The GC Skew Index: A Measure of Genomic Compositional Asymmetry and the Degree of Replicational Selection

Kazuharu Arakawa and Masaru Tomita

Institute for Advanced Biosciences, Keio University, Fujisawa, Kanagawa 252-8520, Japan.

Abstract: Circular bacterial chromosomes have highly polarized nucleotide composition in the two replichores, and this genomic strand asymmetry can be visualized using GC skew graphs. Here we propose and discuss the GC skew index (GCSI) for the quantification of genomic compositional skew, which combines a normalized measure of fast Fourier transform to capture the shape of the skew graph and Euclidean distance between the two vertices in a cumulative skew graph to represent the degree of skew. We calculated GCSI for all available bacterial genomes, and GCSI correlated well with the visibility of GC skew. This novel index is useful for estimating confidence levels for the prediction of replication origin and terminus by methods based on GC skew and for measuring the strength of replicational selection in a genome.

Keywords: GC skew, DNA replication, replicational selection, fast Fourier transforms, bioinformatics, GCSI.

Introduction

In circular bacterial chromosomes, the replication process starts from a finite replication origin (*ori*) and continues bidirectionally along the two arms (i.e. the replichores) until the replication complex reaches the replication terminus (ter), located directly opposite of ori (Rocha, 2004a; Rocha, 2004b). Replication is obviously the most fundamental and essential process in the cell cycle of bacteria, and replication also exerts genome-wide mutational and selection pressure, shaping genomic polarity with asymmetrically biased nucleotide composition in leading and lagging strands (Lobry and Louarn, 2003; Lobry and Sueoka, 2002). This compositional skew can be easily observed by plotting the normalized excess of guanine (G) over cytosine (C) content in a subgenomic region with sliding windows along the complete genome sequence (Lobry, 1996). Such a GC skew graph segregates the genome into two regions: one with an excess of G over C corresponding to the leading strand, and the other with an excess of C over G corresponding to the lagging strand. Moreover, the shift points of the GC skew graphs are reportedly correlated with the loci of ori and ter (Frank and Lobry, 1999). GC skew is observed in many bacterial species with circular chromosomes, although with varying clarity of the shift points, and GC skew is usually not detectable in symbionts and bacteria with linear chromosomes (Worning et al. 2006) or in archaeal genomes, which employ different machinery for the replication process (Grabowski and Kelman, 2003; Lopez et al. 1999; Myllykallio et al. 2000). GC skew is also observed in local genomic regions primarily introduced by RNA synthesis (Fujimori et al. 2005), but the overall genomic polarity due to replication is present regardless of these local effects, and the GC skew is thus observed in intergenic regions as well as in the third nucleotide positions in codons. Although the underlying causes for GC skew is not completely understood, hydrolytic deamination of cytosine in the leading strand in single-stranded state during replication, is suggested as the major contributing factor (Rocha, 2004b).

Because only a few *ori* and *ter* positions had been identified by experimental means, analysis of GC skew was first utilized for the computational prediction of *ori* and *ter* positions by examining available genome sequences (Frank and Lobry, 2000). Similar method using nucleotide gradients of T/C and A/G is utilized for the detection of unidirectional replication in mitochondria (Krishnan et al. 2004; Seligmann et al. 2006). To improve the accuracy of prediction, cumulative diagrams are commonly employed to balance out the noise in sequence composition and to eliminate the requirement for window slides (Grigoriev, 1998), coupled with purine and keto excesses and GC skew (Freeman et al. 1998).

Correspondence: Masaru Tomita, Institute for Advanced Biosciences, Keio University, Endo 5322, Fujisawa, Kanagawa 252-8520 Japan. Tel/Fax: +81-466-47-5099; Email: mt@sfc.keio.ac.jp

Please note that this article may not be used for commercial purposes. For further information please refer to the copyright statement at http://www.la-press.com/copyright.htm

However, predictions based on these methods are less accurate in genomes where GC skew cannot be strongly observed (Zawilak et al. 2001). To observe the control of replicational selection on the various genomic properties, genomic compositional skews are also used in conjunction with other genomic features such as the gene orientation (McLean et al. 1998), the distribution of RAG oligomers recognized by the FtsK translocase (Hendrickson and Lawrence, 2006), and the codon bias of genes along the genome (Daubin and Perriere, 2003). To our knowledge, however, no method to quantify the strength of GC skew has been proposed; therefore, it is difficult to compare the effects of replicational selection across bacterial genomes.

In this work, we present the GC skew index (GCSI), which quantifies the strength of GC skew of a given genome by combining Fourier power spectral analysis with the Euclidean distance between the maximum and minimum of the cumulative skew vector. Spectral analysis using fast Fourier transform (FFT) is able to identify the frequency components contributing to a given signal, and it has been applied successfully to the field of bioinformatics (Dodin et al. 2000; Katoh et al. 2002; Yin and Yau, 2005). Because GC skew emerges from the mutational selection in the two replichores, the greatest contributing frequency component of GC skew should be at 1 Hz, with two clear shift points. This observation of a 1-Hz signal combined with the degree of skew calculated by the distance measure between the two vertices of a cumulative skew diagram effectively quantifies the skew of genomic compositional asymmetry.

Materials and Methods

Sequences and software

Complete circular chromosomal sequences of 303 bacteria and complete genome sequences of 29 archaeal genomes in GenBank format were selected and obtained from the NCBI RefSeq FTP repository (ftp://ftp.ncbi.nih.gov/genomes/Bacteria/). All analyses were conducted using the G-language Genome Analysis Environment version 1.6.11 (Arakawa et al. 2003; Arakawa and Tomita, 2006). The positional coordinate system for the genomic sequence used in this work was set to originate at 0, unlike that of GenBank, which uses 1 for the position of the first base.

Calculation of GC skew

GC skew was defined as the normalized excess of C over G in a given sequence, (C - G)/(C + G), which is calculated with sliding windows along the genome. GC skew is defined to be 0 when the amount of C equals that of G. To eliminate the use of window slides, cumulative skew can be calculated as the cumulative sum of the walker graph score at each nucleotide position along the genome, with scores A = 0, T = 0, G = 1, and C = -1. In this work, however, the cumulative sum of the GC skew was calculated by taking the cumulative sum of the GC skew in each of the windows, to normalize the cumulative skew strength without it being affected by the length of the genome.

Fast fourier transform

FFT is the computationally optimized derivation of discrete Fourier transform (DFT) for the number of sampling units in the power of two. FFT transforms a given signal in the time domain to reveal the frequency components comprising the input signal. GC skew can be thought of as a signal along the continuous axis of genomic position, which was used in place of the time domain in this work. DFT F(k) of a signal of length N, f(n), where n = 0, 1, ..., N - 1, at frequency k was calculated as follows:

$$F(k) = \sum_{n=0}^{N-1} f(n) e^{-i2\pi k n/N}$$
(1)

where $i = \sqrt{1}$. The power spectrum PS(k) of F(k) was further defined as

$$PS(k) = |F(k)|^2, k = 0, 1, 2, ..., N - 1$$
 (2)

at each frequency k. In this power spectrum, GC skew shows the greatest contributing component at 1-Hz frequency, corresponding to the two replichores shifting between two regions of opposite polarity as in a sine curve (Arakawa et al. 2007). The Math:FFT module of Perl (http://search.cpan.org/~rkobes/Math-FFT-1.28/FFT.pm) was used for FFT calculation. To level the effects of genome size when comparing the diverse bacterial species, all genome sequences were divided into 4096 windows, and then the GC skew used as the initial signal, the cumulative GC skew, and the power spectra were calculated in these windows. Number of windows must be the power of two for effective

FFT calculation, and here $2^{12} = 4096$ windows were used to take account of the effects of gene positioning, since this window size roughly corresponds the size of genes (about 1kbp) in bacterial genomes. This window size also eliminates other local mutational factors including those within genes, generated by functional requirements in RNA synthesis and translation.

GC skew index

Because cumulative skew should remain around zero under conditions of no strand bias and inversely increase its value in both positive and negative directions where bias is strong, Euclidean distance between the maximal and minimal vertices can be used as a measure of skew. The limitation of this approach and the central challenge for the quantification of genomic compositional skews, however, reside in the mathematical assessment of the skew structure to have exactly two regions physically balanced in length but with opposite polarity of nucleotide content. FFT is a good method for such a purpose, because it is able to reveal the contributing frequency components. Therefore, we used FFT to assess the fitness of the skew to the replicational selection model and combined this with the Euclidean distance between the two vertices of cumulative skew to calculate the GCSI. The GCSI is defined as the normalized average of the Euclidean distance between the two vertices of cumulative skew (dist) and the ratio of spectral strength at 1 Hz and the average strength of spectra in frequency regions 2 Hz or above (SR). Because the replicational selection is the single most dominant factor for GC strand bias, the ratio of spectral strength at 1-Hz frequency and that of all other spectra or their average must be greater than 1. SR was normalized by division with the rounded maximal SR of all bacterial genomes, which we defined here as 6000. Likewise, dist was normalized by 600.

Statistical assessment of the significance of GCSI

Significance of the GCSI values is tested using the distribution of GCSI calculated using two sets of randomized data: GCSI calculated using shuffled GC skew, where the window order is randomized using the GC skew values calculated with the original genome sequence, and GCSI calculated using shuffled genome, where the entire nucleotide

sequence of the genome is shuffled while conserving the original nucleotide content. Due to calculation costs, statistical test was conducted using 1000 shuffled GC skew and 100 shuffled genome data sets. Distribution of the resulting GCSI values for the randomized data set was firstly tested for its normality using Kolmogorov-Smirnov Lilliefors test, and the significance of the original GCSI value is calculated using the z-score in the distribution of the randomized data set.

Results

To test the applicability of GCSI for the quantification of GC skew strength, we first assessed the correlation between the Euclidean distance of the two vertices of cumulative GC skew, *dist*, and the Fourier power spectrum ratio, *SR*, using all genomes (Fig. 1). The two measures correlated with an R^2 value of 0.6673, showing that the predominance of the 1-Hz frequency component leads to a stronger degree of skew.

Using the measures dist and SR, GCSI was calculated for 304 bacterial genomes; 50 selected species are shown in Table 1 (see supplementary information for comprehensive listings). From the comprehensive list, nine genomes were further selected to illustrate the GC skew graphs plotted with 500 windows at various GCSI values (Fig. 2). As a control, GCSI was also calculated for 29 archaeal genomes, most of which showed no GC skew (Table 2). Because GCSI was normalized by the rounded maximum values of SR and dist, it ranged from 0 to 1. GCSI in bacterial genomes ranged from 0.006 for Gloeobacter violaceus to 0.815 for *Clostridium perfringens* (mean, 0.207; median, 0.145; SD, 0.173). The majority of archaeal genomes had GCSI <0.05, and the highest GCSI among archaeal genomes (0.122 of Halobacterium sp.) was low compared to those of bacterial genomes. GC skew was not clearly observable in species with GCSI <0.05, but it showed clear shift points when GCSI >0.10. Due to the limited number of iterations, normality test for the statistical assessment using shuffled genome sequence did not score well, but that using shuffled GC skew passed the test in all genome analyzed. The z-score was generally low and therefore not significant when GCSI <0.05 (especially < 0.02), where the GCSI values may not be accurate. On the other hand, GCSI >0.05 scored extremely high z-scores, and therefore these values accurately depict the polarity of the genomes.

Figure 1. Scatter plot of spectral ratio *RS* against the Euclidean distance between the two vertices in cumulative graph *dist. RS* measures the goodness-of-fit of the "shape" of the overall GC skew to be partitioned into two segments corresponding the two replichores, by calculating the relative predominance of the spectral strength of the 1-Hz frequency component over other frequencies upon applying Fast Fourier Transform. *dist* measures the degree of bias in the leading and lagging strands, by calculating the Euclidean distance between the average GC skew in the two replichores. *RS* is generally correlated with *dist*, therefore combination of these two measures as GCSI should correctly represent both the shape of the graph and the degree of skew.

As can be seen from the GC skew graphs in Figure 2, the degree of skew correlates with GCSI. No skew was observable for *G. violaceus* and *Synechococcus elongatus* PCC 7942, with GCSI values of 0.006 and 0.023, respectively, but a gradual rise from negative values to positive values was observed for *Synechococcus* sp. CC9605, with a GCSI of 0.065, although the skew was not well defined. GC skew became visible at a GCSI of 0.098 in *Escherichia coli* K12, and the clarity was increased in correlation with the GCSI values for scores greater than 1, as represented by the increasing range of the *y*-axis from ± 0.15 at GCSI values around 1 to ± 0.4 at a GCSI of 0.815.

Discussion

The nucleotide sequence of a genome is structured and controlled by a myriad of selection pressures, especially in subgenomic regions, as typified by the fact that coding regions are shaped by the essential order and usage of codons. In addition to such requirements in the subgenomic regions, circular

bacterial chromosomes experience genome-wide selection through the replication process. The chiral nucleotide composition in the two replication arms is significant; however, with regard to the evolutionary aspects of replicational selection on bacterial chromosomes, no useful method to quantify the degree of genomic compositional asymmetry has been proposed, unlike the wealth of codon bias measures (Suzuki et al. 2005). This lack of indices for genomic compositional skews was likely due to the difficulty of mathematical formulation and detection of the skewing shape of GC skew graphs. To distinguish the degree of skew, we utilized FFT to observe the predominance of the 1-Hz frequency component, which corresponds to the replicational selection on the two replichores, over other frequency components. Combined with the Euclidean distance between the two vertices in cumulative skew graphs, the formulated GCSI captured the strength of GC skew in bacterial chromosomes, as shown by the above results. GCSI scores are diverse even within bacterial genomes with circular chromosomes, ranging from a number

Figure 2. GC skew graphs plotted with 500 windows for nine bacteria at different levels of GCSI. GC skew is not observable for the first two species at GCSI <0.05, and becomes evident at GCSI >0.08. At GCSI >0.1, graphs increase their skewness and the shift points and two replichores can be clearly discerned from the graph. Note that the range of Y-axis extends as GCSI values increase. Overall, GCSI correlates with and correctly captures the degree of skew.

of genomes with extremely low values therefore implying the lack of observable GC skew in the genome, to groups of genomes with clear skews as can be seen in Bacilli.

The majority of the archaeal genomes had GCSI <0.05, at which point no noticeable skew is observed even in bacterial genomes. This is also confirmed by the z-score in the statistical test using randomized data, with low z-scores (therefore implying less significance) when GCSI is less than 0.05. Thus, 0.05 can be employed as a threshold value to determine whether GC skew is present in a genome and therefore whether replicational selection is acting on the organism. Because the GCSI values do not show a Gaussian

distribution, however, it should be noted that the indices are not necessarily proportionate with each other. Therefore, GCSI values should not be compared in terms of ratios but in terms of their rank orders. For the direct comparison of quantitative degrees of skew calculated as the ratio of two values, the use of Euclidean distance may be more suitable. However, significant Euclidean distance between the two vertices of cumulative skew may not always result from the polarity exhibited by the GC skew graph; it could also result from local regions of highly biased nucleotide content. Therefore, to ascertain that the skews are controlled by replicational selection, genomes used for such analyses should be

p-value from the normality test and	d the significance	e of the ori	ginal GCSI	value using th	ne distribution	of randomized	l samples	was given as	the z-score.			
							shuffled	GC skew		S	shuffled ge	nome
species	accession	GCSI	SR	dist	mean	SD	z-Score	p-value (Lillefors)	mean	SD	z-Score	p-value (Lillefors)
Gloeobacter violaceus PCC 7421	NC_005125	0.006	2.006	7.103	0.006002	7.88E-05	.	8.08E-62	0.002587	0.000671	S	0.014
Synechocystis sp. PCC 6803	NC_000911	0.009	0.296	10.443	0.008784	8.10E-05	0	1.12E–68	0.005882	0.000706	4	0.000
Mycoplasma hyopneumoniae 232	NC_006360	0.019	0.149	22.387	0.018741	9.19E-05	0	3.39E–86	0.008964	0.002092	4	0.015
Synechococcus elongatus PCC 7942	NC_007604	0.024	35.953	24.632	0.020612	8.28E-05	35	8.91E-63	0.005043	0.000938	19	0.022
Shigella boydii Sb227	NC_007613	0.035	120.160	29.756	0.024878	7.99E-05	124	7.41E–67	0.009254	0.000518	49	0.000
Frankia alni ACN14a	NC_008278	0.040	125.894	35.514	0.029676	7.46E–05	139	1.95E–54	0.005153	0.000263	132	0.006
Thiobacillus denitrificans ATCC 25259	NC_007404	0.042	161.970	34.606	0.028922	8.35E-05	160	2.43E69	0.003939	0.000703	54	0.923
Tropheryma whipplei str. Twist	NC_004572	0.048	9.110	56.698	0.047333	8.84E-05	7	1.78E–79	0.02598	0.000883	24	0.063
Geobacter sulfurreducens PCA	NC_002939	0.054	167.963	47.796	0.039911	8.49E–05	163	1.80E–80	0.007165	0.000401	116	0.024
Rhodopseudomonas palustris BisB5	NC_007958	0.064	365.258	40.691	0.033991	8.07E-05	376	1.32E-66	0.011625	0.000239	220	0.000
Polaromonas sp. JS666	NC 007948	0.071	424.069	43.091	0.035995	8.13E-05	433	7.59E-58	0.00298	0.000621	109	0.003
Shigella flexneri 2a str. 2457T	NC_004741	0.077	320.650	60.344	0.050368	8.16E-05	326	4.89E–71	0.008386	0.000448	153	0.000
Haemophilus influenzae	NC_007146	0.084	177.860	82.588	0.068907	8.17E-05	180	2.15E–63	0.00523	0.001235	63	0.143
86-028NP												
Mycoplasma genitalium G37	NC_000908	0.086	103.679	93.248	0.077794	9.01E-05	94	3.10E–78	0.018262	0.002466	27	0.007
Buchnera aphidicola str. APS	NC_002528	060.0	84.815	99.584	0.083067	8.06E-05	86	1.40E–71	0.022281	0.002142	31	0.114
(Acyrthosiphon pisum)												
Helicobacter pylori HPAG1	NC_008086	0.097	182.961	97.720	0.081517	8.68E-05	174	1.75E–77	0.00802	0.001226	72	0.043
Escherichia coli K12	NC_000913	0.098	486.480	69.038	0.057613	8.13E-05	497	1.84E–69	0.004953	0.00069	134	0.000
Corynebacterium glutamicum ATCC 13032	NC_006958	0.104	321.871	92.134	0.076862	8.03E-05	333	1.69E–61	0.012113	0.000354	258	0.044
Helicobacter pylori J99	NC_000921	0.106	187.288	108.770	0.090726	8.31E-05	186	2.02E-66	0.018694	0.000701	124	0.008
Rhodospirillum rubrum ATCC 11170	NC_007643	0.113	763.008	59.247	0.049457	8.74E-05	726	4.72E-77	0.003081	0.000736	149	0.017
Helicobacter acinonvchis	NC 008229	0.119	239.480	118.460	0.098801	8.17E-05	243	1.12E-62	0.007669	0.001377	80	0.477
str. Sheeba												
Escherichia coli O157:H7 str. Sakai	NC_002695	0.121	662.307	79.123	0.06602	8.36E-05	658	3.89E–68	0.008232	0.000316	356	0.068
Dehalococcoides sp. CBDB1	NC_007356	0.127	490.612	102.952	0.085878	8.61E-05	473	1.69E–72	0.010229	0.0009	129	0.144
Neisseria meningitidis Z2491	NC_003116	0.138	484.060	117.689	0.098156	8.08E-05	498	7.08E-66	0.004362	0.000929	144	0.129
Neisseria gonorrhoeae FA 1090	NC_002946	0.142	508.853	119.737	0.099867	8.29E-05	510	2.72E–60	0.006794	0.001039	130	0.122
Yersinia pestis KIM	NC_004088	0.148	785.937	99.533	0.083032	8.47E–05	772	4.61E–63	0.017378	0.00027	485	0.002
Rickettsia typhi str. Wilmington	NC_006142	0.161	437.431	149.404	0.124586	8.32E-05	437	9.13E-71	0.048368	0.000704	159	0.533

Table 1. GCSI, spectral ratio RS, and the Euclidean distance between the two vertices in cumulative graph dist for randomly selected 50 bacterial chromosomes. Significance was calculated

typhimurium LT2	NC_003197	0.167	1107.149	89.390	0.074569	7.57E–05	1217	4.49E–65	0.002732	0.000705	232	0.001
eudotuberculosis	NC_006155	0.174	951.989	113.617	0.094763	8.49E–05	933	8.63E–77	0.017276	0.000232	676	0.054
matica RCB	NC_007298	0.199	1366.887	101.487	0.084655	8.43E–05	1350	3.78E-73	0.002758	0.000606	322	0.260
alexigens	NC_007963	0.220	1568.376	106.845	0.089121	8.36E–05	1561	1.67E-69	0.02062	0.000186	1070	0.000
cans OS217 VCH46	NC_007954	0.231	1611.284 1464 908	116.055 157 144	0.096797	8.05E-05 8.05E-05	1666 1362	3.01E-60 3 16E_75	0.009546	0.000429	515 343	0.005
umoniae	NC_002179	0.256	1169.869	13/.144	0.158179	0.93E-03 8.84E-05	1101	3.49E-72	0.007879	0.00137	180	0.311
iellatus KT	NC_007947	0.267	1921.680	127.706	0.106502	7.90E–05	2026	5.99E-66	0.005942	0.000789	330	0.057
is	NC_006270	0.271	1879.614	137.460	0.114632	8.87E–05	1764	3.54E-88	0.003241	0.000753	355	0.299
rophila LSv54	NC_006138	0.298	2118.652	145.143	0.12104	8.74E–05	2018	1.04E–70	0.034761	0.000188	1393	0.002
Isp. subtilis	NC_000964	0.312	2041.257	169.785	0.141571	8.43E–05	2017	1.59E–71	0.008504	0.000492	615	0.067
mophilus	NC_006448	0.319	1827.666	200.247	0.166958	8.66E-05	1758	6.60E-73	0.015441	0.000843	360	0.245
.dsqns	NC_002662	0.329	1753.562	218.954	0.182543	8.30E-05	1759	1.10E-73	0.022	0.000455	673	0.000
genes SSI-1	NC_004606	0.332	1881.246	210.648	0.175623	8.53E-05	1836	5.66E-74	0.040869	0.000363	802	0.269
tans UA159	NC_004350	0.378	2260.651	226.932	0.189192	8.33E-05	2259	6.68E-72	0.023889	0.000534	662	0.000
s C-125	NC_002570	0.406	2702.537	216.866	0.180803	7.92E–05	2841	1.12E–62	0.028966	0.000211	1788	0.643
la str. Bp	NC_004545	0.409	1415.720	348.910	0.290845	8.67E–05	1359	3.03E–70	0.011699	0.002443	162	0.005
ie) ireus subsp.	NC_002951	0.420	2398.078	263.652	0.219797	8.72E-05	2290	2.05E-70	0.02288	0.000463	857	0.124
sonii NCC 533	NC_005362	0.438	2512.013	274.215	0.228599	8.63E-05	2425	8.56E-71	0.038523	0.000349	1142	0.001
um str.	NC_005295	0.579	2583.741	436.829	0.364108	7.99E-05	2694	6.11E-61	0.047406	0.000605	879	0.837
tarum WCFS1	NC_004567	0.615	5130.119	225.397	0.187914	8.59E-05	4977	4.07E-76	0.008182	0.000715	848	0.001
str. Sterne	NC_005945	0.669	4584.878	344.506	0.287173	8.28E-05	4611	1.26E-62	0.020516	0.000228	2840	0.271
gens str. 13	NC_003366	0.815	4092.849	568.720	0.474015	7.93E-05	4301	1.73E-62	0.108625	0.000249	2832	0.153

1 legend for the details of th	le test of sign	lificance					thuffled (SC skew			shuffled ge	anome
species	accession	GCSI	SR	dist	mean	SD	z-Score	p-value (Lillefors)	mean	SD	z-Score	p-value (Lillefors)
Thermotoga maritima MSB8	NC_000853	0.079	55.630	89.074	0.07431	8.28E-05	55	7.84E–73	0.053342	0.000293	87	0.6718442
Aeropyrum pernix K1	NC_000854	0.040	3.985	47.125	0.039355	8.41E-05	N	9.80E-70	0.024235	0.000362	42	0.0041011
Pyrococcus abyssi GE5	NC_000868	0.045	26.443	51.771	0.043226	8.29E-05	25	4.59E–69	0.012958	0.000897	36	0.172579
Methanocaldococcus iannaschii DSM 2661	NC_000909	0.087	14.536	102.413	0.085427	8.30E-05	13	4.54E-70	0.039171	0.000559	84	0.5234979
Methanothermobacter	NC_000916	0.045	67.648	47.539	0.039698	7.85E–05	20	8.45E–61	0.007545	0.001076	35	0.0004862
thermautotrophicus str_Delta H												
Archaeoglobus fulgidus DSM 4304	NC_000917	0.020	3.695	23.137	0.019366	8.57E-05	0	1.63E-72	0.012813	0.000474	14	0.0639122
Pvrococcus horikoshii OT3	NC 000961	0.105	75.244	117.845	0.098287	8.08E-05	76	1.23E64	0.043455	0.000316	193	0.5840531
Thermoplasma acidophilum DSM 1728	NC_002578	0.046	43.474	50.894	0.042499	8.71E-05	40	2.08E69	0.014096	0.000693	46	0.0003436
Halobacterium sn_NRC-1	NC 002607	0 122	617 687	84 760	0 070717	8 43E-05	609	1 26E-70	0 006544	0 000784	147	0 3059486
Thermoplasma	NC_002689	0.044	39.413	49.277	0.041153	9.40E-05	33	2.58E-83	0.010706	0.001065	31	0.0006178
Volcanium GSS1 Sufference colfeterious P2	ND 000754		100 41		0 010251	0 110 05	4	2 11 E			C V	
Sulfolobus sonataricus r z Sulfolobus tokodaii str. 7	NC_002106	0.033	1.862	39,909	0.033345	8.61E-05	<u>o</u> c	2.92E-68	0.023109	0.000452	25 22	0.0383977
Pyrobaculum aerophilum	NC 003364	0.038	6.535	44.690	0.037329	8.94E-05	о ю	3.60E-75	0.035224	0.000278	6	0.1593346
str. IM2	I											
Pyrococcus furiosus DSM 3638	NC_003413	0.025	0.167	29.587	0.024742	8.62E-05	0	1.43E–69	0.005934	0.00129	4	0.3798953
Methanopyrus kandleri AV19	NC_003551	0.023	9.398	26.361	0.022049	8.20E-05	80	1.48E–70	0.01687	0.000478	12	0.0002658
Methanosarcina acetivorans C2A	NC_003552	0.012	2.813	13.871	0.011641	7.88E-05	~	7.19E–61	0.003945	0.000539	14	0.1568932
Methanosarcina mazei Go1	NC_003901	0.015	2.817	17.149	0.014374	8.09E-05	-	4.87E–64	0.004366	0.000714	14	0.0536714
Nanoarchaeum equitans	NC_005213	0.034	3.562	40.488	0.033818	7.74E–05	7	1.39E–66	0.012129	0.002861	7	0.0388642
Mothersonsons merineliedie C2		1000	77070	16 710		7 671 05	č	1 507 55	02070 0		30	00000
meriariococcus mariparuais 52 Picrophilus torridus DSM 9790	NC_005877	0.032	2.862	40.7 10 37.785	0.031568	7.96E-05		4.30E-68 6.30E-68	0.027789	0.000466	0 00 7	0.1271154
Haloarcula marismortui	NC 006396	0.007	5.473	8.170	0.006896	8.40E-05	4	4.38E-62	0.003083	0.000636	9	0.0262528
ATCC 43049)))))	
Haloarcula marismortui ATCC 43049	NC_006397	0.027	8.093	31.154	0.026042	7.79E-05	7	7.89E–64	0.017283	0.002185	4	5.38E-05
Thermococcus kodakarensis KOD1	NC_006624	0.023	12.060	26.681	0.022315	7.73E-05	1	1.29E–58	0.007225	0.000882	18	0.0146136

Arakawa and Tomita

Sulfolobus acidocaldarius DSM 639	NC_007181	0.036	11.514	41.648	0.034791	8.63E-05	10	9.33E-75	0.006642	0.001216	23	0.2043022
Methanosarcina barkeri	NC_007355	0.014	11.210	15.497	0.012995	7.86E-05	10	6.92E63	0.013765	0.000319	0	8.15E-05
str. fusaro												
Natronomonas pharaonis	NC_007426	0.027	96.855	22.716	0.019012	8.05E-05	66	3.44E–67	0.004615	0.000762	29	1.68E–05
DSM 2160												
Methanosphaera stadtmanae	NC_007681	0.087	85.030	96.236	0.08028	8.38E-05	83	6.57E-71	0.023236	0.000748	85	0.2877452
DSM 3091												
Methanospirillum hungatei JF-1	NC_007796	0.027	17.105	30.715	0.025674	7.94E–05	16	3.41E–72	0.014578	0.000342	36	0.0096521
Methanococcoides burtonii	NC_007955	0.044	44.608	48.355	0.040381	8.44E05	43	1.67E–66	0.029311	0.000319	46	0.0895566
DSM 6242												

selected beforehand using GCSI or *SR* at sufficiently high thresholds (e.g. 0.07 for GCSI and 200 for *SR*, also noting the z-scores).

GCSI would be a useful index for the estimation of confidence levels for bioinformatics analyses using genomic compositional skews. Predictions of replication origin and terminus by the observation of shift points (i.e. vertices) of cumulative skew diagrams become erroneous when the GC skew is not well defined. However, the confidence level can be easily estimated by taking into account of the magnitude of the GCSI. In this work we have only described the index for GC skew, although the same method is applicable to purine and keto excesses or any other genomic compositional skews, given that the selection is on the two replichores. Similarly, for comparative studies of genomic features related to evolutionary pressures and replication machinery, GCSI can also be used as a measure of replicational selection.

Acknowledgments

We thank the members of MGSP at the Institute for Advanced Biosciences, Keio University, especially Nozomu Yachie and Ayako Kinoshita, for critical discussions. This research was supported by the Japan Society for the Promotion of Science (JSPS).

References

- Arakawa, K., Mori, K., Ikeda, K. et al. 2003. G-language Genome Analysis Environment: a workbench for nucleotide sequence data mining. *Bioinformatics*, 19:305–306.
- Arakawa, K., Saito, R. and Tomita, M. 2007. Noise-reduction filtering for accurate detection of replication termini in bacterial genomes. *FEBS Lett*, 581:253–258.
- Arakawa, K. and Tomita, M. 2006. G-language System as a platform for large-scale analysis of high-throughput omics data. *Journal of Pesticide Science*, 31:282–288.
- Daubin, V. and Perriere, G. 2003. G + C3 structuring along the genome: a common feature in prokaryotes. *Mol. Biol. Evol.*, 20:471–483.
- Dodin, G., Vandergheynst, P., Levoir, P. et al. 2000. Fourier and wavelet transform analysis, a tool for visualizing regular patterns in DNA sequences. J. Theor. Biol., 206:323–326.
- Frank, A.C. and Lobry, J.R. 1999. Asymmetric substitution patterns: a review of possible underlying mutational or selective mechanisms. *Gene*, 238:65–77.
- Frank, A.C. and Lobry, J.R. 2000. Oriloc: prediction of replication boundaries in unannotated bacterial chromosomes. *Bioinformatics*, 16:560–561.
- Freeman, J.M., Plasterer, T.N., Smith, T.F. et al. 1998. Patterns of Genome Organization in Bacteria. *Science*, 279:1827a.
- Fujimori, S., Washio, T. and Tomita, M. 2005. GC-compositional strand bias around transcription start sites in plants and fungi. *BMC Genomics*, 6:26.
- Grabowski, B. and Kelman, Z. 2003. Archeal DNA replication: eukaryal proteins in a bacterial context. Annu. Rev. Microbiol., 57:487–516.

- Grigoriev, A. 1998. Analyzing genomes with cumulative skew diagrams. *Nucleic Acids Res.*, 26:2286–2290.
- Hendrickson, H. and Lawrence, J.G. 2006. Selection for chromosome architecture in bacteria. J. Mol. Evol., 62:615–629.
- Katoh, K., Misawa, K., Kuma, K. et al. 2002. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. *Nucleic Acids Res.*, 30:3059–3066.
- Krishnan, N.M., Seligmann, H., Raina, S.Z. et al. 2004. Detecting gradients of asymmetry in site-specific substitutions in mitochondrial genomes. *DNA Cell Biol.*, 23:707–714.
- Lobry, J.R. 1996. Asymmetric substitution patterns in the two DNA strands of bacteria. *Mol. Biol. Evol.*, 13:660–665.
- Lobry, J.R. and Louarn, J.M. 2003. Polarisation of prokaryotic chromosomes. Curr. Opin. Microbiol., 6:101–108.
- Lobry, J.R. and Sueoka, N. 2002. Asymmetric directional mutation pressures in bacteria. *Genome Biol.*, 3:RESEARCH0058.
- Lopez, P., Philippe, H., Myllykallio, H. et al. 1999. Identification of putative chromosomal origins of replication in Archaea. *Mol. Microbiol.*, 32:883–886.
- McLean, M.J., Wolfe, K.H. and Devine, K.M. 1998. Base composition skews, replication orientation, and gene orientation in 12 prokaryote genomes. J. Mol. Evol., 47:691–696.

Suppliment Material 🐥

- Myllykallio, H., Lopez, P., Lopez-Garcia, P. et al. 2000. Bacterial mode of replication with eukaryotic-like machinery in a hyperthermophilic archaeon. *Science*, 288:2212–2215.
- Rocha, E.P. 2004a. Order and disorder in bacterial genomes. Curr. Opin. Microbiol., 7:519–527.
- Rocha EP 2004b. The replication-related organization of bacterial genomes. *Microbiology*, 150:1609–1627.
- Seligmann, H., Krishnan, N.M. and Rao, B.J. 2006. Possible multiple origins of replication in primate mitochondria: Alternative role of tRNA sequences. J. Theor. Biol., 241:321–332.
- Suzuki, H., Saito, R. and Tomita, M. 2005. A problem in multivariate analysis of codon usage data and a possible solution. *FEBS Lett.*, 579:6499-6504.
- Worning, P., Jensen, L.J., Hallin, P.F. et al. 2006. Origin of replication in circular prokaryotic chromosomes. *Environ. Microbiol.*, 8:353-361.
- Yin, C. and Yau, S.S. 2005. A Fourier characteristic of coding sequences: origins and a non-Fourier approximation. J. Comput. Biol., 12:1153–1165.
- Zawilak, A., Cebrat. S., Mackiewicz, P. et al. 2001. Identification of a putative chromosomal replication origin from Helicobacter pylori and its interaction with the initiator protein DnaA. *Nucleic Acids Res.*, 29:2251–2259.