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Spin-structures of the Bose-
einstein condensates with three 
kinds of spin-1 atoms
Y. Z. He1, Y. M. Liu2 & c. G. Bao1*

We have performed a quantum mechanic calculation (including solving the coupled Gross-Pitaevskii 
equations to obtain the spatial wave functions, and diagonalizing the spin-dependent Hamiltonian in 
the spin-space to obtain the total spin state) together with an analytical analysis based on a classical 
model. Then, according to the relative orientations of the spins SA, SB and SC of the three species, the 
spin-structures of the ground state can be classified into two types. In Type-I the three spins are either 
parallel or anti-parallel to each other, while in Type-II they point to different directions but remain to 
be coplanar. Moreover, according to the magnitudes of SA, SB and SC, the spin-structures can be further 
classified into four kinds, namely, p + p + p (all atoms of each species are in singlet-pairs), one species 
in f (fully polarized) and two species in q (a mixture of polarized atoms and singlet-pairs), two in f and 
one in q, and f + f + f. Other combinations are not allowed. The scopes of the parameters that supports 
a specific spin-structure have been specified. A number of spin-structure-transitions have been found. 
For Type-I, the critical values at which a transition takes place are given by simple analytical formulae, 
therefore these values can be predict.

The study of the multi-species Bose-Einstein condensates (BEC) with atoms having nonzero spin is an attractive 
topic1. For these systems, when the temperature is extremely low (say, lower than 10−9 K), the spatial degrees of 
freedom are nearly frozen and the spin degrees of freedom play essential roles2,3. Various spin-structures will 
emerge, and they are found to be sensitive to the very weak spin-dependent forces. Therefore, these systems might 
be ideal for realizing exquisite control.

When the BEC contains only one kind of N spin-1 atoms, the polar phase (p-phase) and the ferromagnetic 
phase (f-phase) have been found in the ground state (g.s.)4–10. In the p-phase, the spins of atom are two-by-two 
coupled to zero to form the singlet pairs (s-pair), and the total spin of the condensate S = 0. In the f-phase, all 
the spins are fully polarized, i.e., lying along a common direction, and S = N. For 2-species BEC, it was found 
in1,11–23 that there are three types of spin-structures, namely, (i) the p + p spin-structure where both species are 
in p-phase; (ii) the f//f structure where both species are in f-phase, and the two total spins (each for a species) 
are lying either parallel or antiparallel to each other; and (iii) the f//q structure where one in f-phase and one in 
quasi-ferromagnetic phase (q-phase, a mixture of aligned spins and s-pairs).

The above message from 2-species BEC attracts the exploration on the spin-structures of multi-species BEC. 
Note that, for 3-species BEC, the three intra-species and three inter-species spin-dependent interactions can 
be repulsive or attractive. Thus, the spin-structures are expected to be very rich. However, this interesting topic 
is scarcely studied before. This paper is a primary study on this topic. The aim is to clarify the variety of the 
spin-structures and the related critical phenomena, and the effects of the intra- and inter-species interactions. 
We believe that the knowledge extracted from 3-species BEC would be in general useful for understanding the 
spin-structures of many-body systems with multi-species.

We proceed in the following way:

•	 From the experience of 2-species BEC, the spin-structures are seriously affected by the compactness of the 
spatial wave functions (i.e., ∫ ϕ rdA

4  and ∫ ϕ rdB
4 ) and the overlap (i.e., ∫ ϕ ϕ rdA B

2 2 ). For 3-species BEC, rdJ
4∫ ϕ  

(J = A, B, C) and ∫ ϕ ϕ ′ rdJ J
2 2  are believed to be also important. Therefore, we solve the coupled Gross-Pitaevskii 

equations (CGP) under the Thomas-Fermi approximation (TFA, in which the kinetic energies have been 
neglected) to obtain the spatial wave functions. Since the kinetic energy increases linearly with particle 
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number N, while the interaction energy increases with N2, the relative importance of the kinetic terms is very 
weak when N is very large. Therefore, the TFA is applicable when the particle numbers are huge as usually in 
the experiments of BEC (numerical estimations are referred to24–26).

•	 Let SJ be the total spin of the J-species and S be the total spin of the mixture. Let Ξ denote the total spin-state 
of the mixture. When the singlet-pairing force has been neglected, Ξ has the three {SJ} and S as good quantum 
numbers. Ξ can be obtained via a diagonalization of the Hamiltonian in the spin-space. In order to extract 
physical features from Ξ, in addition to the good quantum numbers, the averaged angles JJθ ′ between SJ and 
SJ ′ have also been calculated. Thereby various types of spin-structures specified by {SJ} and { }JJθ ′  can be iden-
tified, and the transitions among them are found.

•	 In addition to the above quantum mechanic (QM) calculation, a corresponding classical model has been pro-
posed and solved analytically. The results from the model are checked via a comparison with those from QM 
calculation. This model helps greatly to understand the complicated 3-species spin-structures.

Hamiltonian and the Ground State
Let the mixture of three kinds of spin-1 atoms be trapped by isotropic and harmonic species-dependent potentials 

ωm rJ J
1
2

2 2. The intra-species interaction is V c cr r F F( )( )J i j N i j J J i
J

j
J

1 0 2J
δ= ∑ − + ⋅≤ < ≤ , where Fi

J  is the spin  
operator of the i-th atom of the J-species. The inter-species interaction is VJJ i N j N1 1J J

= ∑ ∑′ ≤ ≤ ≤ ≤ ′
 

δ − + ⋅′ ′
′c cr r F F( )( )i j JJ JJ i

J
j
J

0 2 . We introduce two quantities m and ω, and use ω and λ ω≡  m/( )  as the units 
for energy and length. Then, the total Hamiltonian is

H K V V( ) ,
(1)J

J J
J J

JJ
ˆ∑ ∑= + +

< ′
′

where ˆ ˆK h i( )J i
N

J1
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2 2
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m
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J J

2
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ω

ω
.

Note that, in the ground state (g.s.), every particles of a kind will condense to a spatial state (say, ϕJ) which is 
most favorable for binding. Let Ξ denotes a normalized total spin-state. Then the g.s. can be in general written as

r r r( ) ( ) ( )
(2)i
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A i
j
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k
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∏ ∏ ∏ϕ ϕ ϕΨ = Ξ.
= = =

Let ϑS M
N

J J
J  denote a normalized and all-symmetric spin-state for the J-species where the spins are coupled to SJ and 

its Z-component MJ. According to the theory given in27, −N SJ J must be even, the multiplicity of S M
N

J J
Jϑ  is one (i.e., 

S M
N

J J
Jϑ  is unique when SJ and MJ are fixed), and the set { }S M

N
J J
Jϑ  is complete for all-symmetric spin-states. Let 

S S( ) ( )S
N

S
N

S M A B S MA
A

B
B

AB AB AB AB
ϑ ϑ ≡  be a combined spin-state of the A- and B-species, in which SA and SB are coupled to 

SAB and MAB. Let ϑ ϑ ϑ ≡ S S S(( ) ) (( ) )S
N

S
N

S S
N

SM A B S C SMA
A

B
B

AB C
C

AB
 be a total spin-state of the mixture, in which SAB and SC are 

further coupled to S and M . It is recalled that SA, SB, SC, S and M  are good quantum numbers, but SAB is not. 
Nonetheless, the states S S S(( ) )A B S C SMAB

 form a complete set so that Ξ can be expanded by them.

The coupled gross-pitaevskii equations and the spatial wave functions. For the Hamiltonian 
given in Eq. (1), the associated CGP equations for ϕA to ϕC are11,28

h( ) 0 (3)A AA A AB B CA C A A
2 2 2ˆ α ϕ α ϕ α ϕ ε ϕ+ + + − =

ˆ α ϕ α ϕ α ϕ ε ϕ+ + + − =h( ) 0 (4)B AB A BB B BC C B B
2 2 2

ĥ( ) 0 (5)C CA A BC B CC C C C
2 2 2α ϕ α ϕ α ϕ ε ϕ+ + + − =

where ϕA, ϕB and ϕC are required to be normalized.
Since the spin-dependent forces are in general two order weaker than the spin-independent forces (say, 

c c/ 0 0047J J2 0| | = .  for 87Rb, and 0.0313 for 23Na), as a reasonable approximation, the contribution of the former 
can be neglected. Then, we have 

α ′ c NJJ J J0  (if J J= ′) or α =′ ′ ′c NJJ JJ J0  (if ≠ ′J J ).
Under the TFA where the terms of kinetic energy have been neglected, in a domain where all the Jϕ  are 

nonzero, the CGP can be written in a matrix form as

ϕ

ϕ
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ε γ

ε γ

ε γ
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where M is a 3 × 3 matrix with elements JJα ′. Let the determinant of M be D. From the above matrix equation, we 
obtain a formal solution of the CGP as
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ϕ = − =Z Y r J A B C, ( , , ) (7)J J J
2 2

D D= .Z / (8)J J
Z

J
ZD  is a determinant obtained by changing the J column of D from ( , , )AJ BJ CJα α α  to ε ε ε( , , )A B C .

= .Y / (9)J J
YD D

DJ
Y  is also a determinant obtained by changing the J column of D to γ γ γ( /2, /2, /2)A B C . Once all the parameters 

are given, the three YJ are known because they depend only on α ′JJ  and γJ. However, the three ZJ have not yet been 
known because they depend on ε ε ε( , , )A B C . When YJ is positive (negative), ϕJ

2 goes down (up) with r. Thus, the 
main feature of this formal solution depends on the signs of the set Y{ }J .

The set Z{ }J  and the set { }Jε  are related as

Z ,
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J
J
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′
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Z
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J
J

JJ J∑ α ε= .
′

′ ′

where α =′ ′d D/JJ J J , and d ′J J is the algebraic cominor of J Jα ′ . This formal solution is named the Form III, which is 
valid only in a domain where all the three Jϕ  are nonzero.

When two wave functions are nonzero inside a domain while the third is zero, in a similar way we obtain
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where l, m and n are a cyclic permutation of A, B and C.
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Once the parameters are given, the six ′Yn
n( ) (n n′ ≠ ) are known, while the six ′Zn

n( ) have not yet. This formal 
solution with ϕ = 0n  is denoted as Form IIn, where the subscript specifies the vanishing wave function.

When one and only one of the wave functions is nonzero in a domain (say, ϕ ≠ 0J ), it must have the unique 
form as

ϕ
α

ε γ= − .r1 ( /2)
(14)

J
JJ

J J
2 2

Obviously, Jϕ  in this form must descend with r. This form is denoted as Form IJ, where the subscript specifies 
the survived wave function.

If a wave function (say, ϕJ) is nonzero in a domain but becomes zero when r ro≥ , then a downward 
form-transition (say, from Form III to IIj) will occur at ro. Whereas if ϕJ is zero in a domain but emerges from zero 
when ≥r ro, then an upward form-transition (say, from Form IIJ to III) will occur at ro. ro appears as the boundary 
separating the two connected domains, each supports a specific form. In this way, the formal solutions serve as 
the building blocks, and they will link up continuously to form an entire solution of the CGP. They must be con-
tinuous at the boundary because the two sets of wave functions by the two sides of the boundary satisfy exactly 
the same set of nonlinear equations at the boundary.

Recall that there are three unknowns Aε , εB and εC contained in the formal solutions. Taking the three addi-
tional equations of normalization ∫ ϕ =rd 1J

2  into account, the three unknowns can be obtained. Then, under the 
TFA, the CGP is completely solved. The details are shown below.

The spatial wave functions. The spin-structures in multi-species BEC is caused by the inter-species inter-
actions. Obviously, they would act more effectively when the three species are distributed closer to each other. 
Therefore, in the following examples, we take the miscible states into account, in which all the three species have 
nonzero distribution at the center (r = 0). An example is given in Fig. 1, where the wave functions in zone I to IV 
are in Form III, Form II1, Form I3, and empty, respectively.
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For this example, we know that the boundary ra (at which 0Aϕ = ) is equal to Z Y/A A  (refer to Eq. (7)), rb (at 
which ϕ = 0B ) is equal to Z Y/B

A
B

A( ) ( ) (Eq. (12)), rc (at which 0Cϕ = ) is equal to 2 /C Cε γ  (Eq. (14)). They give the 
outmost boundary of ϕA, ϕB and Cϕ , respectively. Taking the normalization into account, we obtain
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Since ZA, ZB, and ZC have been obtained as given above, Aε  and εB can be further obtained via Eq. (10). Then, the 
entire solution of the CGP together with the chemical potentials are completely known.

Nonetheless, the realization of the miscible state is based on a number of assumptions. First, it is assumed that 
all the wave functions are nonzero at the center, thus Z 0A > , Z 0B > , and Z 0C >  are required. Second, ϕA is 
assumed to descend with r in zone I and ϕB is assumed to descend with r in zone II, thus Y 0A >  and Y 0B

A( ) >  are 
required. Third, ϕ | > 0B ra

 and ϕ | > 0C ra
 are required so that the Form III can link with a Form IIA at ra. Fourth, 

ϕ | > 0C rb
 is required so that the Form IIA can link with a Form IC at rb. Each of these requirements will impose a 

constraint on the parameters (say, the requirement ϕ | > 0B ra
 leads to Z Y rB

A
B

A
a

( ) ( ) 2> , and therefore leads to 
Y YA B> ). Thus, the type as shown in Fig. 1 can be realized only if the parameters are given inside a specific scope. 
A comprehensive discussion on the scope of parameters for each spatial type of solution is the base for obtaining 
the phase-diagrams, but this is beyond the scope of this paper.

The total spin-state. Making use of the spin basis-state, we define a set of basis-states for the g.s. as

Figure 1. An example of the spatial wave functions of a miscible state obtained from the TFA solution of the 
CGP. The parameters are given as =Y 300A , =Y 15B , = .Y 0 1C , Y 20B

A( ) = , =Y 3C
A( ) , α = .0 01CC  and γ = .0 08C .
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where the subscript S denotes a specific set of the good quantum numbers S S S S( )A B C . When a magnetic field is not 
applied, the label M can be neglected. Accordingly, a candidate of the g.s. can be expanded as

d ,
(22)S

S S,
AB

AB ABS S∑ ψΨ =

Let H  be divided as = +H H Ho spin, where all the spin-dependent interactions are included in Hspin. Let  
the indexes − +J J J( , , ) be a cyclic permutation of A B C( , , ). Then H c r r F F( )J J i j N i j i

J
j
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spin 2 1 J
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+. When the values of the good quantum numbers in S are presumed, the 
coefficients dSAB

 can be obtained via a diagonalization of Hspin in the space expanded by ψS S, AB
. The matrix ele-
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where the summation of J  covers A, B and C, = + +w S S SS S S S S w S S SS S S( ; ) (2 1)(2 1) ( ; )A B C AB BC AB BC A B C AB BC , 
the latter is the W-coefficients of Racah, = +T S S( 1)J J J , and so on.

Carrying out the diagonalization of S

′
HS S,AB AB

, the lowest eigenstate is ΨS and the corresponding energy is 
denoted as ES. Let the presumed values in S be varied. If SE  arrives at its minimum when = oS S , then the g.s. 

SΨ = Ψgs o
.

To extract information on spin-structure from Ψgs, we calculate the averaged angle between the two spins SA 
and SB as
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where ˆ ≡ ∑S FJ i i
J is the operators for the total spin of the J-species. Similarly, we have
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Examples are given below.

Classical model (Type-I). Neglecting all spin-independent terms, the spin-dependent energy of the g.s. can 
be written as

ˆ ˆˆ∑ ∑= Ψ Ψ = Ξ − Ξ + Ξ ⋅ Ξ
+ +

E H Q S N Q S S2 2 ,
(27)J

J J J
J

JJ J Jspin o spin o
2

where ∫ ϕ=Q crd /2J J J
4

2 , ∫ ϕ ϕ=
+ + +

Q crd /2JJ J J JJ
2 2

2 .
Based on Eq. (27), we propose a classical model to facilitate qualitative analysis. In this model, the total spin of 

the J-species is considered as a vector SJ
→ with norm SJ ranging from 0 to NJ, JJθ

+
 is the angle between →SJ  and →

+
SJ . 

The magnitudes and orientations of the three →SJ  together describe an intuitive picture of the spin-structure. The 
classical analog of Espin is defined as

∑ ∑ θ= +
+ + +

E Q S Q S S2 cos ,
(28)J

J J
J

JJ J J JJspin
M 2
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The effect of the inter-species force is embodied by 
+

QJJ . When Q 0JJ <
+

 (attractive), SJ
→ and SJ

→
+
 will be lying along 

the same direction. Whereas when Q 0JJ >
+

 (repulsive), along opposite directions. Note that two of the spins will 
define a plane and will pull the third lying on the same plane. Therefore, the spin-structures of the 3-species conden-
sates are assumed to be coplanar (this assumption will be checked later). Thus, in what follows, 2AB BC CAθ θ θ π+ + =  
is given. Accordingly, when Q{ }J  and Q{ }JJ+

 are given, Espin
M  is a function of five variables S S S( , , , , )A B C BC CAθ θ . When 

these variables lead to the minimum of Espin
M , they specify a coplanar spin-structure of the g.s. In order to find out the 

minimum, we calculate the partial derivatives of Espin
M . They are given in the appendix.

There are two types of spin-structures. When all Q{ }JJ+
 are negative, 

→
SA, 

→
SB and 

→
SC would tend to be parallel to 

each other, i.e., all cos 1JJθ =
+

 as shown in Fig. 2a. When only one of 
+

Q{ }JJ  is negative, say, QAB is negative, orien-
tations of the spins are shown in Fig. 2b, where θ =cos 1AB , θ θ= = −cos cos 1BC CA . These two cases belong to the 
Type-I.

For Type-I

E Q S Q S S( 2 )
(29)J

J J JJ J Jspin
M 2∑= − .

+ +

When SJ of a species is given at 0, NJ and in between, let the corresponding phase of the J species be denoted by p, 
f  and q, respectively. Let p be a point with the coordinates S S S( , , )A B C  bound by a cuboid as shown in Fig. 3. Let 
pg.s. be the point where Espin

M  arrives at its minimum. There are the following possibilities.

The case pg.s. is located inside the cuboid (i.e., not on the surfaces of the rectangle). In this case < <S N0 J J for all 
J. At the minimum the three equations =

∂

∂ . .p 0
E

S g sJ

spin
M

 are necessary to hold. This leads to a set of homogeneous 
linear equations for S S S( , , )A B C  as

− − = =
− − + +

Q S Q S Q S J A B C0, ( , , ) (30)J J J J J JJ J

However, the matrix of this set is in general not singular. Therefore, there is no nonzero solution. Even, for a spe-
cific choice of the parameters, the matrix is singular, the nonzero solution can be multiplied by a variable common 
number ς . One can see that Espin

M  varies with ς  monotonically. In order to minimize Espin
M , ς  should be given either 

in its upper or lower limit but not inside. Thus, pg.s. cannot locate inside the cuboid. It implies that the three species 
cannot all be in the q-phase.

Let a rectangle on the surface of the cuboid be denoted as p p p p1 4 8 5, etc. (refer to Fig. 3). There are six rectangles 
classified into two kinds. The three containing the common vertex P1 belong to the first kind, the other three 
containing p7 belong to the second kind.

Figure 2. Intuitive pictures of the coplanar spin-structures, where the relative orientations of the spins SA, SB 
and SC are shown.
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The case pg.s. is located on a rectangle of the first kind. If this case is realistic, the g.s. would have at least one species 
in p-phase. For instance, if pg.s. were located on p p p p1 4 8 5 (i.e., S 0A = , ≤ ≤S N0 B B, and S N0 C C≤ ≤ ), it is neces-
sary to have | ≥

∂

∂ . .
0

E

S p
A

spin
M

g s
. However, this leads to Q S Q S 0AB B CA C−| | − | | ≥  which cannot be realized unless 

S S 0B C= = . With similar arguments, pg.s. cannot be located on p p p p1 5 6 2 and p p p p1 2 3 4 as well, but it can be located 
at the point P1. It implies that the case with one or two species in P-phase is prohibited, while all species in P is possible.  
This fact coincides with the finding found in 2-species condensates, in which the P-phase is extremely fragile when 
it is accompanied by an f or a q. Therefore, the P + f or P + q structures do not exist, but the P + P structure is 
allowed20–23.

With the prohibition of the above two cases, pg.s. can only access P1 and the three rectangles of the second kind, 
but those edges each being a common edge of two rectangles belonging to two kinds should be excluded.

The case pg.s. = p7. In this case =S NJ J for all J and, accordingly, the structure is denoted as f//f//f. (the symbol //
implies that the related spins are either parallel or anti-parallel). The three inequalities | <

∂

∂
0

E

S p
J

spin
M

7
 are required 

to hold. This leads to the constraints listed at the right of the first row of Table 1. These constraints give the scope 
of the parameters that supports the f//f//f-structure. The energy of this structure E Efffspin

M M=  is listed in Table 2. In 
these tables, we have defined

β ≡ −
+ + +

Q Q Q , (31)JJ J J JJ
2

Figure 3. The cuboid formed by the norms of the three spins SA, SB, and SC each from 0 to NJ.

Spin-structure Constraint

f//f//f N Q N Q N Q 0J J J J J J JJ− | | − | | <− − + +

f//f//q

N Q N Q S Q 0A A B AB C CA− | | − | | <

N Q S Q N Q 0B B C BC A AB− | | − | | <

S Q N Q N Q( ) 0C C A CA B BC− | | + | | =

Q 0C >

f//q//q

N Q S Q S Q 0A A B AB C CA− | | − | | <

S N Q Q Q Q( )/B A C AB BC CA BCβ= | | + | || |

β= | | + | || |S N Q Q Q Q( )/C A B CA BC AB BC

Q 0B > , Q 0C > , 0BCβ >

p + p + p Q0, 0ABC Aβ ≥ > , >Q 0B , >Q 0C

Table 1. When all <
+

Q 0JJ  or only one <
+

Q 0JJ , the representative possible spin-structures of the g.s. are listed 
in the first column. The notation f//f//q implies that the A, B and C species are in f, f and q, respectively. The 
three spins SA, SB and SC are either parallel or anti-parallel to each other. The (in)equalities listed in the second 
column impose a constraint on the parameters so that the associated structure can emerge only in a subspace in 
the parameter space. In the first row =J A, B and C. − +J J J( , , ) is a cyclic permutation of (A, B, C). The 
constraints for other possible structures not listed in the table, say, f//q//f, can be obtained by a cyclic 
permutation of the indexes A, B and C.
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and

Q Q Q Q Q Q Q Q Q Q Q Q2 (32)ABC A B C AB BC CA A BC B CA C AB
2 2 2β ≡ − − − − .

When all species are ferromagnetic in nature (i.e., all Q 0J < ), the inequality N Q N Q N Q 0J J J J J J JJ− − <
− − + +

 
holds definitely, and the f//f//f structure is the only choice for the g.s. When some species (say, J-species) is polar 
in nature (i.e., >Q 0J ), the term N QJ J (representing the intra-interaction) and the other two terms (representing 
the combined inter-interaction) are competing. Only when QJ J| |

−
 and | |+

QJJ  are sufficiently large the inequality 
could hold.

The case pg.s. is located in the interior of p p7 6, p p7 3 or p p7 8. When pg.s. is in the interior of p p7 3 (the two ends of the 
edge are not included), =S NA A, S NB B= , and S N0 C C< < . The associated structure is f//f//q. The two inequali-
ties 0

E

S p
A

spin
M

g s
| <

∂

∂ . .
 and 0

E

S p
B

spin
M

g s
| <

∂

∂ . .
, together with 0

E

S p
C

spin
M

g s
| =

∂

∂ . .
 and 0

E

S p
C

2
spin
M

2 g s
| >

∂

∂ . .
 are required. This leads to the 

constraint listed in the second row of Table 1. This structure can be realized only if Q 0C >  (i.e., the C-species is 
polar in nature), whereas QA and QB can be negative or weakly positive. If they are positive and large, the 
inter-species interaction should be even stronger to ensure that the inequalities hold. The equality for SC implies 
that the intra-force and the inter-force imposed on the C-atoms arrive at a balance. The energy Effq

M  is given in 
Table 2. The structures f//q//f (B-species in q) and q//f//f (A-species in q) can be similarly discussed. These three 
together are called the double-f-structure (double-f-str).

The case pg.s. is located in the interior of the rectangles of the second kind. When pg.s. is in the interior of p p p p7 6 2 3, 
=S NA A, < <S N0 B C, and S N0 C C< < . The associated structure is f//q//q. The inequality 0

E

S p
A

spin
M

g s
| <

∂

∂ . .
 together 

with 0
E

S p
J

spin
M

g s
| =

∂

∂ ′ . .
 and 0

E

S p
J

2
spin
M

2 g s
| >

∂

∂ ′ . .
 (J B′ =  and C) are required. This leads to the constraint listed in the third 

row of Table 1. This structure can be realized only if both the B- and C-species are polar in nature, whereas QA can 
be negative or weakly positive. Besides, the condition > | |Q Q QB C BC

2 is necessary. One can prove that the con-
straint listed in the third row leads to β < 0ABC . Note that =E 0ppp

M  while Efqq
M  is a product of a positive value and 

βABC. Thus, β < 0ABC  is a necessary condition for the f//q//q structure. The structures q//f//q and q//q//f can be 
similarly discussed. The three together are called the single-f-str.

The case pg.s. is located at p1. When all the three species are polar in nature ( >Q 0A , >Q 0B , >Q 0C ) the first 
term of ABCβ  (i.e., Q Q QA B C) is positive. If the inter-species forces are zero or weak, this positive term would be 
dominant. This leads to 0ABCβ ≥ . In this case all the species are in p and the structure is therefore denoted as 
p + p + p. When Q{ }JJ| |

+
 increases, ABCβ  will decrease. Once βABC becomes zero, the energy of the single-f-str will 

be lower than Eppp
M  (refer to Table 2), and the transition p + p + p → single-f-str will occur.

With these in mind, the possible spin-strs of the g.s. are p + p + p, single-f-str, double-f-str, and f//f//f depend-
ing on the parameters.

Spin-structure transition. We aim at the effect caused by the variation of the inter-species forces. Note that 
QJJ+

 can pull the spins of the J and J+ species lying along the same direction (opposite directions) if <
+

Q 0JJ  (>0). 
Therefore, in general, a stronger | |

+
QJJ  will cause the appearance of the f-phase. Starting from Q{ } 0JJ| | =

+
, the first 

transition is from p + p + p to a single-f-str as mentioned above. Recall that the single-f-str must have 0ABCβ ≤  
while the p + p + p has β > 0ABC , therefore 0ABCβ =  is the critical point of transition. One can prove that the two 
sets of constraint for two different single-f-strs (say, f//q//q and q//f//q) cannot both be satisfied Otherwise, two 
contradicting inequalities 0ABCβ >  and 0ABCβ ≤  would both hold. This fact implies that, for a given set of param-
eters, only one of the three single-f-strs can survive. Therefore, p + p + p can only transit to a specific single-f-str 
depending on the parameters. Besides, the transitions among the three single-f-strs (say, f//q//q q→ //f//q) are 
prohibited.

When | |
+

Q{ }JJ  increase further, a q-phase can be changed to a f-phase. Therefore, the single-f-str → double-f-str 
transition will occur (as shown below). One can prove that the three sets of constraints for the three double-f-strs 
do not compromise with each other as before. Thus, a single-f-str can only transit to a specific double-f-str 

Model Energy

E fff
M Q N Q N N( 2 )J J J JJ J J

2∑ − | |+ +

E ffq
M β β+ − | | + | || |N N N N Q Q Q Q[ 2 ( )]QC A CA B BC A B C AB BC CA

1 2 2

E fqq
M β

β

NA
BC ABC

2

Eppp
M 0

Table 2. The model energies of the g.s. in various structures.
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depending on the parameters, and the transitions among the three double-f-strs are prohibited. When | |
+

Q{ }JJ  
increases further, eventually, the g.s. must be in the f//f//f structure.

With these in mind the increase of Q{ }JJ| |
+

 will lead to a chain of transitions as p + p + p → single-f-str → 
double-f-str → f//f//f.

Two numerical examples of Type I are shown in Figs. 4 and 5, where the variation of the spin-structure (spec-
ified by SA, SB, SC, and ABθ , BCθ , θCA) against QCA is plotted. The results from the QM calculation are in solid lines, 
those from the model are in dotted lines. The coincidence is quite well. In particular, the whole chain of transi-
tions predicted via the model are nicely recovered by the QM calculation. The intuitive pictures shown in Fig. 2a,b 
are also supported by Figs. 4b and 5b. In Fig. 4b the angles are very small <9°, in Fig. 5b the angles are either close 
to zero or to 180°. Thus, the analysis based on the model is reliable. Note that the model is symmetric with respect 
to ↔ −

+ +
Q QJJ JJ . This symmetry can be shown by comparing Figs. 4a and 5a.
According to the model, when QCA| | increases, the transition p + p + p f→ //q//q occurs at Q qCA 1| | = , where 

E Eppp fqq
M M= . Thus, q1 is the solution of the equation

β = .0 (33)ABC

In Fig. 4 = .q 0 1651  as listed in Table 3. Recall that, for a 2-species BEC, the p + →p f //q transition will occur 
when β =

+
0JJ  21–23. Obviously, Eq. (33) is a generalization of 0JJβ =

+
. In both equations, the competition of the 

intra- and inter-interactions is clearly shown.
The transition f //q//q f→ // f //q occurs at q2, where E Efqq ffq

M M= . Thus

= − − .q
N Q

N Q Q N Q N Q Q1 ( )
(34)A BC

B B C B BC A C AB2
2

In Fig. 4 = .q 0 4052  as listed in Table 3.
The transition f // f // →q f // f // f  occurs at q ,3  where =E Effq fff

M M . Thus,

= − .q
N

N Q N Q1 ( )
(35)A

C C B BC3

Figure 4. An example for the variation of the spin-structure of Type-I against QCA. The structure is specified by 
S N/A , S N/B , S N/C , and S N/(2 ) (where = + +N N N N )A B C  in (a) and by the angles θAB, BCθ  and θCA (in degree) 
between them (b). The results from the exact diagonalization of Hspin are plotted in solid lines. In (a), the results 
from the model are plotted in dotted lines, and 0AB BC CAθ θ θ= = =  are assumed. Accordingly, the classical 
model has S S S S Sclass A B C= ≡ + +  as shown in (a). The dimensionless parameters are given as N 120A = , 

=N 152B , =N 110C , = .Q 0 6A , = .Q 0 5B , Q 0 77C = . , = − .Q 0 46AB , = − .Q 0 2BC , QCA is from −0.7 to 0. Since 
all 

+
Q{ }JJ  are given negative, this example represents the case of Fig. 2a.
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In Fig. 4 = .q 0 4493 . Recall that, for 2-species BEC with A- and C-atoms, the f //q f→ // f  transition will occur 
when q N Q

N C C3
1

A
=  21–23. Thus, the existence of the third species (B-atoms) is helpful to the transition (i.e., the  

f // f // f  structure can be realized at a smaller | |QCA ).
The above critical values predicted by the model are close to the values from QM calculation as shown in 

Table 3 (except q1, but still acceptable). Thus, the related analytical formulae Eqs. (33, 34, 35) are useful for quali-
tative evaluation. For other chains of transition, the analytical formulae for the critical points can be similarly 
obtained.

Classical model (Type-II). When all 
+

QJJ  are positive (Fig. 2c) or only one of them is positive (Fig. 2d, where 
>Q 0AB ), the associated spin-structures are in Type-II. In this type the three spins point at different directions, 

but they are assumed to be coplanar ( 2AB BC CAθ θ θ π+ + = ). The total energy appears as

E Q S Q S S2 ,
(36)J

J J
J

JJ J Jspin
M 2∑ ∑= + ′

+ +

where θ′ =
+ + +

Q Q cosJJ JJ JJ .
To find out the point pg.s. where the minimum of Espin

M  is located, we first consider the partial derivatives of Espin
M  

against S{ }J  when Q{ }J  and ′
+

Q{ }JJ  are considered as constants. Thus, the situation is the same as for Type-I. With 
the same arguments as those for Type-I, we deduce that pg.s. can only access p1 and the three rectangles of the 
second kind, but those edges each being a common edge of two rectangles belonging to two kinds should be 
excluded.

Figure 5. An example similar to Fig. 4 but with Q 0 2BC = .  and QCA is from 0 to 0.7. Since only one of 
+

Q{ }JJ  is 
given negative (QAB = −0.46), this example represents the case of Fig. 2b. Accordingly, in the model, θ = 0AB  and 

180BC CAθ θ= =  are assumed and ≡ | + − |S S S Sclass A B C  in (a).

Critical Point Classical Model QM Calculation

q1 0.165 0.176

q2 0.405 0.409

q3 0.449 0.446

Table 3. The critical values of QCA in the chain p + p + →p f //q//q f→ // f //q f→ // f // f . The other 
parameters are listed in the caption of Fig. 5.
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When =. .p pg s 7, every species is fully polarized, but the spins of any two species are in general neither parallel 
nor antiparallel to each other. Therefore, instead of f//f//f, this type of structure is denoted as f + f + f. The three 
inequalities 0

E

S p
J

spin
M

g s
| <

∂

∂ . .
 are required which lead to the constraints + ′ + ′ <

− − + +
N Q N Q N Q 0J J J J J J JJ , where J is 

for A, B and C. In addition, the two derivatives E
p

BC

spin
M

g s
|

θ

∂

∂ . .
 and E

p
CA

spin
M

g s
|

θ

∂

∂ . .
 are required to be zero. These lead to (refer 

to Eqs. (48) and (49))

G N N Ncos ( ), (37)BC BC A B Cθ =

θ = .G N N Ncos ( ) (38)CA CA A B C

The two angles obtained in this way should ensure that the two second order derivatives given in Eqs. (46) and 
(47) are positive. When all the >

+
Q 0JJ , from Eqs. (46) and (47) we know that this requirement could be satisfied 

if θBC and θCA are large enough, thereby the repulsion caused by 
+

QJJ  is reduced. Whereas when only one, say, 
>Q 0AB  while <Q 0BC  and <Q 0CA , θBC and CAθ  should be small enough, thereby the attraction caused by QBC 

and QCA can be strengthened. Once the angles are known, the three Q JJ′ ′ are known. Then, the energy 
= ∑ + ∑ ′ ≡ + ++ +

E Q N Q N N E2J J J J JJ J J f f fspin
M 2  and the subspace of parameters that supports this structure are also 

known.
When pg s. .

 is located in the interior of p p7 3 as an example, =S NA A, S NB B= , and the structure is denoted as 
f + f + q. The constraints appear as (refer to the second row of Table 1):










+ ′ + ′ <
+ ′ + ′ <
+ ′ + ′ =

N Q N Q S Q
N Q S Q N Q
S Q N Q N Q

0
0

( ) 0
,

(39)

A A B AB C CA

B B C BC A AB

C C A CA B BC

The angles are subjected to the two coupled equations (refer to Eqs. (48) and (49))

θ = − ′ + ′G N N N Q N Q Qcos ( , , ( )/ ), (40)BC BC A B A CA B BC C

G N N N Q N Q Qcos ( , , ( )/ ), (41)CA CA A B A CA B BC Cθ = − ′ + ′

where Q JJ′
+
 depends on the angles. Solving these equations (say, numerically), we can obtain BCθ  and θCA. Then, 

the energy + +Ef f q and the subspace of parameters that supports this structure can be known as before. The cases 
of f + q + f and q + f + f can be similarly discussed.

When 
. .pg s  is located in the interiors of the rectangles of the second kind, say, p p p p7 6 2 3, then S NA A=  and the 

structure is denoted as f + q + q. The constraint imposed on this structure is listed in the third row of Table 1 but 
with −| |

+
QJJ  being replaced by ′QJJ . In addition, the two coupled equations

θ = G N S Scos ( ), (42)BC BC A B C

G N S Scos ( ), (43)CA CA A B Cθ =

are required to be satisfied. Then SB, SC, together with the angles can be known, thereby + +Ef q q
M  is known.

When all Q 0J > , if the strengths of the inter-species interaction are weak, all the three Ef q q
M
+ + , + +Eq f q

M , and 

+ +Eq q f
M  will be larger than zero, in this case =. .p pg s 1 and the structure is p + p + p.

A comparison of the results from the model and from the diagonalization of Hspin is shown in Table 4.

QCA θCA CAθ θBC BCθ θAB θAB θ θ θ+ +CA BC AB

0.3 81.6 81 8. .144 2 .144 0 134 3. .134 1 359 9.

0.4 .111 3 111 1. 132 7. 132 5. .116 0 116 4. .360 0

0.5 .126 9 .126 7 .127 9 .127 6 .105 3 .105 5 359 8.

0.6 .136 8 .136 7 .125 8 .125 5 .97 5 97 6. 359 8.

0.7 .143 7 .143 5 .125 1 124 7. .91 2 91 6. 359 8.

0.8 .148 9 .148 5 125 3. .124 6 85 8. 86 6. .359 7

Table 4. For the structure f + f + f of the Type-II., the angles (in degrees) between the spins against the increase 
of QCA. The data for θ

+JJ  are from the model (refer to Eqs. (37) and (38)), those for JJθ
+
 are from the 

diagonalization of Hspin (refer to Eqs. (24), (25) and (26)). The parameters are given as =N 120A , N 152B = , 
=N 110C , QA = −0.6, QB = −0.5, QC = −0.77, QAB = 0.3, QBC = 0.4, QCA is from 0.3 to 0.8.
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Table 4 demonstrates that the results given by Eqs. (24), (25) and (26) are quite accurate. In particular, the sum 
of the three θ

+
{ }JJ  given in the last column is very close to 2π. This supports the assumption of coplanar 

structure.

Final remarks. Features of the spin-structures of 3-species condensates with spin-1 atoms have been 
extracted from a model and have been checked via a QM calculation. Note that the effect of the spatial wave func-
tion is embodied in the factors ∫ ϕ rdJ

4  and ∫ ϕ ϕ
+

rdJ J
2 2  included in QJ and +QJJ , respectively. Since we do not aim 

at specific kinds of atoms, they are just considered as parameters to avoid the solving of the CGP (of course, this 
step is necessary when specific species are aimed). The results from the model are found to be consistent with 
those from the QM calculation. In summary:

•	 The structures can be described by the norms of the three spins S{ }J  and the average angles θ
+

{ }JJ  between 
them. When the three species are polar in nature (i.e., all >c 0J2 ) and the inter-forces are weak, the mixture is 
in the p + p + p phase.

•	 The spin-structures not in p + p + p are all coplanar. They can be first classified according to the relative ori-
entations of S{ }J  as intuitively shown in Fig. 2. The case that all inter-forces are attractive (i.e., all <′c 0JJ 2 ) is 
shown in Fig. 2a, only one is attractive (say, c 0AB2 < ,) in Fig. 2b, all are repulsive (all c 0JJ 2 >′ ) in Fig. 2c, and 
only one is repulsive (say, >c 0AB2 ) in Fig. 2d.

•	 The spin-structures can be further classified according to the norms of the spin. In addition to p + p + p, there 
are other three structures, namely, the single- f -str (where one species is in f ), the double- f -str (two species 
in f ), and the f  + f  + f  (all in f ). Note that the single-p-str, the double-p-str, and the q + q + q do not exist. 
Thus, p and f  (or p and q) cannot coexist, just as found in 2-species BEC. If not in p + p + p, at least a species 
must be fully polarized, also similar to 2-species cases.

•	 Starting from the p + p + p, when | |′cJJ 2  increases, more species will tend to be in f -phase. Therefore, a chain 
of phase-transitions p+p + p f→  + q + →q f  + f  + →q f + f  + f  will occur. In the parameter space, there 
are a number of critical surfaces. When the point (representing a set of parameters) vary and pass through 
one of the surfaces, a transition will occur. For Type-I (Fig. 2a,b) the equations describing the surfaces have 
been quite accurately obtained (refer to Eqs. (33), (34) and (35)). Thus, the critical points at which the transi-
tions occur can be predicted. Moreover, the analytical formulae demonstrate the competition among contra-
dicting physical factors, thereby the inherent physics could be understood better. For Type-II (Fig. 2c,d), 
analytical analysis based on the model becomes complicated. Nonetheless, the results from the model have 
been checked to be also valid.

•	 The spin-structures found above might also appear in K-species BEC ( >K 3). For examples, the case of 
Fig. 2a might appear if all inter-species interactions are attractive. Figure 2b might appear if the species are 
divided into two groups and the inter-species interactions inside each group are attractive while those 
between the two groups are repulsive. When the species are divided into three groups GA, GB and GC, and all 
the inter-species interactions inside each group are attractive, and (i) if all the inter-species interactions 

Appendix
From the spin-dependent energy of the model given in Eq. (28) we have the derivatives:

E
S S Q S S Q2[ sin( ) sin ],

(44)BC
A B AB BC CA B C BC BC

spin
M

θ
θ θ θ

∂

∂
= − + +

θ
θ θ θ

∂

∂
= − + +

E
S S Q S S Q2[ sin( ) sin ],

(45)CA
A B AB BC CA C A CA CA

spin
M

E
S S Q S S Q2[ cos( ) cos ],

(46)BC
A B AB BC CA B C BC BC

2
spin
M

2θ
θ θ θ

∂

∂
= − + +

θ
θ θ θ

∂

∂
= − + + .

E
S S Q S S Q2[ cos( ) cos ]

(47)CA
A B AB BC CA C A CA CA

2
spin
M

2

Note that the coupled equations 0
E

BC

spin
M

=
θ

∂

∂
 and =

θ

∂

∂
0

E

CA

spin
M

 have a trivial solution: both BCθ  and CAθ  are equal to 
0 or π, and a non-trivial solution as

G S S S S Q Q S Q Q S Q Q
S S Q Q Q

cos ( ) ( ) ( ) ( )
2

,
(48)

BC BC A B C
A AB CA B AB BC C BC CA

B C AB BC CA

2 2 2

2θ = ≡
− −
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between any pair of groups are repulsive, then Fig. 2c might appear. (ii) if those between GB and GC, and 
between GC and GA are attractive, but those between GA and GB are repulsive, then Fig. 2d might appear. Of 
course, in addition to those plotted in Fig. 2a to 2d, more complicated structures might exist (say, non-copla-
nar structures).

•	 Recall that, for 2-species BEC, the phases p + f  and p + q are prohibited. This originates from the fragility of 
the p-phase when it is accompanied with a f - or a q-phase. The fragility is recovered in 3-species BEC (say, 
p + f + q is prohibited) and is believed to hold also for K 3>  cases. It implies that any species of the mixture 
cannot be in p-phase, except that all species are in p-phase. Furthermore, for 2-species (3-species), the phase 
q + q (q + q + q) is prohibited. The latter implies that the point with the coordinates S{ }J  is located in the inte-
rior of a cuboid. In this case the requirement 0

E

SJ

spin
M





=





∂

∂
 would lead to the fact that S{ }J  should obey a set of 

homogeneous linear equations (refer to Eqs. (51) and (30)). This leads to the prohibition of the interior. This 
prohibition is believed to also hold for K 3>  cases (i.e., the K-species cannot all be in q-phase). Nonetheless, 
the predictions on K-species BEC remain to be checked.
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The above partial derivatives of Espin
M  are essential in the search of the g.s.
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