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Divergent synthesis of chiral cyclic azides via
asymmetric cycloaddition reactions of vinyl azides
Nuligonda Thirupathi1, Fang Wei1, Chen-Ho Tung1 & Zhenghu Xu1,2

Vinyl azides, bearing conjugated azide and alkene functional groups, have been recognized as

versatile building blocks in organic synthesis. In general vinyl azides act as 3-atom (CCN)

synthons through the fast release of molecular nitrogen and have been extensively utilized in

the construction of structurally diverse N-heterocycles. Keeping the azide moiety intact in

organic transformations to synthesis chiral azides is an important but challenging task.

Herein, we report an enantioselective copper(II)/BOX-catalyzed cycloaddition of vinyl azides,

generating diverse chiral cyclic azides. α-Aryl substituted vinyl azides react with unsaturated

keto esters through an inverse-electron-demand hetero-Diels-Alder reaction to afford chiral

azido dihydropyrans with excellent enatioselectivities. In contrast, cyclohexenyl azides

undergo a diastereo- and enantio-selective Diels-Alder reaction giving important azido

octahydronaphthalenes with three continuous stereogenic centers. Notable features of these

reactions include a very broad scope, mild reaction conditions and 100% atom economy.
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Organic azides are energy-rich, flexible intermediates and
have attracted significant interest in recent decades1,2.
Among them, a special subclass, chiral azides, are

extensively distributed in many bioactive molecules3,4, and are
valuable chiral synthons in organic synthesis. They can partici-
pate in diverse transformations, such as cycloaddition, reduction,
and aza-Wittig reactions to give chiral nitrogen-containing pro-
ducts. Chiral azides have been utilized as key intermediates in the
total synthesis of many natural products, such as callipeltosides A
and B5, and pharmaceuticals such as the antibiotic chlor-
amphenicol6. Moreover, application of chiral azides in copper(I)-
catalyzed Huisgen cycloaddition with alkynes has become
a powerful click chemistry tool7–10, widely used in chemical
biology7, drug discovery8, and also synthesis of chiral materials9.
Current methods to synthesize chiral azides are mainly stereo-
specific transformations from chiral starting materials11–13;
development of catalytic asymmetric approaches is important and
has attracted great attention in recent years14. Several methods
involving asymmetric nucleophilic or electrophilic azidation of
prochiral compounds, with a key enantioselective C–N3 bond
formation, have been developed15–23, but it is always difficult to
control enantiofacial selectivity when handling the very small
azido group. Catalytic asymmetric transformation of organic
azides into chiral azides is an attractive alternative, which does

not involve C–N3 bond construction24–28. Such transformations
are comparatively less common, because keeping the energy-rich
reactive azido group intact in asymmetric transformations is a
challenge.

Vinyl azides bearing azide and alkene functional groups
conjugated together, could be easily obtained by the reaction of
silver-catalzyed hydroazidation of terminal alkynes29, and have
been recognized as versatile building blocks in organic
synthesis2,30–32. Generally, vinyl azides undergo a fast release
of two nitrogens to generate vinyl nitrene or strained 2H-
aziridine intermediates, and subsequent cycloaddition or
radical addition reactions lead to structurally diverse N-het-
erocycles33–40 (Fig. 1a). Vinyl azides can also react with elec-
trophiles to form iminium ions, or undergo Schmidt-type
rearrangements driven by loss of a dinitrogen unit to afford
functionalized amides41. In this general denitrogenation reac-
tivity mode, vinyl azides act as an important three-atom syn-
thon in the construction of complex N-heterocyclic skeletons
and have been extensively studied in recent years. Although
keeping the conjugated azide moiety intact in organic trans-
formations is a challenge42, such reactions can afford valuable
organic azides which are highly desirable. For instance, in
2017, López et al. developed a copper(I)-catalyzed [3+2]-
cycloaddition of vinyl azides, with unsaturated carbene

R

[Ag]

R

R

R

R
E

H2O

OMe
Cu(II)/L*Cu(II)/L*

Substrate-guided enantioselective [4+2] HDA and [2+4] DA reactions

Synthesis of cyclic chiral azides 100% atom economy

O

O

O

MeO

O

R'

Cycloaddition reactions

Radical reactionsR'
R

ER

R1R2

R2

[4+2] HDA

R1

R1

1
H

COOMe

[2+4] DA

O

MeO

O

NHO

H

MeH

H

HN

HO

O

H

H

Cadinene Cyperone Pentacyclindol 5-epi-Nakijinol E

E

R

E+

Nitrene

TMSN3

N3

N:

N

N

N3

N3N3
N3

N

N
H

O

N

N2

N2N2
+

+

a

b

c

Fig. 1 Reactivities of vinyl azides. a General reactivity of vinyl azides as CCN synthon driven by the release of N2. b Cycloaddition reactivity of vinyl azides
with azide retention (this work). c Selected important natural sesquiterpenoids with decalin motif
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precursors, to produce azidocyclopentenes43. However, this
reaction requires 50 mol% of catalyst loading and only racemic
reactions were reported. Consequently, the development of an
efficient catalytic asymmetric cycloaddition reaction of vinyl
azides to produce chiral azides is important. We report here
the copper(II)-catalyzed asymmetric [4+2]-cycloaddition of
vinyl azides with unsaturated ketone esters (1) to build chiral
cyclic azides (Fig. 1b). More importantly, structurally diverse
cyclic azides were obtained through a substrate reactivity-
guided inverse-electron-demand hetero-Diels–Alder or
Diels–Alder reactions. The Diels–Alder reaction produces a
very important decalin motif, which is an omnipresent struc-
tural unit in a wide range of natural products, with various
significant biological activities (Fig. 1c)44–50. Many important
natural sesquiterpenoids and diterpenoids are isoprenoid
decalins, for example, cadinene and cyperone are components
of important essential oils from plants, and the natural indole
sesquiterpenes pentacyclindole47 and 5-epi-nakijinol E48 have
important antiproliferative and cytotoxic activities. Generally,
such decalin scaffolds are built by a long linear stepwise con-
struction of a chiral triene structure, followed by an intramo-
lecular DA reaction45,50. The intermolecular catalytic
asymmetric Diels–Alder reaction not reported to date is a more
effective synthetic route to access this scaffold.

Results
Optimization of HDA reaction. To avoid formation of nitrene-
type intermediates, we took advantage of the nucleophilic char-
acter of the C= C bond in vinyl azides, which enables it to react
at low temperatures with highly electron-deficient unsaturated
ketone esters (1) through an inverse-electron-demand hetero-
Diels–Alder (HDA) reaction. We reasoned that when a chiral
Lewis acid catalyst is applied to activate the unsaturated ketone
ester (1) through chelation with the two carbonyl groups, chiral
azides might be generated by a catalytic asymmetric reaction.

A vinyl azide (2a) and the ketone ester (1a) were selected as
model substrates to test this reactivity in the presence of various
Lewis acids (Table 1). The reaction proceeds smoothly in the
presence of several metal Lewis acids, such as Sc(OTf)3, InCl3,
and Cu(OTf)2, giving however the target azide-containing
product (3a) in moderate-to-good yield with moderate diaster-
eoselectivity (entries 1–3). The endo-adduct (3a) is the major
product under these conditions. In view of the wide application of
Cu(II)/bisoxazoline (BOX) catalysts in asymmetric catalysis, we
further tried to realize the catalytic asymmetric reaction to
produce chiral cyclic azides. Details are provided in Supplemen-
tary Table 1. A screening of various bisoxazoline ligands (entries
4–9) revealed that Ph-BOX (L1) or t-Bu-BOX (L3) gave very high
enantioselectivity of 94% and 98% ee, respectively. Other ligands

Table 1 Optimization of reaction conditionsa

Entry Metal Ligand endo/exob Yield (%)c ee (%)d

1 Sc(OTf)3 – – 30 –
2 InCl3 – 80/20 83 –
3 Cu(OTf)2 – 60/40 62 –
4 Cu(OTf)2 L1 50/50 50 94
5 Cu(OTf)2 L2 10/90 17 41
6 Cu(OTf)2 L3 60/40 25 98
7 Cu(OTf)2 L4 80/20 40 96
8 Cu(OTf)2 L5 – 0 –
9 Cu(OTf)2 L6 – 0 –
10 Cu(SbF6)2 L3 60/40 86 96
11 Cu(ClO4)2·6H2O L3 – 0 –
12 Cu(SbF6)2 L7 60/40 83 37
13 Cu(SbF6)2 L8 60/40 99 96
14 Cu(SbF6)2 L9 80/20 89 >99

aReaction conditions: a mixture of 1a (0.2 mmol), 2a (0.24mmol), metal catalyst (10 mol%), and ligand (12mol%), solvent (2 mL), 30 °C
bDetermined by crude 1H NMR analysis
cCombined isolated yield
dDetermined by HPLC using a chiral stationary phase
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Table 2 Scope of Cu(II)-catalyzed hetero-Diels–Alder reactionsa

Entry 1 (R1, R2) 2 (R3) 3 endo/exo Yield (%)b ee (%)c

1 1a (Ph, Me) 2a (Ph) 3a 80/20 89 >99
2 1a 2b (4-ClC6H4) 3b 80/20 82 97
3 1a 2c (4-FC6H4) 3c 78/22 84 96
4 1a 2d (4-BrC6H4) 3d 75/25 85 99
5 1a 2e (4-MeOC6H4) 3e 60/40 94 72
6 1a 2f (4-MeC6H4) 3f 90/10 74 95
7 1a 2g (4-tBuC6H4) 3g 93/7 66 98
8 1a 2h (4-PhC6H4) 3h 74/26 80 97
9 1a 2i (3-ClC6H4) 3i 84/16 74 98
10 1a 2j (3-MeC6H4) 3j 91/9 54 97.5
11 1a 2k (2-naphthyl) 3k 78/22 88 97
12 1a 2l (3-thienyl) 3l 72/28 81 90
13 1b (Ph, Et) 2a (Ph) 3m 86/14 82 99.5
14 1c (Ph, iPr) 2a (Ph) 3n 88/12 80 98
15 1d (4-MeC6H4, Bn) 2a (Ph) 3o 91/9 58 98
16 1e (4-ClC6H4, Me) 2a (Ph) 3p 90/10 78 97
17 1f (4-BrC6H4, Me) 2a (Ph) 3q 90/10 75 97
18 1g (4-FC6H4, Me) 2a (Ph) 3r 84/16 86 97
19 1h (4-MeC6H4, Me) 2a (Ph) 3s 89/11 94 99
20 1i (4-MeOC6H4, Me) 2a (Ph) 3t 93/7 58 98
21 1j (3-BrC6H4, Me) 2a (Ph) 3u 90/10 67 96.7
22 1k (2-naphthyl, Me) 2a (Ph) 3v 90/10 81 >99
23 1l (3-thienyl, Me) 2a (Ph) 3w 84/16 86 97

aReaction conditions: 1 (0.2 mmol), 2 (0.24 mmol), Cu(SbF6)2 (10 mol%), and L9 (12 mol%), 30 °C
bIsolated yield
cDetermined by HPLC using a chiral stationary phase

Table 3 Optimization of the Cu(II)-catalyzed DA reactionsa

Entry Ligand T (°C) Yield (%)b ee (%)c

1 L9 30 84 21
2 L8 30 64 73
3 L3 30 75 80
4 L3 −20 78 87
5 L10 −20 84 87
6 L11 −20 81 84
7 L12 −20 80 93

aReaction conditions: a mixture of 1a (0.2 mmol), 2m (0.24 mmol), Cu(SbF6)2 (10 mol%), and ligand (12 mol%)
bIsolated yield
cDetermined by HPLC using a chiral stationary phase
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such as Bn-BOX (L2), iPr-BOX (L5), and iPrPyBOX (L6) all gave
inferior results. Further screening of various copper salts using
ligand L3 revealed that Cu(SbF6)2 gave an 86% yield and 96% ee,
albeit with a low 60/40 diastereomeric ratio (dr) (entry 10).
Recently, the Tang group have developed a successful sidearm
modification strategy to elaborate the bisoxazoline ligands by
introducing a pendant group at the bridging carbon51–55. We
synthesized the sidearm-modified BOX ligands L8 and L9 and the
Ph-BOX ligand bearing one pendant 4-t-BuC6H4 group (L9) gave
the best results, affording the desired azide product in 89% yield
with >99% ee and 80/20 dr (entry 14).

Substrate scope of HDA reaction. After establishing the optimal
conditions for the asymmetric cycloaddition reaction, the scope
of substrates was further investigated. First, the reactivities of
various vinyl azides were tested. As shown in Table 2, aromatic

vinyl azides bearing various electron-withdrawing or electron-
donating functional groups at the phenyl ring are well tolerated
and produced the corresponding cyclic azides in good-to-
excellent yields with high enantioselectivities (72–99% ee,
entries 1–10). Strong electron-donating 4-methoxyl-substituted
azides (2e) appear to be too reactive in this inverse-electron-
demand HDA and give a lower ee of 72% (entry 5). The vinyl
azides (2k) bearing a 2-naphthyl group and 2l containing a
thienyl group also reacted smoothly under the standard condi-
tions, giving the corresponding azides 3k and 3l with 97% and
90% ee, respectively (entries 11, 12). However, aliphatic vinyl
azides were found to be averse to this transformation. Then the
scope of unsaturated ketoesters was also explored (Table 2).
Various unsaturated ketoesters with both electron-withdrawing
and electron-donating aromatic substituents at the γ-position all
react smoothly with vinyl azide (2a), giving cyclic azides (3m–3w)
in good yields with excellent enantioselectivities (>97% ee, entries

Table 4 Substrate scope of Cu(II)-catalyzed DA reactionsa

aReaction conditions: 1 (0.2 mmol), 2m or 2n (0.24 mmol), Cu(SbF6)2 (10 mol%), and L12 (12 mol%) at −20 °C
bIsolated yield
cDetermined by HPLC using a chiral stationary phase
dAt −10 °C
eAt −30 °C

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-11134-8 ARTICLE

NATURE COMMUNICATIONS |         (2019) 10:3158 | https://doi.org/10.1038/s41467-019-11134-8 | www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


13–23). However, aliphatic benzyl group-substitued unsaturated
ketoesters were not suitable substrates in this reaction, and no
cycloaddition products were produced under standard
conditions.

Asymmetric DA reaction to chiral decalin motif. To study the
effect of conjugation in vinyl azides for the HDA reaction, we
synthesized the α,β-unsaturated azide (2m) and exposed it to the
standard conditions. Very interestingly, a distinct product (4a),
was formed as the sole product, albeit with low (21%) ee through
the [2+4] Diels–Alder (DA) cycloaddition (Table 3, entry 1). An
inverse-electron-demand HDA between 1a and 2m, followed by a
[3,3]-rearrangement could also produce the target product 4a. If
this is the case, the first HDA reaction generally will give high
enantioselectivities and since the second step is a stereospecific
percyclic reaction, the product should be produced with good
enantioselectivity. The low enantioselectivity obtained under

previous standard conditions indicates that this might not be a
hetero-Diels–Alder/[3,3]-rearrangement but a direct Diels–Alder
reaction process. The reactivity of the vinylic π bond might
encourage it to act as a 4-π partner in a Diels–Alder reaction rather
than the previous 2-π partner in the HDA reaction pathway.

We next aimed to get higher enantioselectivities in the
synthesis of decalins and the obtained results are summarized
in Table 3. t-Bu-BOX ligand with two sidearm t-BuC6H4CH2

groups (L8) enhanced the ee to 73% (Table 3, entry 2). t-Bu-BOX
with gem dimethyl groups at the bridging carbon (L3) gave the
desired product with 75% yield and 80% ee (entry 3). The ee was
further improved to 87%, while maintaining good yield (78%), by
lowering the temperature to −20 °C (entry 4). Finally, we
employed t-Bu-BOX ligands with a variable bite angle (L10,
L11, and L12) and found the optimum conditions with a
cyclopentyl-substituted t-Bu-BOX (L12), which gave the azido-
decalin (4a) in 80% yield with 93% ee (entry 7).
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Using the optimum conditions, the substrate scope of the
Diels–Alder reaction with respect to unsaturated ketoesters was
evaluated (Table 4). Variously substituted unsaturated ketoesters
produced the corresponding octahydronaphthalenes (4b–4g) in
good yields (61–81%) and with good-to-excellent enantioselec-
tivity (82–93%). Notably, all these reactions gave very good
diastereoselectivity and no HDA product was observed. A five-
membered conjugated azido diene 2n was also synthesized and
subjected to the Diels–Alder reaction, with the unsaturated
ketoester 1a at −30 °C; the desired hexahydro-indene azide 4h
was obtained with 87% yields, with 88% ee as a single
diastereomer.

Synthetic applications and absolute configuration determina-
tion. To demonstrate the synthetic utility of the developed method,
3a was synthesized on a gram scale and several transformations
were carried out. As shown in Fig. 2, a click reaction on 3a, pro-
duced the triazole (5) with 74% yield in good enatioselectivity (96%
ee). X-ray diffraction of a single crystal of this compound confirmed
its structure, and the absolute configuration of compound 3a was
established as (2S, 4R). In the presence of a Lewis acid (BF3·Et2O),
3a afforded chromene 6 in 64% yield, by the expulsion of hydrazoic
acid. Treatment of 3a with InCl3 afforded a ring-opening product, a
1,5-diketone (7) in 85% yield. Likewise, a linear hydroxyl-
functionalized tricarbonyl compound (8) was synthesized in 59%
yield, using N-bromosuccinimide (NBS) and H2O.

Further, synthetic transformations of the azido octahydro
naphthalene (4a) were also performed. The triazole 9 was easily
obtained in good yields and with retained enantioselectivities under
traditional click conditions. Finally, under Staudinger reaction
conditions, the decalin (4a) produced the trans-decalone (10), a
ubiquitous structural unit in various natural products, in 78% yield
with 93% ee. The absolute configuration of trans-decalone (10) was
established as (1R, 2R, 4aS, 8aS) by X-ray crystallography (Fig. 2).

Discussion
In summary, we have examined the reactivity of vinyl azides in
asymmetric cycloaddition reactions for the synthesis of diverse
chiral cyclic azides. α-Aryl-substituted vinyl azides react with
unsaturated ketoesters through inverse-electron-demand hetero-
Diels–Alder reaction, but cyclohexenyl azide reacts through dia-
stereoselective and enantioselective Diels–Alder reactions. The
prominent features of these reactions include 100% atom economy,
ambient reaction conditions, a very broad substrate scope, excellent
enantioselectivities, and useful product applications. Further appli-
cation of this strategy is in progress in our laboratory.

Methods
Materials. All the solvents were treated according to standard methods. Unless
otherwise noted, materials were purchased from commercial suppliers and used
directly without further purification. Flash-column chromatography was per-
formed using 100–200-mesh silica gel. All air-sensitive and moisture-sensitive
reactions were performed under an atmosphere of N2 with standard Schlenk
techniques. For 1H, 13C NMR and high-resolution mass spectrometry of com-
pounds, the synthetic procedures, and details of the mechanism study, see Sup-
plementary Methods.

Data availability
The X-ray crystallographic structures for compounds 5, 10, reported in this article, have
been deposited at the Cambridge Crystallographic Data Centre (CCDC), with the accession
codes CCDC 1891939 and 1897632 (http://www.ccdc.cam.ac.uk/data_request/cif). The
authors declare that all other relevant data supporting the findings of this study are
available within the article and its Supplementary Information files.
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