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Abstract
Gas chromatography-mass spectrometry (GC-MS) is a widely used analytical technique for the
identification and quantification of trace chemicals in complex mixtures. When complex samples
are analyzed by GC-MS it is common to observe co-elution of two or more components, resulting
in an overlap of signal peaks observed in the total ion chromatogram. In such situations manual
signal analysis is often the most reliable means for the extraction of pure component signals;
however, a systematic manual analysis over a number of samples is both tedious and prone to
error. In the past 30 years a number of computational approaches were proposed to assist in the
process of the extraction of pure signals from co-eluting GC-MS components. This includes
empirical methods, comparison with library spectra, eigenvalue analysis, regression and others.
However, to date no approach has been recognized as best, nor accepted as standard. This
situation hampers general GC-MS capabilities, and in particular has implications for the
development of robust, high-throughput GC-MS analytical protocols required in metabolic profiling
and biomarker discovery. Here we first discuss the nature of GC-MS data, and then review some
of the approaches proposed for the extraction of pure signals from co-eluting components. We
summarize and classify different approaches to this problem, and examine why so many approaches
proposed in the past have failed to live up to their full promise. Finally, we give some thoughts on
the future developments in this field, and suggest that the progress in general computing capabilities
attained in the past two decades has opened new horizons for tackling this important problem.

Background
Both gas chromatography and mass spectrometry are
important analytical techniques in their own right. Elec-
tron ionization mass spectrometry is an approach that
generates charged molecular fragments and measures
their mass-to-charge (m/z) ratios [1]. Under standard con-
ditions, electron ionization of small organic molecules
produces complex but reproducible m/z patterns that can
be related to the chemical structure of the parent mole-
cule. On the other hand, gas chromatography excels at
separation of components in complex mixtures, and is
particularly well suited for the analysis of thermally stable

compounds of low polarity [2]. The combination of gas
chromatography and mass spectrometry allows for highly
sensitive analysis of complex mixtures, and is routinely
used in biochemical [3-6], medical [7-10], agricultural
[11] and environmental [12,13] research, as well as in var-
ious industrial applications [14]. A surge of interest in GC-
MS has been fueled by recent biomarker and metabolite
profiling studies [6,11,15-24], and the potential of GC-
MS to contribute to systems biology studies [25-27]. To
this end GC-MS has been used for metabolic profiling in
plants [11,15], bacteria [16,21,22], yeast [17,18] and bio-
logical fluids [19,20,23,24].
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The ever increasing scope of GC-MS applications is open-
ing new challenges in data processing and analysis
[3,6,28]. GC-MS experiments on complex biological and
environmental samples may result in hundreds of signals
and the detection of many compounds in parallel. For
example, Fiehn and co-authors have quantified 326
metabolites in Arabidopsis thaliana leaf tissue extracts [15].
In an independent GC-MS study of Arabidopsis thaliana
leaves, Jonsson and co-authors detected 497 unique
chemical components in five different genotypes [29].
When such complex samples are analyzed, incomplete
chromatographic separations are often observed (note
that this is also expected theoretically [30,31]). This man-
ifests itself as the overlap of chromatographic peaks,
which in turn makes the extraction of pure components
and their mass spectra (required for unambiguous com-
ponent identification) challenging. Currently, the most
accurate analysis of complex GC-MS data sets can be
achieved by an expert operator, however this is both time
and labour intensive. The need to improve analysis times
by speeding up the separation by gas chromatography
without sacrificing the ability to separate/identify individ-
ual components is putting additional pressure on data
processing methods.

Over the past 30 years a number of approaches for the
extraction of pure components from overlapped GC-MS
signals were proposed. This includes empirical methods
[32-36], comparison with library spectra [37,38], differen-
tial methods [39-42], eigenvalue analysis [43-49] and
regression analysis [50-54]. Some time ago methods for
the extraction of pure components were reviewed [55].
The scope of GC-MS applications has increased signifi-
cantly in past years, and a review of previous work seems
timely. Here we first discuss the nature of GC-MS data and
the problem of signal overlap which arises from co-elut-
ing components. Subsequently, we review the most prom-
inent approaches for the extraction of pure component
signals proposed in the past, and give some thoughts on
future developments in the GC-MS data processing field.

The nature of GC-MS data
In a typical GC-MS setup, the eluate from the gas chroma-
tographic column is led directly into the mass spectrome-
ter ion source, and the mass spectrometer records m/z
intensities in the repetitive scanning mode. This results in
R mass scans recorded during the time of the experiment,
at times t1, t2, ..., tR. Each mass scan can be converted into
a series of N m/z intensities defined by the mass vector m
= (m1, m2, ..., mN), where each mi corresponds to one m/z
"channel". This results in a series of mass spectra, defined
by the mass vector m, and taken at times t1, t2, ..., tR. As the
mixture components elute from the chromatographic col-
umn their concentrations change, and the mass spectra of
this continuously changing mixture are recorded.

Consider analysis of a mixture containing K pure compo-
nents, whose mass spectra are 1, 2, ..., K:

The above equations can be written more concisely by
introducing the matrix Δ,

Let C be the matrix of concentrations of K pure compo-
nents over the time of the GC-MS experiment, sampled at
points t1, t2, ..., tR. These concentrations could themselves
be arranged into a two-dimensional matrix C, where each
row corresponds to one sampling time point:

The assumption of the linear mixture model is that the
observed mass spectrum is a linear combination of pure
component mass spectra [44,45]. This is a robust assump-
tion, implying that mass spectrum observed at each mass
spectral scan is the result of a linear combination of the
component mass spectra, where the weighting coefficients
are given by the concentrations of individual compo-
nents. Therefore, the mass spectrum observed at time ti is:

where ci1, ci2, �, ciK are the concentrations of K pure com-
ponents at time ti, and k refers to the mass spectrum of the
pure component k, given in the equation (1). The equa-
tion (4) can be rewritten more succinctly in the matrix
notation,

where the matrices C and Δ are given by the equations (3)
and (2), respectively. The matrix S represents the net result
of a GC-MS experiment, after the transformation of raw
data scans into m/z intensities over channels defined by
m:
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In the above matrix, each row represents the mass spec-

trum  recorded at time ti. In the mathematical nota-

tion,

for i = 1, 2, ..., R. The total of R mass spectra of the eluting
mixture are recorded at times ti. Equation (4) shows the

same quantity, , written in a more explicit form.

In summary, the matrix given by the equation (6) repre-
sents the net result of a GC-MS experiment. Conceptually,
this matrix can be viewed as the product of two matrices,
the matrix C (equation (3)), whose columns contain con-
centrations of pure components as a function of elution
time, and the matrix Δ (equation (2)), whose rows con-
tain mass spectra of pure components. For the sake of sim-
plicity, experimental noise was neglected in the above
considerations.

Total ion chromatogram (TIC)
A single column of the complete GC-MS data matrix,
equation (6), is called ion chromatogram. It represents the
elution profile of a single m/z channel. In practice, the GC-
MS data matrix is usually viewed as the sum of its ion
chromatograms, which is called a total ion chromatogram
(TIC). A TIC is obtained by summing the complete GC-
MS data matrix (6) along its columns,

where  for i = 1, 2, ..., R. A comparison with

the equation (7) shows that ai is the sum of intensities

present in the mass spectrum  (or equivalently, the

mass spectral scan taken at ti), summed over all measured

m/z values.

The problem of signal overlap
Dynamic interactions of solute with mobile and station-
ary phases, as well as solute axial diffusion, lead to broad-
ening of component zones as the solute progresses along
the column [2,56]. These kinetic processes give rise to
familiar chromatographic peaks, which represent compo-
nent concentration in the mobile phase observed at the

end of the column as a function of elution time. The chro-
matographic peaks have a complex shape, and in practice
are most often modelled with the exponentially modified
Gaussian function [57]. For the sake of simplicity, in the
example below we assume simple Gaussian peaks. In this
case, each column of the matrix C given by the equation
(2) will contain a single Gaussian peak centered at the elu-
tion time characteristic of that particular solute compo-
nent.

Consider a hypothetical mixture of two components A
and B (K = 2), whose pure mass spectra are shown in Fig-
ure 1. We assume that the component A elutes from the
gas chromatography column earlier than the component
B (tA <tB, where tA and tB are the retention times of the
components A and B, respectively). If the two compo-
nents elute at significantly different retention times, they
will be well resolved (Figure 2, panel (a)), resulting in two
visible signal peaks in the TIC, as shown in Figure 2, panel
(b). The pure mass spectra of the two components are
given by the mass spectral scans taken at the apex of each
component peak, and correspond to the mass spectra
given in Figure 1. However, if the two components elute
close in time, as depicted in Figure 2, panel (c), a severe
overlap of component signals will occur. In this case a sin-
gle chromatographic peak may be observed in the TIC, as
shown in Figure 2, panel (d). The mass spectrum at the
apex of the composite peak will be a mixture of the pure
mass spectra of the two components, equation (4).

The problem of extraction of pure component signals in
incomplete chromatographic separation is often called
"peak deconvolution" [35,58]. This terminology is unfor-
tunate because the term "deconvolution" denotes the
inversion of a convolution process, a particular kind of
integral transform encountered in the field of signal
processing [59]. Extraction of pure components from
overlapped GC-MS signals is both mathematically and
conceptually different. However the term "peak deconvo-
lution" has taken such deep roots in the GC-MS practice
that is likely to remain a part of the GC-MS specialist's
vocabulary for the foreseeable future.

A complete solution to the problem of pure components
is provided by the matrices C and Δ, given by the equation
(5). However, in GC-MS experiments only the matrix S is
measured. It is a non-trivial problem to decompose the
matrix S into matrices C and Δ; in the most general case
such matrix decomposition does not have a unique solu-
tion. In practice the most important objective is often to
identify retention times and mass spectra of individual
components that contribute to the composite signal.
From this viewpoint and under certain conditions one can
sidestep the equation (5), and focus on some empirical
way to resolve retention times and mass spectra of pure
components. This results in two different approaches to
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the problem of extraction of pure signals from co-eluting
components. "Empirical methods" sidestep the mathe-
matics of the equation (5), and focus on some empirical
way to resolve retention times and mass spectra of pure
components, while "matrix methods" aim to find the
solution of the matrix equation (5). The empirical meth-
ods typically apply the logic of a human analyst, and uti-
lize the capacity of computers to process large amounts of
data and execute repetitive tasks [32-36]. On the other
hand, matrix methods aspire to a comprehensive solution
of the equation (5) relying on some suitable assumptions,
and usually attempt to use most if not all data points.
These methods include for example eigenvalue analysis
[43-49], regression [50-52] and differential analysis [39-
42]. In the next sections we summarize the most promi-
nent empirical and matrix methods proposed in the past.

Methods for the extraction of pure components from 
overlapped GC-MS signals
Empirical methods
The method of Biller and Biemann [32] was the first
widely used method for peak deconvolution. This method
examines m/z intensities which maximize at any given
chromatographic time point, or at adjacent mass spectral

scans. If intensities of several m/z channels exhibit a max-
imum at the same time point, a chromatographic peak is
recorded containing these m/z channels. This procedure
results in "reconstructed" mass spectra of pure compo-
nents, and is effective when two signals do not have com-
mon mass to charge ratios and maximize at two or more
scans apart.

Colby extended the idea of Biller and Biemann by intro-
ducing more accurate estimates of peak positions, fol-
lowed by binning [35]. In this approach peaks were
identified as local maxima in ion chromatograms, and
peak centroids are calculated from the three point quad-
ratic fit centered at the local maximum. From this a
"deconvoluted TIC" was calculated by binning the cen-
troid intensities, in ten bins per scan [35]. The mass spec-
tra of pure compounds were estimated by collecting peak
centroids within the boundaries of the deconvoluted TIC
peak. The author suggested that this method is capable of
separating components which differ for only one quarter
of a scan along the retention time axis [35]. In the original
work, Colby demonstrated deconvolution of a single peak
consisting of six components, all of which were resolved
by the application of the proposed method [35].

Dromey and co-workers proposed an approach that relies
on statistical analysis [33]. This method focused on find-
ing well resolved peaks in individual ion chromatograms,
ie. peaks that showed unique m/z relative to its neighbors.
This is based on the assumption that even for heavily
overlapped signals there will be some m/z that are unique
to either of the two components. So called "singlet frag-
mentograms" provide information about the shape of
component peaks, and this can be used to separate com-
ponent signals in overlapped ion chromatograms, even
for mass-to-charge ratios that occur in both overlapped
components [33]. Dromey and co-authors proposed that
two histograms are calculated for singlet peak positions,
one recording signal maxima and the other recording total
ion intensity above the noise level at these positions. The
exact positions of components were determined by a par-
abolic least squares fit over the top five points in the sam-
pled peak data. After this, the resolved spectrum of each
component was obtained by the least squares fit to the
model peak. The authors demonstrated that the proposed
approach was able to detect indole acetic acid 3-methyl
ester in complex GC-MS data acquired on human urine
samples [33]. While this specific component did not give
a visible signal in the TIC due to heavy overlap, the
authors were able to reconstruct its pure mass spectrum
[33].

Hargrove and co-authors reported that the method of
Dromey failed to recognize weak but readily visible sig-
nals [34]. The problem was traced to the way the method

The assumed mass spectra of pure components A and BFigure 1
The assumed mass spectra of pure components A 
and B. The simulated GC-MS profile is shown in Figure 2.
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calculated "peak sharpness", the property used to distin-
guish true singlet peaks from doublet or background sig-
nal [33]. Hargrove and co-authors proposed a different
function for peak sharpness, and reported a marked
improvement in the performance of the Dromey method
[34].

Based on the ideas of Dromey et al. [33], Stein proposed
an approach with refinements to improve the ability of
the method to discern weak signals [36]. In this method
the first step is the detection of individual components
("component perception"). For each "perceived" compo-
nent the precise peak apex is calculated from the three
point parabola fit centered on the maximum. Once the
number and positions of components are determined, the
mass spectrum for each component is obtained by the
least-squares method similar to that of Dromey et al. [33].
An important aspect of this method is the analysis of the
signal and noise features, used subsequently to aid in dis-
cerning the true signal from noise. An elaborate, empirical
procedure involving analysis of all ion chromatograms is
used to estimate a data noise factor [36]. This method also
explicitly interpolates zero values which are found in the
signal when measured intensities fall under the threshold,
normally established during instrument tuning [36]. Stein
has developed a PC program AMDIS which implements
the proposed method [36].

Eigenvalue analysis
The first methods for GC-MS peak deconvolution based
on the eigenvalue analysis were proposed not long after
the Biller-Biemann method. In the method of Davis and
co-authors, the principal component analysis was used to
obtain the number of pure components in a composite
signal, but not their mass spectra [43]. This approach was
subsequently extended by several groups [44-48]. Ritter
and co-authors proposed the eigenvalue analysis of the
covariance matrix to obtain the number of pure compo-
nents [44]. Knorr and Futrell proposed the method for the
determination of both the number of pure components
and their mass spectra based on the factor analysis [45]. A
similar method was proposed by Abdallah and co-
authors, who calculated "ranges" for the pure component
mass spectra [46]. Roach and Guilhaus reported enhanced
factor analysis which exploited the ordered nature of GC-
MS elution profiles [48], based on the ideas by Meader
(dubbed evolving factor analysis, EFA) [47]. More
recently, variants of the eigenvalue analysis were applied
to the analysis of complex plant extracts [49].

Differential methods
Ghosh and Anderegg proposed differential processing of
GC-MS data in which m/z intensities for each two succes-
sive scans are subtracted [39,40]. This procedure resulted
in two new data sets created from the original GC-MS
spectral matrix, one with the positive and one with the
negative differences in intensities. Ghosh and Anderegg
reported that such differential processing resulted in pure
component mass spectra, which can be used for reliable
comparison with mass spectral libraries [39]. Pool and co-
authors extended this work in two directions [41,42].
First, they proposed that two data sets resulting from the
subtraction are combined into a single data set that resem-
bles the original data; second, they proposed that this pro-
cedure is applied recursively until convergence is achieved
("backfolding") [41]. The authors reported that backfold-
ing is capable of extracting pure mass spectra when signals
are severely overlapped [42].

Library search
The first computer approaches to aid in identification of
compounds in complex mixtures relied on comparing
mass spectra to precompiled libraries [37,38]. This is of
course limited by the scope of the available library. More-
over, when the signals overlap the observed mass spec-
trum will be a mixture, and the library search may fail to
match any of the components from the mixture.

Gan and Liang proposed the method for the search of
component mass spectra based on the observed compos-
ite signal [60]. This method first identifies potential can-
didates for component mass spectra, and then uses non-

Two scenarios illustrating the problem of peak overlap in GC-MS dataFigure 2
Two scenarios illustrating the problem of peak over-
lap in GC-MS data. Components A and B, whose mass 
spectra are given in Figure 1 are assumed to be present in 
the mixture. If the retention times of the two components 
differ significantly the observed signal will consist of two well 
resolved peaks, as shown in the panel (a); the panel (b) shows 
the corresponding total ion chromatogram (TIC). If the two 
components elute closely together (panel (c)), the TIC may 
exhibit only a single, composite peak, as shown in panel (d).
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negative least-squares regression to calculate contribu-
tions of the assumed components to the observed, com-
posite mass spectrum [60]. This process results in pure
signals, and therefore could be viewed as a method for the
extraction of pure components from overlapped signals.

Regression methods
Blaisdell and Sweeley proposed a procedure for the extrac-
tion of pure components based on the singular value
decomposition and least squares fitting [50]. This method
depends on the determination of background noise for
each mass, which was assumed to be constant over 10-12
scans. Knorr and co-authors proposed a regression proce-
dure where the full matrix representation of data, equa-
tion (6), is modelled as a function of component
retention times. The least squares fit is performed to min-
imize the difference between the predicted and the
observed data matrix, where individual ion chromato-
grams (i.e. columns of the matrix C, equation (3)) are
modelled as Gaussian functions modified with an expo-
nential decay function [51]. This requires that the number
of components is known. The authors proposed a heuris-
tic procedure based on the relationship between the
number of components in the model and the observed
changes in goodness-of-fit to determine the optimal
number of components [51].

Karjalainen proposed alternating regression for the extrac-
tion of pure components from GC-MS data [52]. In this
approach, C and Δ are initially set to random values, and
the equation (5) is solved for both C and Δ iteratively, by
applying constrains such as non-negativity and unimodal
shape, until the convergence is achieved [52]. This
method requires the number of components to be known,
and the author proposed this to be found by trial-and-
error [52]. Since multiple solutions may be obtained by
convergence from random values, the repetition of the
calculation from different initial values was proposed to
establish the stability of the solution [52].

An iterative optimization method for peak deconvolution
was proposed for the special case when one signal is
embedded within another [53]. In this method, least
squares are used to obtain mass spectra of pure compo-
nents [53]. Shao and co-authors reported the application
of the artificial immune algorithm for the extraction of
pure components in GC-MS data [61] (immune algo-
rithms are inspired by the defense processes of the biolog-
ical immune system [62]). These authors used
independent component analysis [63] to extract the mass
spectra of pure components, and then chromatographic
profiles corresponding to these pure components were
extracted with an adaptive immune algorithm [61]. The
method was demonstrated on simulated data, and on
experimental data obtained on the pyrolysates of pheny-
lalanine [61].

Stokkum and co-authors proposed the regression method
based on a parametrized model of the data, where elution
profiles are described with exponentially modified Gaus-
sian functions [54]. In this method the data is separated
into time windows, so that each time window contains
only a small number of pure components, estimated from
the principal component analysis [54]. In their model
each component is described with three parameters deter-
mined by the nonnegative least squares fit, where the dif-
ference between the model at the parameter values and
the data is minimized [54].

Discussion
Automated extraction of pure components from co-elut-
ing components in GC-MS data is a challenging problem.
To make the problem tractable, most methods rely on
implicit or explicit assumptions about the characteristics
of the signal and the noise. For example, Knorr et al. [51]
modelled signal peaks as exponentially modified Gaus-
sian functions; Stein assumed that a single noise parame-
ter derived from multiple ion chromatograms can
adequately describe random fluctuations in data [36];
Colby assumed that a fixed number of bins is optimal to
bin centroid intensities [35], and so on. The degree of
validity of such assumptions will depend on the data at
hand, and when the assumptions are no longer valid the
method is likely to fail.

In addition, experimental GC-MS data may contain a
range of irregularities and imperfections, confounding the
problem further. For example, in a typical GC-MS experi-
mental setup only intensities above a threshold are stored
[36]. This may result in zero intensities, or entire blocks of
zero intensities embedded in the data, which in turn com-
plicates the analysis of noise. There are at least five exper-
imental factors that collectively, and often confoundingly,
influence the characteristics of GC-MS data:

1. The nature of sample components. More complex sam-
ples produce more signals per standard chromato-
graphic separation run, and this results in increased
peak crowding and overlap. The more severe the peak
overlap the more difficult is the extraction of pure
components, and this is especially the case if multi-
component overlap occurs.

2. The sample matrix. The sample matrix can pro-
foundly influence both the characteristics and quality
of the GC-MS data. Samples of biological material can
have large amounts of background chemicals which
interfere with the detection of trace compounds, both
through impeding the efficacy in separation/detec-
tion, and also by producing noise-like effects. Specifi-
cally, samples of urine, saliva and serum are associated
with difficult sample matrices.
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3. Condition of the instrument. Less than optimal instru-
ment condition may result in chemical noise that is
difficult to model (see below). For example, a worn
out liner, a component of the GC inlet system, may
deform peak shapes and affect peak resolution; a sub-
optimal connection of the column may result in oxy-
gen diffusion into the system increasing the back-
ground noise; septum bleed may result in wide humps
that distort the signal baseline, and so on. In addition,
mechanical problems associated with gas chromatog-
raphy, such as uneven flow of the carrier gas or col-
umn packaging may have similar effects.

4. Instrument tuning and experiment runtime parameters.
The parameters set by the operator, if not optimal,
may adversely affect the quality of GC-MS data. For
example, faster oven ramp rates result in shorter exper-
iment times, but also increase peak crowding and con-
sequently peak overlap.

5. Instrument type. Data acquired on different GC-MS
instruments may have different characteristics (reten-
tion time resolution, m/z resolution, noise character-
istics). For example, time-of-flight (TOF) instruments
allow faster scan rates compared to quadrupole instru-
ments, and typically result in higher resolution data.

Purely from the data viewpoint, the main challenges in
automated signal detection include a priori unknown
shapes of signal peaks and reliable separation of the true
signal from noise. In most practical situations, the latter
problem is more challenging; the question of peak shapes
is amenable to empirical solutions. A number of empirical
functions were successfully used for the modelling of
chromatographic peak shapes in the past [57].

In GC-MS experiments a combination of true noise and
chemical noise is typically observed. True noise refers to
random fluctuations that originate from the limitations in
instrument electronics (this type of noise is always present
in instruments that use ion multipliers). On the other
hand, chemical noise arises from extraneous chemical
components introduced in the system unintentionally.
Such components may be introduced during the sample
preparation process (for example, as a consequence of
derivatization), or may originate from the instrument
condition (due to column bleed, for example). Therefore
chemical noise is not noise at all, but unwanted signal
that originates from chemical components introduced as
a part of the experimental process [64].

Although the origin of noise in GC-MS experiments is well
understood, in any specific experiment noise is difficult to
model or account for accurately. In practice, noise may
manifest itself in any number of ways. For example, the
signal from chemical noise may overlap or obscure the

signal of interest; alternatively the net effect may be the
degradation of the signal quality due to increased back-
ground, lower signal-to-noise ratio, skewed peak shapes
or distorted signal baseline. Furthermore, very low con-
centration components present in the sample may result
in true signals that are at the level of noise. As a result, in
experimental data often there is no clear separation
between the signal and the noise components (Figure 3).

A review of the literature suggests that the most widely
used, publicly described method for peak deconvolution
is AMDIS [36] (this view is corroborated by others [65]).
We speculate that this is for two reasons. First, AMDIS is
probably the only method implemented in a freely avail-
able software package targeting the PC computing envi-
ronment most analysts are familiar with (although it is
not open source) [36]. Second, in AMDIS component
detection is integrated with library matching [36], which
is useful in practice.

The main weakness of empirical methods, including
AMDIS, is the use of arbitrary rules and empirical param-
eters. For example, AMDIS divides each ion chromato-
gram into segments of 13 scans for noise analysis; zero
abundance values are replaced based on a complicated set
of empirical rules that involve several arbitrarily chosen
parameters; pre-set maximum number of scans in compo-
nent detection is 12; "peak sharpness" is defined by an
empirical formula, which in turn features a single "noise"
parameter calculated empirically, and this parameter is
assumed to faithfully represent the noise; the multiplier
for maximum range in peak sharpness calculation is 50;
the components that do not have the sharpness within
75% of the maximum value are discarded; and so on [36].
Why exactly these numbers are chosen is impossible to
justify in a truly objective way. Furthermore, the sheer
number of empirical rules and parameters suggest that a
systematic optimization of an empirical method such is
AMDIS is difficult, and understanding fully how the
parameters affect the final result is probably not a realistic
goal. AMDIS was originally optimized for a specific GC-
MS application [36], and subsequently applied to other
systems [66,67]. However, a recent study reported that
AMDIS generated as much as 70-80% false components
(false positives) [58].

On the other hand, the matrix methods remain margin-
ally used in practice, in spite of the considerable enthusi-
asm that surrounded many initial demonstrations. There
are several reasons for this. First, most matrix methods
proposed in the past were proof-of-concept demonstra-
tions, and had failed to establish unambiguously their
usefulness in real experimental scenarios. Second, often
there is no intuitive picture associated with matrix meth-
ods. For example, the eigenvalue methods result in matrix
decompositions of the original GC-MS data that have no
Page 7 of 11
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physical meaning [48]. This is certainly a downside for
most GC-MS practitioners, at least before the method's
advantages in real experimental scenarios are clear.
Finally, and related to the first point, software implemen-
tations that would allow matrix methods to be tested by a
wider community and under realistic experimental sce-
narios are lacking. To our knowledge none of the matrix
methods reviewed here were accompanied by an accessi-
ble and widely available software implementation.

Another problem is the method demonstrations in lim-
ited experimental scenarios. The first attempts to use the
eigenvalue analysis for the separation of overlapped GC-
MS signals were on simple binary mixtures with a limited
range of m/z values [43-45]. Ritter and co-authors used
four sets of binary mixtures (cyclohexane/cyclohexene,
hexane/cyclohexane, heptane/octane, and unknown
xylenes), and only 20 m/z values [44]. Subsequent work
used more realistic but still limited experimental scenarios
compared to modern standards. For example, Abdallah
and co-authors used binary mixtures with 135 m/z values
[46], while Roach and Guilhaus used a mixture of seven
organochlorine compounds with a similar m/z range [48].

The method based on differential processing of GC-MS
data was originally proposed by Ghosh and Anderegg
[39,40], and subsequently developed further by Pool and
co-authors [41,42]. Interestingly, the authors compared
differential processing with the empirical method of
Colby [35], and the regression method of Karjalainen
[52], and reported that backfolding outperformed both
methods [42]. Unfortunately this conclusion was based
on the analysis of only a small fragment of an experimen-
tal data set [42].

The first applications of regression to GC-MS peak decon-
volution were proposed not long after the first eigenvalue
methods were tested [50,51]. The method of Blaisdell and
Sweeley relied on both the eigenvalue analysis and linear
least squares, although the original description lacked the
full mathematical detail [50]. The regression method of
Knorr and co-authors amounts to a mathematical decom-
position of the data matrix, equation (5), where the indi-
vidual ion chromatograms are modelled explicitly with
modified Gaussian function [51]. This idea is clearly a via-
ble approach for resolving multi-component overlapping
signals. However, its demonstration in the original formu-
lation was on highly simplified data compared to today's
standards: binary and ternary mixtures with 30 mass spec-
trometry scans involving a small number of m/z channels
[51].

The alternative regression method of Karjalainen appears
to be both advanced and model-free [52]. In the original

publication, the author reported two problems: with the
convergence and with determining the number of compo-
nents [52]. Recently, Jonsson and co-authors proposed an
approach based on the method of Karjalainen [68]. In this
approach each data set is divided into suitable time win-
dows, and within each time window the overlapped sig-
nals are resolved with the alternating regression method
originally proposed by Karjalainen [52]; a multivariate
analysis is used to identify time windows which contain
significant differences between samples [29,68]. Jonsson
and co-authors also proposed an an improved method for
choosing initial values that provided better convergence
compared to random values, as originally proposed by
Karjalainen [52].

The regression method of Gong and co-authors [53] was
applied on complex plant samples; however the focus of
this method was on resolving a specific type of signal
overlap. An interesting outcome of this study was that sig-
nal clusters originating from co-eluting components
should be analyzed differently, depending on the specific
nature of the signal overlap [53]. The library search
method of Gan and Liang aimed to tackle both deconvo-
lution and spectral matching simultaneously [60]. How-
ever, even in an ideal scenario, this method has strong
limitations, since any component that does not have a
mass spectrum in the library cannot be identified as a part
of the mixture.

A method for peak deconvolution based on artificial
immune algorithm [62] was reported by Shao and co-
authors [61]. Their test cases involved GC-MS data
obtained from pyrolysates of phenylalanine [61]; how-
ever the analysis focused on a narrow retention time range
of 0.5 minutes which contained three overlapped compo-
nents. The authors also compared the performance of the
proposed method with the multivariate curve resolution
method SIMPLISMA [69]. To our knowledge, beyond this
work SIMPLISMA was not applied to GC-MS data,
although it was used for resolution of co-eluting compo-
nents in liquid chromatography-mass spectrometry (LC-
MS) [70]. It is interesting that SIMPLISMA [69] was origi-
nally inspired by the factor analysis work of Knorr and
Futrell [45].

Recently, a novel regression method was reported by Stok-
kum and co-authors [54]. This method borrows several
strategies from the work of Jonsson et al. [29,68], includ-
ing dividing the data into time windows. Applications on
real and simulated GC-MS data sets under difficult co-
eluting scenarios demonstrated that this method is com-
petitive with multivariate curve resolution [29,68] at
simultaneous analysis of multiple GC-MS data sets.
Page 8 of 11
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Conclusion
In this work, published methods for the extraction of pure
components in GC-MS data with co-eluting components
were reviewed. This provides several important insights.
First, in reports presenting new peak deconvolution meth-
ods, the use of realistic experimental scenarios is impor-
tant. Second, for any new method, the availability of
software implementation that would allow the method to
be tested by a wider GC-MS community, is critical.

Perhaps a more subtle point is that most matrix methods
require the number of components to be known prior to

the separation of overlapped signals. This is evident in
both early studies [43-46,48,51,52] as well as in more
recent works [29,53,54,68], suggesting that a separate
analysis of this problem is warranted. We also note that
the method of Jonsson and co-authors [29,68] may pro-
vide the recipe for a systematic deconvolution of the entire
data set by applying divide-and-conquer strategy, coupled
with the alternating regression originally proposed by Kar-
jalainen [52].

Although the empirical methods for peak deconvolution
are currently most widely used in practice, it seems inevi-
table that matrix methods will dominate the future. This
is evident from the application of matrix methods to the
analysis of complex plant samples [53], development of
new matrix-like approaches [54,61] and methods aimed
to identify differences in high-throughput GC-MS data
[29,68,71].

Remarkable progress in the field of general computing in
the past two decades has opened new avenues for tackling
the problem of peak deconvolution, and GC-MS data
processing in general. Modern computer hardware is
thousands of times more capable compared to the elite
computing machines of twenty years ago. Several impor-
tant works reviewed here were performed on (today com-
pletely obsolete) PDP-11 computers [33,50,51]. For
example, Blaisdell and co-authors reported that a mere
20,000 16-bit words of core memory was available for
their programs [50]. Furthermore, modern computing
clusters based on commodity hardware allow even further
scaling in the CPU power. The changes in the software
landscape are equally drastic. For example, in their appli-
cation of principal component analysis Davis and co-
authors wrote their own functions for eigenvalue decom-
position in the programming language BASIC [43].
Today, software platforms such as MATLAB [72], GNU
Octave [73], and R [74] provide integrated environments
with thousands of highly optimized mathematical and
statistical functions readily available (and in the case of
open source packages such as GNU Octave and R, at no
cost). Moreover, a range of open source projects such as
Python [75], Perl [76], and Java [77] provide general pur-
pose programming languages with rich and well tested
libraries. These developments suggest that a new era of
collaborative computing, based on open standards and
open source software, is about to emerge in GC-MS data
processing. A similar transformation is already evident
from the initiatives to standardize representations of mass
spectrometry data [78], and open source packages for LC-
MS data processing recently published [79,80].
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Two fragments of experimental GC-MS data matrices, equa-tion (6), showing signals from closely co-eluting componentsFigure 3
Two fragments of experimental GC-MS data matri-
ces, equation (6), showing signals from closely co-
eluting components. The signal peaks in the panel (a) 
exhibit symmetric peak shapes, while the signal peaks in the 
the panel (b) show slightly asymmetric peaks. This effect 
(dubbed "peak tailing") can originate from several instrument 
conditions, for example column degradation, or contami-
nants left in the injection port. Both data sets show a contin-
uum between noise and weak signals, a situation typically 
encountered in practice.
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