in the discrete choice experiment.

Altogether, the final design included 13 choice sets in 
each of the two blocks of DCE choice sets, which were 
randomly allocated to participants. Choice sets were 
defined as efficient design using Ngene software V.1.1.1.31

The questionnaire also included questions on sociode-
mographic information such as gender, age group and 
generic health information. Also included was a question 
asking the respondents how difficult the DCE task was 
for them. The respondents were asked to make a forced 
choice between two alternative hospitals; an opt-out alter-
native of ‘no treatment’ in a healthcare emergency lacked 
realism. The questionnaire used in the survey are in the 
online supplementary file.

Pretesting and piloting
The understanding of the attributes and levels was 
pretested in house among members of the Institute of 
Health and Society, Newcastle University and piloted 
on a small non-random sample of potential participants 
(n=26). Following the pretest and pilot, the wording and 
display of the survey introduction and the choice sets 
were revised and simplified. The attribute coefficients 

generated from the pilot were used as priors to generate 
the final questionnaire design as described earlier. The 
priors generated from the pilot are presented in the 
online supplementary file table S1.

Sample
The survey sample was recruited from the general public 
over 16 years of age either registered with Healthwatch 
Northumberland network database of lay members or 
with clinical contact with Northumbria Healthcare NHS 
Foundation Trust and accessed via the Patient Experience 
Team. Participants were approached between January-
April 2016. The sample represented a general population 
whose EMS had recently been centralised. Grounded on 
the recommendations to centralise EMS,3 4 a new special-
ised emergency care hospital was built at Cramlington 
in Northumberland, the first of its kind in the UK, with 
the aim to provide improved quality of care by providing 
faster access to consultants and diagnostics.10 Before June 
2015, the EMS were provided from the A&E departments 
at three general hospitals within the area: North Tyne-
side, Wansbeck and Hexham. All of these hospitals are 
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operated by Northumbria Healthcare NHS Foundation 
Trust and they accounted for 90% of all A&E visits by the 
population of Northumberland.10 The emergency care 
provided by the three general hospitals was centralised 
into the new specialised hospital.

Sample size estimation methods in healthcare DCE 
studies are currently developing.32 Therefore, the sample 
required for this study was estimated following the rule 
of thumb suggested by Johnson and Orme32–34 using the 
equation n>500 L/TA where L is the largest number of 
levels for any of the choice attributes, T is the number of 
choice sets and A is the number of alternatives assessed. 
The required minimum sample was estimated as 100 
respondents. However, much larger sample was targeted 
to allow for heterogeneity between respondents.

Data were collected using postal questionnaires and 
online. Potential respondents with an email address regis-
tered were sent an electronic link to the survey hosted 
by an online commercial platform, Qualtrics (​www.​qual-
trics.​com). Whereas those without email access were sent 
a paper-copy of the survey. Participants previously iden-
tified with visual impairments were sent a paper format 
of the questionnaire in large font size. The invitation to 
complete the survey questionnaire explained a descrip-
tion of each of the characteristics used, and how the 
responses would be used. A clear statement of voluntary 
participation was included.

Data analysis
The survey data analysis was based on the random utility 
framework—the underlying theory that underpins the 
DCEs.35 It has been argued that failure of a validity test 
would not necessarily mean the respondent was irrational 
and deletion of responses that fail the validity tests may 
result in removal of valid preferences which may lead 
to biassed results.29 Moreover, random utility theory is 
expected to be robust to such violations in validity tests.29 
Furthermore, qualitative research in this area36 37 also 
revealed that respondents failing the validity tests had 
rational reasons for doing so. Therefore, all respondents 
regardless of failing the validity tests were included in the 
final analysis.

A range of logistic regression modelling approaches 
were used. Multinomial logit (MNL) (also known as 
conditional logit analyses), mixed multinomial logit 
(MIXL) and generalised multinomial logit (GMNL) 
models were fitted to estimate changes in the preference 
or utility of each attribute.38 MNL assumed homogenous 
choice across the respondent sample and also assessed 
the significance of attribute interactions with respondent 
characteristics. However, the MNL models are based on 
assumptions of independence of irrelevant alternatives 
(IIA), independence and identical distribution of error 
terms (IID) across observations and no heterogeneity 
across respondents. This may be restrictive and limited 
in describing human choice behaviour.38 Therefore, the 
MIXL model,39 40 a popular extension of the MNL model, 
was also used, which while keeping the IID and not making 

the IIA assumptions eliminates the limitations of MNL 
and allowed for choice heterogeneity across respondents. 
It has been argued that GMNL model allows for the scale 
heterogeneity by accounting for some respondents who 
exhibit more random (ie, relatively insensitive to attri-
butes) and extreme choices (ie, near lexicographic-always 
choosing a particular attribute regardless of others), and 
thus offers a better fit, outperforming the MIXL model.41 
Therefore, GMNL model was also used in the analysis. 
A constant term was not included. Akaike information 
criterion (AIC) and Bayesian information criterion (BIC) 
were used as measures of the model fit. The lower the AIC 
and BIC measures, the more preferred the model.42

MRS were calculated, across all models (to account for 
the models limitations described earlier), to compare 
respondent preferences on a common value scale and 
understand the tradeoffs made between two attributes. 
MRS values were computed using travel time to hospital 
and time waiting to be seen to present the preferences, 
so that the tradeoffs could be compared in terms of will-
ingness to travel and willingness to wait. All analyses were 
undertaken using R statistical programme V.3.2.4.43

Patient and public involvement (PPI)
No patient or public were involved in the design, conduct 
and reporting of this research. Nevertheless, the priors 
generated from a pilot study conducted in a sample of 
general population informed the design of the DCE 
survey.

Specific written consent was not obtained from partic-
ipants, but they were made aware that the participation 
in the survey was voluntary and returning a completed 
questionnaire was an indication of consent. No personal 
identifiable information was collected and all data from 
participants were anonymous. The survey data and other 
related materials were handled in accordance with the 
Newcastle University’s rules and regulations in place with 
strict adherence to The Data Protection Act 1998, the law in 
force at the time of the survey, and the Newcastle Univer-
sity Information Security Guidelines (http://www.​ncl.​ac.​uk/​
data.​protection/​policy.​htm).

Results
In total, 148 respondents completed the survey: 62 online 
and 86 on paper. While the response rate in the survey 
sent by post was 13%, it was not possible to assess the 
response rates in the web version of the survey as we could 
not verify how many had received the link. However, the 
weblink was opened on 101 occasions and the response 
rates in terms of those opening the web version was about 
61%. Among the respondents, 44% reported (answered 
the survey question on difficulty in completing the DCE) 
some form of difficulty in completing the choice sets.

Respondent characteristics
Among the 148 respondents, there were almost twice the 
number of women compared with men (table 2). Most 
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Table 2  Summary of respondent characteristics

Characteristics All

Sample (n) 148

Age groups

 � 16–29 4 (2.7%)

 � 30–34 6 (4.0%)

 � 35–39 5 (3.4%)

 � 40–44 4 (2.7%)

 � 45–49 9 (6.1%)

 � 50–54 12 (8.1%)

 � 55–59 19 (12.8%)

 � 60–64 21 (14.2%)

 � 65–69 27 (18.0%)

 � 70–74 17 (11.5%)

 � 75–79 9 (6.1%)

 � 80–84 9 (6.1%)

 � 85+ 6 (4.0%)

Gender

 � Male 49 (33.1%)

 � Female 98 (66.2%)

 � Prefer not to reveal 1 (0.7%)

Health-related quality of life

 � Mean EQ-VAS score (SD) 75.50 (20.5)

 � Mean EQ-5D-5L score (SD) 0.77 (0.2)

Emergency experience

 � Yes 78 (52.7 %)

 � No 70 (47.3%)

respondents aged more than 55 years of age. About half 
of the respondents had some form of emergency experi-
ence in the immediate 12 months before the survey. The 
health-related quality of life (EuroQol- Visual Analogue 
Scale (EQ-VAS)=75.5, EuroQol 5 dimensions each with 
5 response levels (EQ-5D-5L)=0.77) is similar to that esti-
mated for the UK general population above 55 years of 
age (which is EQ-VAS=77.6; EQ-5D=0.77).44

Regression analysis of the DCE data
Two respondents failed the validity tests. However, an 
initial regression analysis indicated that the coefficient 
estimates remained similar regardless of whether those 
respondents failing the validity tests were included or 
excluded in the analysis. Therefore, the results on these 
studies are based on analysis of data from all respondents 
regardless of failing the validity tests.

Table  3 presents the regression analysis when all the 
attributes are taken to be continuous. In the ‘travel 
time’ and ‘waiting time’ attributes where the levels had 
‘less than’ or ‘more than’ categories, only the number of 
minutes were used, for example, 30 min for ‘less than 30 
min’. The outpatient follow-up was coded as ‘0’ for local 
hospital and ‘1’ for a distant hospital. The negative and 

positive signs in the coefficients indicate preference of a 
lower level and higher level of an attribute, respectively. 
The coefficient estimates were in line with expectations 
that individuals would prefer shorter travel time to the 
hospital, shorter waiting time to receive the service, fewer 
number of days of length of stay in the hospital, low risk 
of death, low risk of readmission and outpatient follow-up 
care after the emergency treatment in their local hospital.

Table  3 also assessed the significance of attribute 
interactions with respondent characteristics. None of 
the attribute interactions with respondent age and self-
reported health measures were significant which ruled 
out important differences in preferences of emergency 
healthcare because of age and health status. Only inter-
actions (travel time*gender, waiting time * gender, 
waiting time* survey mode, risk of death* gender, risk 
of death* survey mode, risk of readmission*gender) 
were significant and these were considered in the final 
specification (table  3). Results suggest that men have 
stronger preferences for shorter travel time (−0.0049, 
p<0.01), shorter waiting time (−0.0021, p<0.05), lower 
risk of death (−0.1047, p<0.01) and lower risk of readmis-
sion (−0.00775, p<0.01) compared with women. Respon-
dents completing the web-based survey showed stronger 
preferences for less waiting time (0.0027, p<0.001) and 
lower risk of death (0.0862, p<0.01) compared with those 
completing the survey in paper. In the MIXL model, the 
significance of attributes remained the same as in MNL 
model; however, lower AIC and BIC in the MIXL indi-
cated that it provided a better model fit compared with 
the MNL model. Furthermore, the MIXL model identi-
fied heterogeneity among respondents (shown by the 
statistically significant SD). This suggested that MIXL was 
more appropriate that the MNL model. In the GMNL 
model, the coefficient estimates retained the signs and 
significance similar to MNL and MIXL.

Online supplementary table S2 reported the analysis 
when risk of readmission, risk of death and outpatient 
follow-up were treated as categorical variables as opposed 
to continuous variables as they were in table 3. Categor-
ical data were expressed as dummy variables. There was 
no evidence of any difference in preferences for the 
different levels of ‘length of stay’ in the MNL model. 
Furthermore, in all three of the statistical models (MNL, 
MIXL, GMNL), there was no evidence that preferences 
for the mild of ‘risk of death’ were any different to the 
reference category (low risk of death (1 in 100)) across 
all three models. The magnitude of the coefficients 
increased in line with the increase in the levels of ‘risk of 
readmission’ and ‘outpatient follow-up’; however, coeffi-
cients for increasing levels of ‘risk of readmission’ did not 
increase in a linear manner and there was no evidence 
that the mild ‘risk of readmission’ was preferred to low 
risk of readmission.

Marginal rates of substitution
The coefficients generated from each of the different 
regression models in table 3 were used to calculate the 
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MRS in table  4. The MRS in model 1A indicated that 
participants were willing to travel 9 min more and willing 
to wait 14 min more for a 1 day reduction in length of stay 
in the hospital. The willingness to travel increased to 38 
min and the willingness to wait increased to 58 min for 
one per cent reduction in risk of death in hospital. The 
willingness to travel was 112 min and willingness to wait 
was 172 min for having outpatient follow-up care after 
the emergency treatment at their local hospital. In model 
1B, the coefficients of travel time and risk of readmission 
used to generate the MRS were not significant; therefore, 
the marginal willingness to travel across all attributes and 
marginal willingness to wait derived for the attribute risk 
of readmission were not significant. Nevertheless, the 
MRS estimates in all the models (except model 1B) were 
generally similar.

Discussion
Summary of the findings
This examination of public preferences demonstrated 
the influence of attributes on the choice of hospitals in 
an emergency healthcare situation. In general, partic-
ipants preferred shorter travel times, shorter waiting 
times, fewer number of days in hospital, low risk of death, 
low risk of readmission and local outpatient follow-up. 
Gender influenced the strength of the preference, with 
results suggesting that men have stronger preferences 
for shorter travel time, shorter waiting time, lower risk 
of death and lower risk of readmission compared with 
women. However, there was no evidence of influence of 
other characteristics such as age, recent experience of 
emergency care and current health state of the individual.

The results indicate that if centralisation of EMS 
increases travel and waiting times, but offered better care 
in terms of reduced risk of death, reduced length of stay, 
reduced risk of readmission and provisions for follow-up 
care in the local hospital, then participants would prefer 
the centralised service. Travelling 38 min longer by ambu-
lance and waiting about an hour more for 1% reduction 
in risk of dying seems reasonable. The participants valued 
the opportunity for follow-up at their local hospital more 
than any other attributes examined in this DCE. Though 
travelling about 2 hours longer and waiting about 3 
hours more may appear unrealistic value placed on local 
outpatient follow-up, these possibly reflect the feeling of 
emotional attachment and enormous pride of people 
towards their local NHS hospital.45 However, it was also 
found that the centralised hospital should also not be too 
far away to be acceptable (not needing more than 2 hours 
of additional travel time).

Comparison with other studies
While differences exist between studies in terms of 
healthcare context, design, attributes and levels used, 
the findings of this study are in line with other relevant 
DCE studies. Earlier studies attempting to quantify the 
strengths of individual preferences for unscheduled 
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healthcare available during usual GP service hours have 
indicated that patients prefer shorter waiting times to get 
a decision on treatment and that services are provided 
closer to their homes.20 46 Unlike our study, these studies 
reported age-related differences in strength of prefer-
ences: younger age groups (<45 years) held strong prefer-
ences with respect to the way of making contact with the 
healthcare system. A study on Australian public’s choice 
among alternatives of emergency care reported clear pref-
erences for shorter waiting times and strong emphasis on 
the quality of emergency healthcare service.47 A signifi-
cant preference heterogeneity was observed in this study 
and the strength of the preference changed according to 
the presenting context and situation such as the perceived 
severity of illness and who was being treated, but the influ-
ence of age and gender was not reported. Another DCE 
study which examined the factors influencing the choice 
of hospitals in London patients on waiting lists of range 
of non-emergency situations demonstrated that individ-
uals prefer shorter travel time to hospital, shorter waiting 
time to receive the service, the follow-up care at their 
home hospital and a high valuation of hospital reputa-
tion.19 This study reported differences in preferences in 
patient related to gender and age suggesting that patients 
are more likely to prefer stay at their local hospitals as 
their age increases and men are more likely to choose 
to move to a non-local alternative hospital than women. 
Potential patients in Germany were willing to sacrifice 
longer travel distance and preferred location of care for 
a highly specialised surgical care provision with shorter 
waiting times,48 but the influence of respondent age and 
gender was not reported.

It is not surprising that non-emergency situations show 
similar results. A recent study assessing preferences for 
centralising specialist cancer services also found that 
patients, health professionals and the public all prefer 
shorter travel times, lower risk of death and complica-
tions, and better access to specialist centres.49 However, 
there was no evidence of differences because of gender, 
age or place of residence of the respondents. Risk of death 
and risk of complications were ranked highly whereas 
relatively lower importance was given to travel time.

Implications of the study findings
This study reveals preferences and the trade-offs individ-
uals are willing to make across hospital attributes when 
choosing hospitals for emergency healthcare. The find-
ings provide valuable insights for decision-makers in rela-
tion to the centralisation of emergency healthcare services. 
Contrary to the concerns about distance decay,11 12 where 
the utilisation of healthcare services decreases with the 
increase in travel time to healthcare facilities, the find-
ings suggest that while people may place a high value on 
their local hospital, in an emergency situation they may 
be willing to exchange increased journey time for better 
quality of care. This assumes that the ambulance response 
would be the same, and that other aspects of local services 
would not be affected, which may not be realistic but 

exploring this with the DCE would have added additional 
complexity that may make the tool difficult to complete. 
However, healthcare centralisation planners should also 
carefully consider how best to work with town and traffic 
planning services to help optimalise services or at the very 
least ensure that other system constraints do not remove 
any potential benefits of centralisation. The preferences 
are not influenced by age, health status or previous expe-
rience of EMS, suggesting that services do not necessarily 
have to be tailored according to age groups or health 
status, at least within the range of respondents studied. 
However, it was observed that there are gender differ-
ences in the strength of the preferences, which could 
possibly be related to the differences in knowledge, atti-
tudes and previous healthcare experiences between men 
and women.50 While this finding may specifically reflect 
this cohort, it is recommended that future researchers 
and healthcare providers consider any communication 
about centralising services should be sensitive to gender 
differences while not allowing decisions about service 
provision to be driven by the preferences one particular 
gender especially without clearly understanding why these 
differences exist. Overall, the DCE results support policy 
recommendations to centralise emergency medical care 
in local hospitals into fewer specialised high performing 
units,3 4 as long as journey times are not excessively long 
and aftercare can be provided locally. However, our 
survey was framed to look at choices for emergency ambu-
lance admissions and we caution that these findings may 
not reflect the preferences in ‘blue-light’ emergencies 
where the patient is not in a position to make the choice 
of which hospital to go to. Nevertheless, the preferences 
observed are for planning services and not for making 
decision about immediate care in an emergency.

Strengths and limitations
The findings of this study should be interpreted in light 
of some strengths and limitations. We attempted to study 
a wide cross section of a local unselected population to 
represent the preferences of potential users for a newly 
built centralised emergency hospital. However, due 
to the contact databases which were available for us to 
invite participants, it only represents specific population 
groups registered with the Healthwatch or Northumbria 
Healthcare NHS Foundation Trust, and sampling bias 
cannot be ruled out. While DCE offers several advan-
tages over other preference elicitation methods used in 
healthcare, concerns have been expressed about their 
external validity.51 Despite a high proportion of complete 
responses in the DCE, a number of participants found the 
choice tasks difficult to complete which could mean the 
attributes were not appropriate to them and the choices 
were arbitrarily made. Furthermore, the attributes used 
in the DCE were taken from the literature solely and 
were not based on findings from qualitative research,52 
nor was the choice of attributes and levels informed 
by any PPI. Consequently, other important attributes 
may have been left out. The attributes and their levels 
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in the choice sets were framed to closely represent the 
emergency care in NHS England. However, the way the 
attributes were framed could possibly have influenced 
the choices made by respondents,53–55 and it is unclear 
whether choices would remain the same, if the attributes 
were framed in the other way, for example, would pref-
erences have been different if ‘risk of dying’ was framed 
as ‘chance of survival’? or if ‘travel time’ and ‘waiting 
time’ were used as a single attribute of ‘call to treatment 
time’? But, merging the ‘travel time’ and ‘waiting time’ as 
a single attribute at the design stage would have reduced 
the explanatory power of the DCE. The presentation of 
attribute levels only in text formats could have created 
difficulties for some respondents in understanding the 
choice sets. Graphics and icons are often superior to text 
in communicating health information.56–58 However, it 
has been argued that within a DCE context, independent 
of educational level and literacy of respondents, words 
depicting attribute levels lead to more consistent answer 
patterns and more accurate attribute-level interpretation 
and estimates.54 One of the strengths of this survey lies in 
the fact that both survey modes—web based and postal 
(paper)—were used enabling us to increase the represen-
tation of a wider cross section of population. However, 
experimenting with the different approaches for survey 
administration was beyond the scope of this study, and 
use of different approaches might have introduced a 
response bias because of the systematic differences (eg, 
proportion of older people) between the respondents 
in each approach. The conventional practice of a DCE 
assumes that respondents choose among alternatives by 
rationally trading off across all attributes in their choice 
set. However, emerging evidence suggests that some 
respondents’ tradeoff only a subset of attributes while 
choosing among alternatives.59–61 Failing to account for 
this phenomenon, widely referred to as attribute non-
attendance, may lead to biassed preference estimates.62 
A number of methods have been proposed in the litera-
ture to identify attribute non-attendance, which should 
be considered by future studies, such as asking respon-
dents directly if they ignored any of the characteristics, 
use of econometric models such as latent class model to 
establish the probability of attribute non-attendance and 
use of eye-tracking technology.62–64 Finally, the study may 
not be generalised to other settings, because pre-existing 
local influences on experiences and views will vary, such 
as historical service performance, demographic mix and 
healthcare geography.

Conclusion
This study explored and quantified the strength of indi-
vidual preferences relating to provision of EMS. The find-
ings highlight that respondents prefer shorter travel time, 
shorter waiting time, fewer number of days in hospital, 
low risk of death, low risk of readmission and outpatient 
follow-up at their local hospital. However, people are 
willing to trade off increased travel time and waiting time 

for high-quality emergency medical care in a centralised 
hospital, in line with policy documents recommending 
centralisation.3 4 Decisions to centralise EMS should be 
justified on clinical grounds and cost savings, and need 
to be informed by preferences of potential service users.
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