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Abstract: Conjugation of multiple nanomaterials has become the focus of recent materials 

development. This new material class is commonly known as nanohybrids or “horizon 

nanomaterials”. Conjugation of metal/metal oxides with carbonaceous nanomaterials and 

overcoating or doping of one metal with another have been pursued to enhance material 

performance and/or incorporate multifunctionality into nano-enabled devices and 

processes. Nanohybrids are already at use in commercialized energy, electronics and 

medical products, which warrant immediate attention for their safety evaluation. These 

conjugated ensembles likely present a new set of physicochemical properties that are 

unique to their individual component attributes, hence increasing uncertainty in their risk 

evaluation. Established toxicological testing strategies and enumerated underlying 

mechanisms will thus need to be re-evaluated for the assessment of these horizon materials. 

This review will present a critical discussion on the altered physicochemical properties of 

nanohybrids and analyze the validity of existing nanotoxicology data against these unique 

properties. The article will also propose strategies to evaluate the conjugate materials’ 

safety to help undertake future toxicological research on the nanohybrid material class. 
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1. Introduction 

Richard Feynman’s “plenty of room at the bottom” vision inspired the synthesis and manipulation 

of nano-scale materials to achieve unique physical, chemical and electronic properties for a wide range 

of applications [1]. As commercial materials demanded higher performance and needed to display 

multiple functions simultaneously, materials research had to shift its focus from singular 

nanomaterials (NMs) to hierarchical ensembles [2–4]. Such nano-scale conjugates are commonly 

termed nanohybrids (NHs), which bring together atypical combinations of metals, metalloids and 

carbon-only nanostructures with unique soft and hard external coatings [2,5–7]. The pursuance of such 

ensembles has expanded the scope of applications [8,9] and resulted in a very large set of new 

materials with unknown environmental and health risks. Therefore, it is critical to develop an effective 

strategy for assessing the safety of this large and ever expanding set of NH materials. 

The primary motivation of NH synthesis was to create composite materials that exhibit the 

enhancement of the component properties. For example, in the field of nuclear medicine, chelated 

radioisotopes of different metals are used despite their kinetic instability and release of toxic metals 

within the body [10]. Incorporation of such metals within fullerenes, known as endohedral 

metallofullerenes (EMFs) [5], makes the ensembles highly stable and provides an excellent alternative 

to the current options [5,10]. Such NHs are applied in a wide range of applications, including biomedical 

products and devices (e.g., nuclear medicine, drug delivery, cancer therapy [11,12]), electronic 

applications (e.g., nanoelectronics [13], super-semiconductors [14,15] and optoelectronics [16]), 

renewable energy (e.g., solar cell technologies [17–19], electrochemical fuel cells [3,20,21], 

catalysts [3,7,22]) and environmental remediation [23–25]. The effectiveness of conjugation thus 

realized continues to broaden the scope of ensemble applications, manifesting unique physical, 

chemical and biological properties. Such a wide application scope increases the likelihood of exposure 

and associated risks, as aquatic systems have a high potential for acting as a ‘sink’ for environmental 

contaminants. This increased production of NHs and the potential for exposure raises an obvious 

question: do the established nanotoxicological theories and testing strategies for aquatic systems hold 

true for these ensembles with emergent properties? 

The field of nanotoxicology emerged from the study of particulates [26–28]. Historically, 

deleterious effects from exposure to ultrafine particles, e.g., PM10, PM2.5, as well as from mineral 

fibers, such as asbestos, raised safety concerns and resulted in comprehensive evaluation of their 

effects on environmental and human health. Particulate toxicology evolved through classical toxicity 

investigations utilizing both in vivo and in vitro techniques. Inhalation, instillation and oral exposure 

with endpoints of mortality, metabolic changes, biodistribution within the species body, reproductive 

and other physiological behavioral changes were evaluated during in vivo studies [29–33]; while 

cellular level studies concentrated on uptake, cell viability, DNA structural damage, immunogenicity 

and apoptosis [34,35]. Such detailed investigations were feasible due to a limited set of variables on 

the particulate side, which was severely compromised after the advent of nanotechnology. New 

particles with unique sizes, shapes, chemical identities and a variety of surface functionalization 

brought forward new challenges in evaluating the particulate-based toxicological effects of a widening 

set of nano-scale materials. The toxicological community has focused on revealing the mechanisms of 

toxicity and identifying key physicochemical properties, e.g., size, shape, surface chemistry and 
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dissolution, that contribute to the observed toxic responses [36–39], thus narrowing down the scope of 

work. As the materials field moves from singular NMs to conjugated NHs, similar challenges 

reappear; i.e., what properties should the toxicological community now be concerned about? Will the 

NHs elucidate properties that can be described as a summative product of the individual components, 

or will novel emergent properties surface due to such conjugation? These questions center on recent 

literature presenting evidence of the altered and novel properties of such NHs.  

Most NHs are composed of NMs with unique chemical origin or physical properties. When 

conjugated, the resultant properties of the ensembles are expected to be different. It is also likely that 

during hybridization, one or more of the components’ properties will become dominant, which can be 

a function of the mode of conjugation or the synthesis procedure. Such changes may be manifested in 

their resultant size [40], shape [41,42], crystalline structure [41,42], surface chemistry [43], dissolution 

properties [44], sorption characteristics [45], band-gap energetics [46], oxidation resistance [40], etc. 

Furthermore, the emergence of unique and novel properties are also likely; e.g., unique physical and 

mechanical behavior, enhanced reactivity and localized changes in chemical or electronic properties 

can emerge, which have not been highly considered as governing parameters for toxicity 

determination. Bimetallic core-shell NHs have been generated possessing simple spherical [47] to 

cubic [41], rod-like [41], plate-like [42], triangular [48] or triangular-bipyramidal [41] structures. 

Complex polyhedral [49], bipyramidal [50] and dumbbell [51] configurations have also resulted from 

hybridization. Hierarchical three-dimensional (3-D) exotic nano-structures are also obtained when 

exohedral conjugation occurs between zero-D fullerene, 1-D carbon nanotube and/or 2-D graphene 

plates [52,53]. 

Similarly, mechanical properties, such as stiffness, have also shown to be altered due to fullerene 

insertion in nanopeapods [53,54]. Moreover, bandgap modulation and variation in electronic attributes 

due to the insertion of fullerene onto carbon nanotubes are also observed [46]. Similarly, reactivity has 

been altered due to conjugation; titanium dioxide hybridized with platinum to form binary 

electrocatalyst has been shown to induce a strong metal support interaction (SMSI)  

phenomenon [55,56], resulting in altered sorption properties. The emergence of such novel properties 

or alterations to the known physicochemical characteristics of individual nanoparticles will most 

certainly affect NHs’ environmental interactions [43,57], compared to what has been observed with 

component materials [26,34,58,59]. However, as NH synthesis infers infinite combinations of 

individual NMs to obtain a large set of NHs, there is a critical need to formulate effective research 

strategies for assessing the environmental health and safety of this ever-expanding material class. 

This paper describes the most common NHs being produced, identifies a few of their emergent 

properties and presents their potential implications for nanotoxicity in aquatic systems. We have 

focused this review on aquatic ecosystems, as with increasing use, NMs, including NHs, are likely to 

find their way into such environments, where they may impact relevant species. The article will 

introduce NH properties as per material classification and highlight key toxicity end-points for aquatic 

organisms and microbes, with a specific focus on metals/metal oxides and carbonaceous materials. 

Considerations for toxicity evaluation of NHs are described in light of the identified properties.  
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2. Classification, Applications and Characterization of Nanohybrids 

NHs can be classified on the basis of their parent materials, i.e., whether the component materials 

are organic/inorganic or metallic/carbonaceous. For the scope of this review, NHs are mainly 

categorized into four classes: carbon-carbon NHs (CCNH), carbon-metal NHs (CMNH), metal-metal 

NHs (MMNH) and organo-metal-carbon NHs (OMCNH). Such classification is useful to identify key 

properties of the NHs, relevant to their safety, however, not necessarily the only basis for classifying 

these nano-ensembles. CCNHs are synthesized by conjugating multiple carbonaceous NMs with 

different geometry; i.e., carbon nanotubes (single-walled or multiwalled), fullerenes or  

graphene [52,60]. When such carbon-based NMs are combined with their metallic counterparts, the 

conjugates can be classified under the CMNH category [61–63]. Such metal and metal oxide NMs 

include gold [64], silver [65,66], titania [67,68], zinc oxide [69,70], alumina [71] and iron oxides [72]. 

Two or more metal-based NMs may also be hybridized, either by chemical attachment or by 

overcoating, to prepare MMNHs [73]. Moreover, synthetic macromolecules (e.g., drug molecules, 

proteins, dyes and other long chain polymers), enzymes and proteins are utilized to generate carbon- or 

metal-based NHs that can be classified under the OMCNH category. Conjugation and/or overcoating 

processes to generate NHs offer unique properties tailored toward a wide range of applications.  

Table 1 presents a summary of such applications that include: processes and devices for electronic and 

energy industries, biomedical applications, environmental remediation, catalytic processes, 

construction materials, lubrication, heat transfer and others. 

Table 1. Types and current applications of nanohybrid materials.  

Broad 

Application 

Areas 

Specific 

Applications 

NH 

Class 

Specific Types Citation Environmental 

Exposure 

Pathway 

Electronics 

and energy 

Field effect 

transistors 

CCNH Fullerene-CNT peapods [46,74,75] Leachate; surface 

water Graphene-CNT hybrid [76] 

CMNH Graphene-ZnO hybrid [77] 

Graphene nanosheet/metal nitride 

hybrid 

[78] 

OMCNH Graphene-organic molecule hybrid [79,80] 

Poly(3-hexylthiophene)-fullerene 

hybrid 

[81] 

Energy storage/ 

supercapacitors 

CCNH Graphene oxide-CNT peapods [82] 

CMNH MnO2/CNT hybrid [83] 

CNT/RuO2 hybrid [84] 

Graphene-Mn3O4 [85] 

Lithium ion 

batteries/storage 

CCNH Fullerene-CNT peapods [86] 

Graphene-CNT hybrid [87–89] 

Carbon nano-onions [90] 

CMNH Graphene-TiO2 hybrid [91] 

MMNH ZnO-Au hybrid [92] 

  



Nanomaterials 2014, 4 376 

 

 

Table 1. Cont. 

 Transparent 

conductive films 

CCNH CNT-graphene exohedral hybrid [76,93,94]  

 Fullerene/CNT/graphene-oxide 

hybrid 

[95] 

CMNH SWNT-Au [96] 

MMNH  

OMCNH 

Ag/TiO2 nanowire [97] 

Graphene-Ag nanowire  [98] 

Photovoltaics CCNH Graphene-fullerene hybrid [99–102] 

Optical limiting 

devices 

CMNH CNT-fullerene [103] 

ZnO-graphene quantum dots [104] 

Graphene/TiO2 [105] 

MMNH Ag/TiO2 nanowire [106] 

OMCNH Fullerene/CNT with 

porphyrins/phthalocyanines 

[107] 

dihydronaphthyl-fullerene [108] 

CCNH  

CMNH 

Graphene-fullerene hybrid [109] 

Fullerene-CNT [110] 

MWNT-ZnO NH [111] 

MMNH Au@TiO2, Au@ZrO2, Ag@TiO2, 

and Ag@ZrO2 core-shell NHs 

[112] 

 Fuel Cell OMCNH Oligothiophene-graphene, 

porphyrin-graphene 

[13,113] 

MMNH Pt-Pd [114] 

CCNH Graphene-CNT exohedral hybrid [115] 

CMNH CNT/TiO2-Pt  [116] 

Pt-reduced graphene oxide [21] 

MMNH Pd-Cu [117] 

Biomedical Bioimaging and 

cancer therapy 

CMNH Quantum dot-Fe3O4-CNT [118] Atmosphere 

MMNH Au-Fe shell-core [119,120] 

MRI agents CMNH Gadofullerene [121–123] 

Drug delivery CCNH Fullerene-CNT [124] 

CMNH Quantum dot-Fe3O4-CNT [118] 

MMNH Au-Fe3O4 [125]  

OMCNH Pluronic F-127/graphene [126] 

Parclitaxel-Au [127] 

Environmental 

monitoring 

and 

remediation 

Chemical 

sensing 

CCNH Carbon nanotube-graphene nanosheet 

hybrid 

[128] Leachate 

CMNH Pt-graphene [129] 

 MWNT-zerovalent iron [130] 

Graphene-iron [131] 

Graphene-ZnO [132] 

MMNH Au-Ag [133] 

Pt/TiO2 nanotube [134] 

OMCNH Hematoporphyrin-ZnO [135] 
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 Biosensors CCNH Reduced graphene oxide-MWNT [136]  

Gas sensors CCNH Graphene-CNT hybrid [137] 

Contaminant 

degradation 

CMNH CNT-TiO2 [138] 

ZnO-reduced graphene oxide [139] 

Pathogen 

detection 

MMNH Fe3O4-Au-Fe3O4 nanodumbbell 

and Fe3O4-AuNR nanonecklace 

[140] 

Au-Ag [141] 

Antimicrobial CMNH CdSe-Au [142] 

Graphene-ZnO [132] 

Ag-graphene oxide [143] 

Heavy metal 

removal 

CCNH Carbon nano-onions [144] 

Bio-imaging  CCNH Carbon nano-onions [145] 

Catalysis Catalyst 

support/catalyst 

OMCNH CNT-enzyme [146] Atmosphere; 

leachate CCNH N-doped CNT-graphene peapods [147] 

CMNH CNT/Pd [148] 

 Graphene-Au [149] 

MMNH Au-Pd core-shell structure [150] 

Construction 

industry 

Nano-

reinforcement in 

composites 

 Pt/Pd-Fe/TiO2 [114] leachate 

CCNH CNT-Graphene nanoplatelet hybrid [151] 

Structural health 

monitoring 

CCNH CNT-graphene nanoplatelet hybrid [152] 

Miscellaneous Antimicrobial 

coating/paint 

CCNH Carbon nano-onions [153] Leachate  

Temperature 

sensor 

CCNH Azafullerene-CNT peapods [154] - 

Heat transfer CCNH Graphene wrapped MWNT [155]  - 

Abbreviations: CCNH, carbon-carbon nanohybrid (NH); CMNH, carbon-metal NH; OMCNH,  

organo-metal-carbon NH; MMNH, metal-metal NH; CNT, carbon nanotubes; SWNT, single walled carbon 

nanotubes; MWNT, multi walled carbon nanotubes.  

Such a widespread application of NHs necessitates a careful evaluation of their toxicity to aquatic 

organisms. Systematic evaluation of NM toxicity requires detailed physicochemical characterization. 

Most characterization techniques utilized for singular NMs are also applicable to NHs [156]. Key 

physicochemical parameters that are relevant to toxicity include: particle size distribution, 

morphology, surface potential, wettability, concentration, the presence of functional groups, adsorption 

properties, band gap energetics, reactive oxygen species (ROS) generation, and metal dissolution. 

These parameters are characterized using electron microscopy, e.g., transmission, scanning and 

scanning tunneling electron microscopy; several spectroscopic techniques, UV-Visible, atomic 

absorption, Raman, Fourier transformed infrared, X-ray photoelectron, and energy dispersive 

spectroscopy; interfacial characterization tools, e.g., electrophoretic mobility and dynamic and static 

light scattering; thermo-gravimetric analysis and inductively coupled plasma mass spectroscopy for 

metal dissolution. However, hybridization will likely alter some of these inherent properties or present 
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emergent novel properties that are not typically manifested by singular NMs. Thus, it is to be ensured 

that classical characterization techniques utilized for singular NM characterization are appropriately 

adjusted to measure altered and emergent properties presented by these conjugated NHs.  

3. Key Properties Relevant to Toxicity 

The near-atomic size factor of NMs enhances their interaction with biological species, organs, 

tissues and cells and has manifested unique toxicological responses [26,157]. Moreover, due to their 

large surface area to volume ratio, NMs provide reactive surfaces influencing particle-particle and  

cell-particle interactions [26,27]. Unique toxicological responses from NMs have been correlated to 

their geometry, chemical composition, chemical stability, and surface chemistry [26,27]. In addition to 

these common determinants, the release of dissolved ionic species from metallic NMs are also known 

to impart biological stress [158]. This section identifies potential alterations to well-known NM 

physicochemical attributes and the manifestation of novel emergent properties resulting from 

hybridization that will likely influence the toxicological outcomes of NHs. 

3.1. Alteration of Well-Known NM Properties Relevant to Toxicity 

3.1.1. Bandgap Energetics, Photocatalytic Activity and ROS Generation Potential 

Cellular toxicity resulting from exposure to carbonaceous and metallic NMs is known to be 

mediated by oxygen-containing radicals, such as peroxides and singlet-oxygen, collectively known as 

reactive oxygen species or ROS [159]. ROS generation depends on the photo- and catalytic-activity of 

NMs dictated by their electronic properties [160]. A ROS-mediated toxicity paradigm of metal oxide 

NMs hypothesizes that a surface’s ability to generate oxidative stress is directly correlated to the 

energetic positioning of its conduction band (Ec) with respect to cellular redox potential [161,162]. 

When the Ec overlaps with the cellular redox potential, the nanomaterials quench the reducing capacity 

of antioxidants present in the cell, such as glutathione. NM hybridization significantly alters the 

electronic properties through band bending (Figure 1) and, thus, can display altered cellular toxicity. 

One of the key reasons to design and develop NHs is to tune the bandgap for achieving the desired 

electronic and photoactive properties for applications in solid-state electronics [46] or pollutant 

degradation [63]. However, differences in the mode and extent of hybridization and the materials 

utilized can contribute to the differences in band-structure alterations, which can subsequently cause 

uncertainty in the shift of conduction band (Ec) positioning. Such an Ec shift can cause overlap with the 

cellular redox potential and can mediate ROS generation ability. Figure 1 shows the bandgap energy 

diagram of (a) ZnO NM and (b) ZnO-graphene or ZnO-CNT NH. Ec for ZnO is positioned at −3.9 eV 

(Figure 1a), which resides outside the cellular redox potential range of −4.12 eV to –4.84 eV [161]. 

When conjugated with carbonaceous nanomaterials, e.g., CNTs or graphene, the excellent charge 

transfer and separation characteristics of carbonaceous nanomaterial causes band-bending of ZnO 

toward the CNT/graphene work function (−4.3 to −5.0 eV), as shown in Figure 1b [163,164]. Such 

band-edge movement causes the overlap of the Ec position with the cellular redox potential, thus likely 

causing increased photocatalytic activity, ROS generation and cytotoxicity from ZnO-graphene 
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NHs [132,165]. Therefore, systematic evaluation of the altered band structure can hold the key to 

precise understanding of the ROS generation potential and the corresponding nanotoxicity. 

Figure 1. Bandgap energetics diagram of (a) ZnO and (b) ZnO-graphene or ZnO-CNT 

NH. The diagrams also show the relative energetic positions of the cellular redox potential 

(−4.12 to −4.84 eV) and relevant oxygen species (superoxides and hydroxy radicals). 

 
(a)      (b) 

3.1.2. Dissolution Characteristics 

Metal dissolution from metallic (e.g., Ag) and metal oxide (e.g., ZnO) NMs is also well-known to 

affect toxicity towards microbes [166], aquatic invertebrates and vertebrates [167] and higher trophic 

level species [168]. Hybridization of metal NMs can alter dissolution properties and, thus, can impact 

toxicological consequences. For example, dissolution of highly reactive Ag is reduced if protected by a 

thin layer of relatively inert gold (Au), irrespective of the Ag:Au ratio in the NH [44]. On the contrary, 

rapid dissolution of Ag is observed under physiological conditions if it surrounds an Au core [169]. 

Similarly, conjugation of carbonaceous NMs with metallic ones may change their dissolution 

chemistry, as observed in the case of Ag dissolution, where the rate of Ag+ ion production is decreased 

(leading to long-term antimicrobial actions) when conjugated with graphene nanosheets using 

polymeric linkers [170]. Thus, variability in dissolution properties introduced via the hybridization of 

NMs will likely influence nanotoxicological responses in aquatic organisms. 

3.1.3. Surface Chemistry 

NMs’ surface functionality and chemistry control their environmental toxicity on the basis of their 

sorption or reactivity with the cell-membrane proteins, lipids or polysaccharides [171,172]. When NMs 

are hybridized, the surface characteristics become altered due to the incorporation of functional 

moieties, solvent effects, surface coating, bonding characteristics and linking molecules that conjugate 

multiple nanomaterials [156] and will likely influence NH-cell interaction. For example, nanopeapods 

that encapsulate fullerenes within SWNT cylindrical structures may prevent the direct interaction of 

fullerenes with cells or aquatic species, whereas exohedral fullerene-CNT NHs or nanobuds will likely 
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present both CNT and fullerene surfaces to biological species, modulating toxicological responses in a 

more profound way [52,156]. The chemistry and nature of bonding between fullerenes and CNTs will 

also play a significant role in the toxicity of the NHs. Seamless conjugation of fullerene-CNT by 

covalent bonding produces less soluble hybrids (i.e., nanobuds) than those conjugated via organic 

linkers, creating non-covalent bonds between CNT and fullerenes [156]. This difference in solvent 

affinity will have implications in hydrophobic interactions during NH-cell interactions. Additionally, 

organic-carbonaceous hybrids, such as MWNT-porphyrin conjugates, introduce toxic moieties that can 

increase antimicrobial effects (when compared to pristine MWNT), via ROS-mediated cell damage 

under visible irradiation [173]. Thus, the presence of multiple reactive surfaces with changes in bond 

structure between multiple NMs, as well as the presence of unique inorganic/organic moieties will 

influence NH toxicity. 

3.2. Emergence of Novel Toxicological Properties for NHs 

3.2.1. Dimensionality and Surface Morphology 

NM shape and size have been established as key physicochemical parameters for their toxicological 

responses enabled by their underlying surface area and morphological effects [36,174–176]. However, 

these properties are dependent on the dimensionality of the material; i.e., whether it is  

zero-dimensional (fullerenes or spherical metals), one-dimensional (CNTs or metal nanorods) or  

two-dimensional (graphene or plate-like metal NPs). For example, CNTs’ needle-like appearance can 

induce increased toxicity compared to the globular or planar structures of fullerenes or graphene, 

respectively [174,175]. However, when these NMs are conjugated, altered dimensionality is the most 

obvious consequence, dictated by the types of parent material and the mode of conjugation. For 

example, when fullerenes or graphene are incorporated endohedrally within the hollow structure of a 

CNT, e.g., nano-peapods, the one-dimensional CNTs will likely mask the zero or two-dimensionality 

of the fullerenes [177] or graphene [147]. Furthermore, exohedral or outer surface conjugation of 

carbon-based nanostructures can result in unique three-dimensional structures, as observed in the case 

of nanobuds [52,178], other hierarchical configurations (e.g., grapevine-like fullerene-CNT NHs [103], 

or multilayered CNT-graphene NH [89] structures). The role of dimensionality here can be realized as 

the presentation of the altered geometry of the NHs to cells and tissues. For example, CNTs’  

well-known asbestos-like [179] or fullerenes’ ROS-dependent toxicity [180] might be further 

reinforced by membrane disruption dynamics, due to the edge roughness of graphene [181] when 

conjugated as a single NH unit. Similarly, metal NMs when decorated on 2-D graphene or 1-D CNT 

surfaces can lead to less agglomeration, resulting in increased available reactive surface area and, thus, 

can alter cellular interactions. Moreover, polydispersity and different shapes of metal NMs (from cubic 

or spherical to dumbbell shaped or flowerlike structures) conjugated on the CNT/graphene surfaces 

will generate a wide-array of diverse surface morphologies, possibly modulating the cytotoxicity of 

these unique NHs. Thus, dimensionality can serve as one of the emergent parameters, causing 

unpredictability in biological responses from NH exposures.  
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3.2.2. Mechanical Properties 

Hybridization of NMs, particularly CNTs with other structures, affects their mechanical properties; 

i.e., mechanical stiffness, bendability/curling ability, etc. CNTs are known to have excellent 

compressive, tensile and flexural strength [182]. Encapsulation of fullerenes has been shown to 

increase the bending strength of SWNTs [183], resulting in stiffer tubules [54]. On the contrary, the 

elastic moduli of graphene nanosheets are predicted to decrease, due to fullerene conjugation on the 

planar surfaces when estimated via molecular dynamics simulations [184]. On the other hand, 

graphene exhibits enhanced mechanical properties when decorated with AgNPs, displaying increased 

tensile strength and a Young’s modulus by 82% and 136%, respectively [185]. Such evidence indicates 

that NH mechanical properties will likely be different than their parent materials; such emergent 

behavior may lead to novel physical interactions, as well as unique particle-particle interactions during 

exposure to biological organisms.  

3.2.3. Synergistic Properties 

One of the key underlying reasons for conjugation or hybridization is to acquire synergy between 

multiple functionalities of NMs; i.e., the conjugation of two or more NMs manifests enhanced- or 

multi-functionality, which otherwise may not be attainable. Therefore, removing one component from 

the NH will compromise the synergy between multiple properties. For example, unique hierarchical 

structures, like Ag-supported-graphene-wrapped-ZnO (Ag-graphene-ZnO NH), can display synergistic 

functionality. Photoactive ZnO produces charges (i.e., electron-hole pairs) under illumination, while 

highly conductive graphene helps to increase the degree of charge separation and prevent 

recombination and Ag acts as an electron sink, improving the photodynamic degradation of 

pollutants [186]. While synergism in NHs may be beneficial for applications, its contribution towards 

toxicity and cellular interaction should not be ignored. For example, combinatory biocidal and 

photocatalytic activity in the dark and illuminated conditions is observed in Ag-TiO2 core-shell 

formulations [187]. In this case, TiO2 not only protects the AgNPs from fast dissolution (long-term 

antimicrobial actions), but also serves as an AgNP carrier to bacterial entities. Moreover, Ag+ 

dissolution accompanied by the evolution of ROS from photoactive TiO2 presents synergism in 

combined bactericidal performance [188]. Such properties that work in sync are unique to this horizon 

NH material class and necessitate a fundamental understanding of their effects on aquatic species.  
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Figure 2. Diagram showing the relevant properties of carbonaceous and metal NMs that 

are associated with toxicity (right panels, a.1–e.1). How these properties might be altered 

for nanohybrid materials is displayed in the corresponding left panels (a.2–e.2).  

 

4. Toxicological Implications for NHs Based on Current Biological Effects and  

Mechanisms of Action 

4.1. Aquatic Nanoparticle Toxicity Testing Strategies 

Compared to assessments on mammalian models, fewer studies have investigated the impact of 

NHs on the health of aquatic organisms to try and understand the toxicity and modes of action of 

singular NMs. It is only prudent to assess the potential implications from NHs by evaluating 
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component material impacts. It is to be noted, however, that due to the sheer diversity in NM types and 

associated variables (metal content, purity, size, shape, surface chemistry) and combinations, the 

toxicity data can be quite challenging to consolidate and interpret for a given NH [189]. Two types of 

singular NMs that have been a prominent focus of study in aquatic toxicology are metal- and  

carbon-based NMs. For metals, most studies have focused on TiO2 [190], Ag [191], ZnO [31] and 

CuO [192] nanoparticles, with a smaller subset examining quantum dots [193], Al [194], Ni [195], 

Ce [196], Fe [197] and Au [198] particles. The carbonaceous materials primarily investigated include 

multiple types of carbon nanotubes (i.e., SWNTs vs. MWNTs) [199], graphene [200] and 

fullerenes [201]. Possible toxicological implications for hybridization of carbonaceous and metallic 

NMs to make different NHs have been summarized in Figure 2. Detailed description of such 

properties' alteration has been provided in the previous section. In this section, we review what has 

been learned with regard to the biological effects and mechanisms of action (MOA) in aquatic species 

exposed to these select types of singular NMs. We additionally discuss the application of such 

knowledge to NH toxicity testing in light of the potential for NHs to possess new emergent properties. 

In the field of aquatic toxicology, traditional animal models of study found throughout the literature 

include pelagic invertebrates (Daphnia sp.), benthic invertebrates (Hyalella azteca), large (i.e., 

Rainbow trout) and small (i.e., fathead minnow, P. promelas) fishes and a number of algae 

species [202]. Researchers have also utilized models that allow for the testing of specific endpoints 

(such as development in zebrafish, Daniorerio [203]) or species-specific effects on marine algae and 

invertebrates [204], plants [205], emergent insects [206], filter feeding organisms [207] and 

snails [208], among others. As each nanoparticle has its own set of unique properties, as discussed 

above, the selection of an appropriate test organism and exposure route can maximize our understanding 

of the potential effects. This can pose quite a challenge, as we have a poor understanding of which 

NMs and in what concentrations they will be found in the aquatic environment. 

4.2. Biological Mechanisms of Metal/Metal Oxide Nanoparticle Toxicity 

While information about the acute and chronic overt toxicity of metal nanoparticles is important for 

understanding the risk these materials pose, elucidation of the underlying mechanisms of toxicity may 

help us mitigate these risks more effectively. Studies on these mechanisms have proposed a diverse 

array of potential targets. The most widely probed mechanism is oxidative stress as a result of the 

production ROS, as discussed earlier. While internal ROS production is a natural phenomenon in 

biological tissues, excessive ROS (from external sources) can cause oxidative damage and cell 

apoptosis. Exposure to TiO2, Ag, Zn and Al nanoparticles have all been shown to increase ROS by 

direct measurement in tissues of exposed organisms [203,209–211]. The measurement of lipid 

peroxidation (LPO) can also serve as an indicator of oxidative stress, as ROS can damage the lipid 

bilayer of cell membranes. Examples of metal nanoparticles increasing LPO include numerous fish 

species exposed to ZnO and TiO2 [212–214]. 

Plants and animals have natural defense systems to mitigate the effects of oxidative stress. 

Numerous antioxidants are produced to scavenge ROS and prevent potential damage, including super 

oxide dismutase (SOD), peroxidase, catalase (CAT) and glutathione (GSH). Increased levels of these 

antioxidants have been used as biomarkers of oxidative stress in numerous studies, including tilapia 
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exposed to Ag nanoparticles [215], carp exposed to ZnO [214], marine invertebrates exposed to 

CuO [204] and Daphnia magna exposed to TiO2 [216]. Measurement of the phase II enzyme 

responsible for the metabolism of GSH, glutathione s-transferase (GST), has also been used as a 

downstream indicator of oxidative stress [204,212]. Metallothionein, a protein involved in binding free 

metal and decreasing oxidative stress, has also been shown to be upregulated during metal nanoparticle 

exposure [217,218]. In addition to acting as biomarkers of exposure, disruption of natural antioxidant 

levels has also been proposed as a mechanism of toxicity. For example, Daphnia magna exposed to Cu 

nanoparticles exhibited an initial increase in antioxidants to combat oxidative stress, but over time, 

antioxidant production decreased, potentially due to extensive damage [219]. This phenomenon was 

also seen in the livers of fish exposed to TiO2 [212]. 

The measurement of oxidative stress biomarkers provides strong evidence of metal nanoparticle 

exposure, but the measurement of downstream effects can provide biomarkers of the effect for these 

materials. Studies have shown that TiO2, Ni and Ag nanoparticles caused membrane breakage, leading 

to decreased membrane integrity [195,209,220]. Differential production of Na/K ATPase during 

nanoparticle exposure may also be indicative of the loss of cell homeostasis [213,221,222]. Irritation of 

the gills of zebrafish by Ag and Cu nanoparticles led to increased gill filament width, which could 

cause respiratory distress [192,223]. Though a large majority of mechanistic studies have focused on 

the mechanisms of toxicity in animals, a few researchers have examined toxic mechanisms in plants 

and phytoplankton. In addition to some of the biomarkers of exposure described above, depletion of 

chlorophyll content and decreased photosystem II activity are commonly measured biomarkers of the 

effect as a result of exposure to Ag, Cu, Zn and Cu nanoparticles [224–226].  

It is important to note that many of the properties of metal-based NMs that cause oxidative damage 

to aquatic species make these materials valuable for manufacturers as antimicrobial agents [227]. 

However, these properties may have unintended consequences in bacterial communities found in our 

wastewater treatment plants and aquatic ecosystems [228]. ROS production in particular has been 

shown to cause general oxidative stress in a number of bacterial species, as well as lipid and protein 

oxidation, DNA/RNA damage and the interruption of cell signaling pathways [229]. 

Perhaps the most difficult aspect of examining the aquatic toxicity of metal nanoparticles is 

assessing the contributions of dissolved metals from the particles, and the particles themselves have on 

toxicity. Many studies have attributed the toxicity of metal nanoparticles to the dissolved 

fraction [38,191], while others hypothesize that particles and dissolved ions may have individual and 

potentially different, toxic mechanisms [192,230]. The mechanical separation of intact particles from 

dissolved ions allows for researchers to examine the individual contribution of each metal species on 

toxicity [231]. For example, Griffit et al. [192] exposed zebrafish to Cu nanoparticles, as well as ionic 

copper. The dissolved fraction of copper was not enough to explain the toxicity of the copper 

nanoparticles, and gene expression profiles between the two exposure scenarios showed differential 

modes of action, suggesting that nano-copper toxicity involves more than just dissolved  

copper toxicity. 

Though intact nanoparticles and their dissolved ions may have individual contributions to toxicity, 

it is also possible for metal nanoparticles to act as catalysts for the increased toxicity of different 

metals. Wang et al. 2011 [232] showed that the combination of arsenic (As) with TiO2 particles caused 

higher toxicity than equivalent individual exposures, with a similar response seen in the presence of Al 
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particles [222]. Researchers have shown that metals can bind to TiO2, which may facilitate increased 

internalization and, therefore, increased toxicity [221,233]. 

While direct interactions of metal nanoparticles and their dissolved ions with biochemical targets 

present numerous toxic mechanisms, physical interactions with organisms may indirectly cause toxicity. 

For example, TiO2 has been implicated in decreasing growth and reproduction in Daphnia magna, due 

to changing gut morphology and clogging the gut, which may, in turn, decrease nutrient 

uptake [234,235]. Ag nanoparticles also decreased food intake and digestion in snails, suggesting 

digestive damage [236]. Direct binding of TiO2, Ag and Ce nanoparticles to Daphnia magna carapace 

has also been hypothesized to interfere with normal molting activity [196,237]. Exposure to metal 

oxide nanoparticles has also been shown to decrease hatching success in zebrafish embryos [230,238]. 

One possible explanation is that dissolved ions from the particles freely diffuse through the embryonic 

chorion and chelate the enzyme responsible for breaking down the chorion (zebrafish hatching enzyme, 

ZHE1), rendering it inactive. As a result, larval fish cannot hatch and eventually die [239,240]. 

All of the above mechanisms may also be influenced by the presence or absent of numerous abiotic 

factors that likely influence the toxicity of metal NMs in aquatic systems, which include salinity, pH, 

temperature and the presence of divalent ions [202]. However, one factor that may have the greatest 

influence on NM toxicity is the presence of dissolved organic matter (DOM). This factor becomes key 

during NM transformation in the environment. For metal NMs, DOM in aquatic systems has been 

shown to influence both size and toxicity. In general, DOM helps to stabilize particles, effectively 

decreasing particle size and aggregation [241–243], and as a result, toxicity is typically reduced in the 

presence of DOM. This has been demonstrated for the metal NMs, Ag and TiO2 [241,242,244,245]. 

The influence of natural light on particle toxicity also cannot be ignored if toxicity tests are to 

represent environmentally realistic exposures, a property especially important for assessing metal 

toxicity. Select metal nanoparticles have been shown to have increased and decreased toxicity in the 

presence of UV light. TiO2 exhibits strong photoreactivity by the formation of reactive oxygen species 

in the presence of ultraviolet light [246]. While this property may be favorable for applications, such as 

anti-microbial coatings, the photocatalysis of TiO2 has been shown to increase toxicity in aquatic 

organisms [242,243,247]. UV light has also been shown to influence particle size and resulting 

toxicity, though results have been contradictory. Poda et al. [241] showed that UV lights caused the 

oxidation of PVP coatings on silver nanoparticles, which, in turn, caused a decreased particle size and 

increased dissolution, while Shi et al. [248] showed that sunlight caused an increased particle size and 

particulate deposition. In both cases, the addition of UV light decreases the toxicity of Ag particles, 

though the hypothesized mechanisms differed. 

4.3. Biological Mechanisms of Carbon Nanoparticle Toxicity 

Current research centered on the toxicity of carbon NMs in aquatic organisms has been minimal 

compared to mammalian systems, where there has been a heavy emphasis on carbon nanotubes and 

their pulmonary exposures and effects [249]. The primary carbon NMs that have been studied in 

aquatic organisms include SWNTs, MWNTs, fullerenes and graphene. The toxic effects of these 

materials have been evaluated in a number of species, including microbes, invertebrates (daphnia, 

snails, mussels) and a number of fishes. Similar to metal NMs, the primary biological MOA that has 
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been most commonly evaluated for these materials is oxidative stress, which is typically assessed in 

concert with mortality, survival, growth and reproduction. However, this mechanism has not been met 

without controversy, as some reports have emerged that suggest organisms can manage oxidative 

stress and that other more subtle MOAs should be considered. It has also been proposed that the 

chemicals used to suspend carbon NMs (i.e., surfactants) may be a significant contributing factor to 

oxidative-mediated mechanisms [250]. A few studies have additionally investigated impacts on cell 

membrane integrity and immune parameters, such as the modulation of the expression of genes, IL-1β 

and INFα, in trout macrophage primary cells exposed to carbon nanotubes [251].  

Understanding whether NMs are absorbed and distributed in biological systems is critical in 

defining toxicity and setting regulatory standards (i.e., limits of exposure). In general, this has been 

difficult to assess for carbonaceous nanoparticles, as we have limited availability of adequate 

analytical detection methods (reviewed by Edgington et al. [252]), which have made such assessments 

difficult. Due to the difficultly in tracking, detection and quantification of carbon NMs in aquatic 

organisms, most reports have relied on radiolabeled materials. Of the few studies performed to date, 

most agree that carbon nanomaterials are not readily absorbed into organisms through a dietary route. 

For example, separate studies collectively show that CNTs enter the gut of invertebrates (copepods, 

Daphnia), where they either accumulate or are eliminated with no evidence that they are absorbed 

across the gut epithelium [253–256]. More recent work by our group has utilized near-infrared 

fluorescence (NIRF) imaging and quantitative methods to show similar results in fathead minnows 

exposed to SWNT by gavage [255]. 

Investigations of carbon nanoparticle toxicity have focused on a number of properties inherent to 

the particles, including shape and surface functionalization. Much of our understanding of shape 

effects comes from studies performed in mammalian systems, which show that the fibrous tube-like 

shape of CNT makes it easy for them to penetrate cell membranes. However, the majority of studies 

performed in aquatic organisms do not support that carbon nanomaterials are taken up into tissues. 

Only a few studies have performed comparisons of graphene and/or graphite and CNT in efforts to 

investigate shape effects on biological effects. For example, Kang et al. [257] tested the ability of 

CNT, nC60 and graphite to cause toxicity to multiple bacterial strains in wastewater effluent and driver 

water extracts. Results of this work reveal that graphite and C60 were less toxic, as measured by cell 

inactivation, compared to the SWNT. While a number of parameters likely contribute to this 

observation, the diverse shape of the particles should be considered as a contributing factor. 

Conversely, other studies have shown that graphene nanosheets with sharp edges cause considerable 

damage to bacterial cell membranes [258], implying that shape has an important influence on toxicity 

for some species.  

One property that makes carbon nanomaterials of the same type (i.e., CNT) potentially distinct from 

a toxicological point of view is their surface chemistry. This property has been more widely studied 

compared to the influence of shape in aquatic models. Variations in surface chemistry can be tightly 

controlled during particle synthesis and include such variations as the addition of neutral, positive or 

negative functional groups. The impacts of such diverse surface modifications of CNT were shown in 

studies on Daphnia, where carboxylation of SWNTs increased toxicity, while functionalization with 

amine groups or poly-ethylene glycol (PEG) decreased toxicity. In the same study, the exposure of 

Daphnia to unfunctionalized fullerenes was associated with decreased reproduction and growth, which 
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improved when the fullerenes were hydroxylated [259]. Interestingly, in a follow-up study, this same 

group showed that the toxicity profiles for aminated SWNT were not consistent in multigenerational 

effects. In fact, these SWNTs decreased survival or reproduction in F1 and F2 generation Daphnids [260]. 

Despite the lack of observed acute toxicity, absorption and systemic distribution, carbon NMs may 

pose more subtle health effects. Current theories of study include the ‘Trojan horse hypothesis’, which 

suggests that due to their sorptive nature, carbon NMs can interact with other more well-known 

chemical contaminants, which can then be transported into organisms through multiple means. While 

this hypothesis is being widely investigated in the drug delivery arena, few studies have been 

conducted that are relevant to aquatic systems. Conversely, the interaction of carbon NMs with such 

contaminants may limit their bioavailability, resulting in decreased toxicity. While a number of studies 

support the ability of CNTs, fullerenes and graphene to sorb well-known toxic chemicals, such as 

polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs) and xenoestrogens [261], 

only a few studies have probed the associated toxicity. In a study by Parks et al. [262], the sorption of 

SWNTs with PCBs was shown to decrease bioaccumulation and toxicity to benthic organisms. Similar 

results were observed in zebrafish hepatocytes co-exposed to fullerenes (C60) and metalloid arsenic 

(As(III)), where the overall As toxicity, as measured by oxidative stress, was diminished by the 

presence of C60 [263]. Furthermore, due to their sorptive nature, carbon NMs may produce a state of 

‘nutrient depletion’ as an indirect mechanism of toxicity [264–266], as they sequester growth factors 

and other molecules necessary for good nutrition. It has been observed in mammalian studies that due 

to the sorptive nature of CNT, they are able to interact with proteins, growth factors and other 

molecules; however, this hypothesis has not been examined in aquatic models. 

Similar to metals, the presence of DOM has been shown to influence both environmental fate and 

transport, as well as the toxicity of carbonaceous nanomaterials. A number of studies report that 

altering the pH varies the surface charge of carbon nanotube, which alters the way DOM coats the 

particles [267,268]. In essence, this ultimately changes particle stability in aqueous environments, 

typically resulting in increased aggregate size. Interestingly, DOM-suspended MWNT did indeed show 

increased aggregates; however, this modification of the MWNT did not result in an altered toxicity 

profile compared to non-DOM MWNT suspensions [267]. Conversely, studies performed on Japanese 

medaka (Oryzias latipes) embryos show that while the toxic effects of Aqu/nC60 and raw MWNT were 

not altered with the addition of DOM, the adverse effects associated with exposure to nC60 (prepared in 

toluene) and acid-treated MWNTs were reduced [269]. A reduction in microbial toxicity has also been 

observed in microbes exposed to nC60 in the presence of DOM [270]. 

5. Application of Biological Effects of Constituent NMs to Understanding NH Toxicity 

In assessing the health impacts of NMs, there has been a movement to understand the key properties 

of nanoparticles and the environmental influences that drive adverse health outcomes. As described 

above in the previous sections, studies have been heavily focused on the influence of DOM, 

dissolution (for metals), surface chemistry, shape and their relationship to oxidative stress, adsorption 

and gross endpoints, such as mortality and reproduction. While these studies provide important 

toxicological data for single NMs, this information may not be entirely applicable to predicting and 

understanding the potential toxicity of NHs. Hybridization of NMs will likely influence the 
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toxicological responses of aquatic organisms. A focus of current testing strategies thus far has centered 

on correlating key attributes of NMs to select biological end-points. Thus, it is expected that the 

alteration of such toxicologically relevant properties or the introduction of novel emergent ones will 

significantly influence the potential health and ecosystem impacts of NHs. Oxidative stress imparted 

toward microbes or aquatic organisms is highly dependent on generated ROS and their specific types; 

i.e., superoxides, hydroxyl radicals or singlet oxygen. Thus, it follows that hybridization-induced 

changes in band-gap energetics that influence ROS generation will likely have an impact on toxic 

effects that include signal transduction, DNA damage, lipid peroxidation, enzyme dysfunction, 

mitochondrial oxidative disorder and apoptosis. In fact, changes in ROS production and subsequent 

toxicity implications of Fe NP for overcoated structures, i.e., for Fe/Ni, Fe/Pt, Fe/Pd and Fe/Cu, have 

already been reported in the literature [271]. As materials science communities continue to control 

band gap energetics through the production of NHs, particularly the conjugation of multiple 

metal/metal oxides or with carbonaceous surfaces, it will be important to assess altered ROS 

production by such novel materials and their impacts on aquatic species. 

Similarly, dissolution products of NMs, e.g., from ZnO, CuO or Ag, can damage cell membranes 

via reaction with transport proteins, produce chelating compounds with essential intracellular proteins 

or alter cellular metal ion concentrations, resulting in organelle damage. These cellular consequences 

are highly dependent on the dissolved metal speciation and ion concentration. When hybridized, metal 

dissolution rates will likely become altered, either due to over-coating with a different metal of varying 

solubility or due to the increased surface area of metal NMs as a result of their controlled distribution 

over a secondary surface. A recent study showed the comparative toxicity of Au-Ag hybrids towards 

Daphnia magna in the presence of synthetic surface waters (SSF) and presented LC50 values for two 

Au-Ag combinations [44]. The displayed toxic effects from these NHs lay in between the manifested 

effects from singular AgNPs and AuNPs. Similar responses are likely to occur from overcoated NHs, 

as well as from exohedrally or endohedrally distributed metal/metal oxide-carbonaceous NHs. 

However, significant uncertainty remains regarding how these overcoated and conjugated NHs will 

manifest dissolution properties that can be linked with toxic responses. 

Biological responses associated with exposure to NMs may also be influenced by shape and size. 

Conjugation will inherently introduce new dimensional changes, bringing forward NMs with altered 

size/shape, surface area and reactivity [272,273]. This emergent dimensionality attribute will likely 

influence NH toxicity by altering interactions with cellular membranes, which may alter the 

mechanisms of particle uptake, either by diffusion or energy-requiring processes. Furthermore, placing 

one NM of a certain density onto a second one may also change the mechanical stiffness of the NHs. An 

abundance of literature already reports the influence of stiffness/rigidity on the cytotoxicity for singular 

NMs [274–276]. In addition, adverse biological effects of other ‘stiff’ particles, which are not easily 

cleared, such as crocidolite asbestos fibers, are well documented. Such altered mechanical property 

may lead to significant changes in NM clearance from biological tissues and organisms. Both changes 

in dimensionality and stiffness may thus lead to changes in the way these NHs interact with biological 

molecules, which is an MOA being highly studied for carbon-based nanoparticles. 
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6. Conclusions 

Materials science has moved on from singular NM synthesis and functionalization to hierarchical 

ensembles of more complex NHs. Multifunctionality is almost a necessity for many current and future 

applications. Thus, NHs will be the future of nano-scale materials that synergize multiple functions. It 

is likely that hybridization will lead to the alteration of existing properties or the emergence of 

properties not yet characterized that need to be considered in assessing toxicity in aquatic systems. As 

we are still beginning to define such properties of NHs, we should consider how toxicity might be 

altered as a result. As a research community, we should strive to develop standard protocols for 

accurate measurements of these properties, perform systematic studies to assess variations of such 

properties and bridge our understanding of these properties to underlying cellular mechanisms of 

action. Since the production of such an ever-expanding set of NHs with new compositions and 

emergent properties is imminent, the evaluation of their biological behavior is necessitated. 
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