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Abstract
Objective  The goals of this study were to assess the ability of salivary non-coding RNA (ncRNA) levels to predict post-
concussion symptoms lasting ≥ 21 days, and to examine the ability of ncRNAs to identify recovery compared to cognition 
and balance.
Methods  RNA sequencing was performed on 505 saliva samples obtained longitudinally from 112 individuals (8–24-years-
old) with mild traumatic brain injury (mTBI). Initial samples were obtained ≤ 14 days post-injury, and follow-up samples 
were obtained ≥ 21 days post-injury. Computerized balance and cognitive test performance were assessed at initial and 
follow-up time-points. Machine learning was used to define: (1) a model employing initial ncRNA levels to predict persistent 
post-concussion symptoms (PPCS) ≥ 21 days post-injury; and (2) a model employing follow-up ncRNA levels to identify 
symptom recovery. Performance of the models was compared against a validated clinical prediction rule, and balance/cog-
nitive test performance, respectively.
Results  An algorithm using age and 16 ncRNAs predicted PPCS with greater accuracy than the validated clinical tool and 
demonstrated additive combined utility (area under the curve (AUC) 0.86; 95% CI 0.84–0.88). Initial balance and cogni-
tive test performance did not differ between PPCS and non-PPCS groups (p > 0.05). Follow-up balance and cognitive test 
performance identified symptom recovery with similar accuracy to a model using 11 ncRNAs and age. A combined model 
(ncRNAs, balance, cognition) most accurately identified recovery (AUC 0.86; 95% CI 0.83–0.89).
Conclusions  ncRNA biomarkers show promise for tracking recovery from mTBI, and for predicting who will have pro-
longed symptoms. They could provide accurate expectations for recovery, stratify need for intervention, and guide safe 
return-to-activities.
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Introduction

Guidelines from the Centers for Disease Control and Pre-
vention (CDC) Pediatric Mild Traumatic Brain Injury 
(mTBI) Workgroup recommend that clinicians inform 
patients and families that some factors predict risk for per-
sistent post-concussion symptoms (PPCS), but individual 
recovery from mTBI is unique [1]. Providers should use a 
combination of tools when assessing mTBI recovery (i.e., 
symptom scales, cognitive and balance tests). However, 
the workgroup also recognized these tools are insufficient 
to accurately predict recovery, stating, “No factors can 
individually predict recovery of symptoms and outcome…
much of the variance in outcome remains unaccounted for, 
even when multiple factors are considered” [1].

The best available tool predicts PPCS with an area 
under the curve (AUC) of 0.68 [32]. More complicated 
tools to identify PPCS may require time and expertise that 
may preclude their use by the majority of health care pro-
viders [2, 3]. In ambulatory clinics, where patient visits 
may last only 15 min, rapid, objective measures that do not 
require specialist interpretation are urgently needed. Such 
tools would improve care for patients with PPCS in two 
ways: (1) individuals who receive education about prog-
nosis have improved outcomes [4, 5]; and (2) identifying 
those at risk for PPCS provides an opportunity for early 
intervention prior to the development of prolonged and 
debilitating symptoms [1].

Non-coding ribonucleic acids (ncRNAs) represent a 
potential biomarker for PPCS. Several classes of ncRNAs 
have been implicated in concussion [6], but the best-stud-
ied are microRNAs (miRNAs) [7]. miRNAs are 19–23 
base-pair nucleic acid fragments that block translation of 
specific proteins in response to environmental changes, 
such as a concussion [8]. Studies of animal models [9, 10] 
and human adults [6, 11] have reported changes in serum 
and saliva miRNA expression following traumatic brain 
injury (TBI). Salivary changes in miRNAs mirror cerebro-
spinal fluid miRNA patterns, and may aid identification 
of TBI [12, 13]. Moreover, peripheral miRNA alterations 
persist over time [9]. Our pilot investigation, involving 52 
youth with mTBI, demonstrated that five miRNAs in saliva 
could be used to accurately predict PPCS [14]. However, 
the longitudinal relationship between saliva miRNAs and 
functional measures of balance and cognition has not been 
assessed in relationship to symptom duration and recovery.

The goals of the study were to: (1) determine the ability 
of salivary ncRNAs measured within 14 days of injury to 
predict PPCS status ≥ 21 days after injury; and (2) assess 
the ability of salivary ncRNAs measured ≥ 21 days after 
injury to identify symptom recovery. We investigated lon-
gitudinal ncRNA levels and medical/demographic factors 

among 112 individuals with mTBI at a minimum of two 
time-points following injury, including an initial saliva 
sample collected no later than 14 days post-injury and 
a follow-up sample used to define presence/absence of 
PPCS, beginning ≥ 21 days post-injury. We hypothesized 
that an algorithm employing saliva ncRNA levels along-
side medical/demographic factors would predict PPCS 
and identify symptom recovery. Refinement and valida-
tion of the algorithm could promote objective anticipa-
tory guidance, facilitate safer return-to-play decisions, and 
foster effective therapeutics based on individual biologic 
responses to mTBI.

Methods

Ethics

Ethical approval for this study was provided through a 
central institutional review board (Western IRB 1271583). 
Written, informed consent was obtained for all participants. 
Written assent was provided by participants under 18 years 
of age. The study was registered in the clinicaltrials.gov reg-
istry (NCT02901821).

Participants

This multicenter study included 112 individuals, ages 
8–24 years, with a clinical diagnosis of mTBI, as defined by 
the 2016 Concussion in Sport Group [15]. The participants 
were enrolled from emergency departments, sports medicine 
clinics, urgent care centers, concussion speciality clinics, and 
outpatient primary care clinics at initial clinical presentation 
(within 14 days of injury) and were repeatedly assessed for 
symptoms, balance, cognitive test performance, and saliva 
ncRNA levels up to 60 days post-injury. The cohort was 
divided into PPCS (n = 32) and non-PPCS (n = 80) groups 
based on self-reported symptom scores. PPCS was defined 
using the upper 95% confidence interval of the mean symp-
tom severity score on the Post-Concussion Symptom Scale 
(PCSS) from 170 age-matched participants without mTBI 
(score ≥ 5) [16]. The first symptom report ≥ 21 days post-
injury was used to determine PPCS status. A cut-off of 
21 days was chosen based on the literature showing that 
the majority of children (75.6%) report concussion recovery 
within two weeks, but symptom change flattens between two 
and four weeks [17]. This threshold resulted in a percent-
age of PPCS participants (28.6%; n = 32) consistent with 
existing literature [18, 19]. Participants were enrolled at six 
institutions: Adena Health System (n = 14), Colgate Univer-
sity (n = 7), Penn State College of Medicine (n = 69), State 
University of New York (SUNY) Buffalo Medical Univer-
sity (n = 3), SUNY Upstate Medical University (n = 3), and 
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Vanderbilt University (n = 16). Participants meeting the fol-
lowing criteria were excluded: non-English speaking, neu-
rologic injury (e.g., intracranial bleeding, spinal cord injury, 
skull fracture), periodontal disease, upper respiratory infec-
tion, secondary oropharynx injury, baseline hearing/vision 
loss, and drug or alcohol dependency. Additional exclusion 
criteria included presentation for clinical care > 14 days after 
injury (n = 17), incomplete symptom reports necessary for 
PPCS classification (n = 111), and falling outside the desired 
age range (n = 16; Supplemental Fig. 1).

Samples were divided into a training set (184 samples 
(58% of total); PPCS = 53, non-PPCS = 131), an evaluation 
set (72 samples (23% of total); PPCS = 27, non-PPCS = 45), 
and a semi-naïve testing set (62 samples (19% of total); 
PPCS = 18, non-PPCS = 44). The training set was used for 
ncRNA feature selection and algorithm creation. The testing 
set was used to validate the accuracy of resulting predictive 
algorithms. The evaluation set was used to minimize bias 
that could arise from class imbalance by shifting the prob-
ability threshold of the classifier away from the standard 
value of 0.5, while avoiding artificial performance inflation 
[20]. While the samples in the testing set were naïve, a sub-
set of the participants from which they derive were not (i.e., 
37/112 participants were represented in both training and 
testing sets). Samples were grouped by age, sex, and PPCS-
status and assigned randomly across sets. A maximum of 
five samples per participant were allowed in training and 
testing sets, with remaining samples being incorporated into 
the evaluation set. First, the prognostic accuracy of ncR-
NAs was compared against the Zemek 12-point risk score 
[21], employing samples with complete data for “history of 
concussion” and “medical diagnosis of chronic headaches 
or migraines” in addition to age, sex, and select symptom 
information (218 samples, PPCS = 62, non-PPCS = 156). 
Next, the ability of ncRNAs to differentiate recovered and 
non-recovered participants ≥ 21 days post-injury was com-
pared against computerized cognitive test and balance scores 
(77 samples, PPCS = 17, non-PPCS = 60).

Measures

Medical/demographic characteristics were collected 
from each participant via survey at enrollment. For chil-
dren ≤ 12 years of age, parents assisted with survey comple-
tion. Concussion-related symptoms were self-reported on a 
7-point scale (0–6) using the PCSS [22]. These survey char-
acteristics enabled recapitulation of all nine predictors (each 
having 0–2 risk points for PPCS) from the Zemek 12-point 
risk score model. The nine predictors and PCSS counter-
parts are: age group (three bins, 5–18), sex, prior concussion 
and symptom duration, migraine history, answering ques-
tions slowly (“Feeling slowed down”), tandem stance bal-
ance errors (“Balance problems”), headache (“Headache”), 

sensitivity to noise (“Sensitivity to noise”), and fatigue 
(“Fatigue or low energy”). Balance and cognitive function 
were assessed using the ClearEdge system (Quadrant Bio-
sciences Inc., Syracuse NY) [23]. Body sway was measured 
in eight stances: two-legs eyes-open (TLEO), tandem-stance 
eyes-open (TSEO), two-legs eyes-closed (TLEC), tandem-
stance eyes-closed (TSEC), two-legs eyes-open on foam 
pad (TLEOFP), two-legs eyes-closed on foam pad (TLE-
CFP), tandem-stance eyes-open on foam pad (TSEOFP), 
and tandem-stance eyes-closed on foam pad (TSECFP). The 
computerized cognitive assessment included simple reac-
tion time (SRT1), procedural reaction time (PRT), go/no-go 
(GNG), and a repeat of simple reaction time (SRT2) [24]. 
The Minimal Detectable Change (MDC) value [25, 26] for 
cognitive and balance tests were used to determine whether 
a participant’s change in performance from enrollment to 
follow-up was a real change, or whether it fell within the 
95% confidence interval of random measurement error. As 
we have previously described [16], non-fasting saliva sam-
ples (n = 505) were collected from all participants (n = 112) 
using OraCollect Swabs (DNA Genotek, Ottowa Canada). 
RNA sequencing was performed at a depth of 10 million 
reads per sample, using 50 base-pair single end reads, on an 
Illumina NextSeq 500 instrument. Fastq files were aligned 
to the following databases: miRBase22 (miRNAs), RefSeq 
v90 (small nucleolar RNAs; snoRNA), and piRBase v2 
(piwi-interacting RNA). To allow for efficient and meaning-
ful alignment from piRBase, highly similar sequences were 
reduced using hierarchical clustering. Resulting sequences 
were termed wiRNAs. Aligned reads were filtered to remove 
low counts (< 0.01% of total reads per RNA category), nor-
malized using total sum scaling, and inverse hyperbolic sine 
transformed to correct for skew.

PPCS versus non‑PPCS comparisons

Three ncRNA sub-types (miRNA, snoRNA, wiRNA) were 
compared among PPCS and non-PPCS groups at two time-
points: (1) initial (≤ 14 days post-injury) and (2) follow-up 
(≥ 21 days post-injury). Mean symptom, balance perfor-
mance, and cognitive performance scores were also com-
pared between PPCS and non-PPCS groups at each time-
point. To identify changes in ncRNA levels during “typical” 
recovery, a paired test looked at differentially expressed 
RNAs within the non-PPCS group only, comparing their 
“follow-up” and “initial” samples.

Feature selection

Training data were processed through a custom, multifold 
feature selection pipeline in R (caret package) consisting of 
neural network- and random forest-based algorithms. Top 
features appearing in > 50% of the folds were combined with 
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ncRNAs identified from differential expression and penal-
ized generalized linear model (GLM) analyses. Penalized 
GLMs identified ncRNA predictors associated with symp-
tom scores, balance and cognitive test performance, and 
injury-associated risk factors. RNAs with significant Pearson 
correlation coefficients (p < 0.05, unadjusted) were chosen 
from linear regression models (for numeric response vari-
ables), along with the three highest ranked RNAs in terms 
of variable importance from logistic regression models (for 
binary response variables) with “fair” predictive accuracy 
(kappa > 0.20). The reduced feature set was used to train 
the PPCS algorithm (see below). Recursive feature elimi-
nation was used to further refine the panel. At each itera-
tion, the feature resulting in maximum weighted algorithm 
performance upon omission was removed until optimal 
performance was reached. A gradient-boosted machine 
(GBM) model was used to rank the final features in order 
of importance.

Prognostic algorithm development

To create a prognostic algorithm capable of predicting PPCS 
status, a training set of 113 non-PPCS and 53 PPCS samples 
(collected within 14 days of injury from 72 and 28 partici-
pants, respectively) was used to train a radial support vector 
machine (rSVM) algorithm (Supplemental Table 1a). Per-
formance was evaluated using AUC from repeated tenfold 
cross-validation along with sensitivity, specificity, positive 
predictive value, and negative predictive value. A naïve test-
ing set of 44 non-PPCS and 18 PPCS samples from 33 and 
16 participants, respectively (Supplemental Table 1b), was 
used to validate algorithm performance. Stratified random 
sampling in R was used to ensure age- and sex-matching of 
the PPCS and non-PPCS groups across the training, evalu-
ation, and testing sets, as well as equal % PPCS across sets. 
Sampling was performed only once to avoid bias and to 
maintain a truly naïve testing set. To compare the ncRNA 
algorithm with an existing clinical assessment tool, rSVM 
models were trained using features from the Zemek 12-point 
risk score model. Performance was assessed through AUC 
on tenfold cross-validation. A third model was generated 
combining the risk score with ncRNAs.

Identifying mTBI recovery

The same feature selection pipeline was used to select 
ncRNAs capable of objectively identifying individu-
als with symptom recovery. In addition to age, individual 
cognitive and balance test scores were used as features in 
a random-forest model. Predictive capability of cognitive 
and balance testing was compared with that of ncRNAs by 
performing repeated tenfold cross-validation. The cross-
validation approach was chosen due to the reduced number 

of participants (78/112) for whom complete balance and 
cognitive test results were available at initial and follow-
up time-points. To increase fidelity of group assignment, 
samples with an associated PCSS score within two of the 
threshold score (n = 5) were also excluded. A set of 60 non-
PPCS and 17 PPCS samples from 58 and 15 participants, 
respectively, was used. (Supplemental Table 1c).

Statistical analysis

R version 3.6.1 was used for all statistical analyses. The 
data were analyzed by paired (e.g., initial vs. follow-up 
time points) or unpaired (e.g., PPCS vs. non-PPCS) t tests, 
one-way ANOVA in the case of multiple groups, or the 
Mann–Whitney test in case of nonparametric distribution. 
A Chi-squared test with Yates correction was used for nom-
inal data. Differential expression analysis was performed 
using the DESeq2 package (version 1.24.0), where p values 
were attained by the Wald test. Multiple testing correction 
was achieved with the Benjamini–Hochberg method. Algo-
rithm performance was evaluated by AUC and statistically 
compared using the method of DeLong. Unless otherwise 
noted, * denotes p ≤ 0.05, ** denotes p ≤ 0.01, and *** 
denotes p ≤ 0.001.

Power analysis and sample size software (NCSS PASS 
2019, Chapter 260) was used to determine that the sample 
size in the training set provided 99% power to detect a dif-
ference between the null AUC = 0.68, taken from the Zemek 
12-point-risk score model validation AUC, and the alterna-
tive hypothesis, AUC = 0.856, estimated from our previously 
published research [14]. A two-sided z test was used with 
α = 0.05 for continuous data with equal variances and bino-
mial outcomes. The testing cohort achieved 74% power to 
differentiate the ncRNA model performance (AUC = 0.87) 
from the Zemek risk score model (AUC = 0.68).

Results

Participants characteristics and symptoms

Participants had a mean age of 16 (± 4) years (Table 1). 
Participants included 49 females (44%). Demographic, 
medical, and concussion characteristics were largely con-
sistent across PPCS (n = 32) and non-PPCS (n = 80) groups. 
However, PPCS participants had a higher incidence of 
chronic headache (p = 0.007) and non-PPCS participants 
had a higher rate of sports-related concussions (p = 0.02). 
Twenty-two participants reported loss of consciousness at 
the time of injury and 36 reported initial post-traumatic 
amnesia. One-third of the participants reported having pre-
vious concussions, with the majority of those (59%) having 
only a single prior concussion. There were 32 participants 
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with PPCS (symptom scores > 5 persisting ≥ 21 days post-
injury; Fig. 1a). The PPCS group displayed more gradual 
symptom resolution (i.e. slower recovery), whether the 22 
symptoms were divided into categories (Fig. 1b)—cognitive, 
emotional, physical, and sleep [27]—or analyzed individu-
ally (Fig. 1c). Headache was the most common initial symp-
tom in both PPCS and non-PPCS groups, reported by 88% 
and 75% of participants, respectively (Fig. 1d). The most 
common symptom persisting ≥ 21 days post-injury for PPCS 
participants was “difficulty concentrating” (75%).

PPCS vs. non‑PPCS: balance, cognition, saliva ncRNA

Initial symptom burden was higher in the PPCS group for 
each of the four symptom categories (Fig. 2a). At the ini-
tial visit, none of the balance or neurocognitive test scores 

revealed significant differences between PPCS and non-
PPCS groups. However, ≥ 21 days post-injury, two of the 
balance tests (TLEO, TLEC) and all four cognitive tests 
(SRT1, PRT, GNG, SRT2) differed (Fig. 2b, c). Most PPCS 
participants did not display improvement between the two 
time points, while most non-PPCS participants significantly 
improved on at least two tests (Supplemental Fig. 2A). The 
difference in improvement between groups was most evident 
in three cognitive scores: PRT, SRT1, SRT2 (Supplemental 
Fig. 2B). Supplemental Fig. 3 displays the progression in 
cognitive, balance, and symptom improvement that occurred 
for non-PPCS participants (A–C). Notably, PPCS partici-
pants exhibited some improvement in all subjective symp-
tom categories, except emotional symptoms (Supplemental 
Fig. 4A). They did not display improvements in cognition or 
balance (Fig. 4b, c). Differential expression analysis revealed 

Table 1   Participant 
characteristics

Note that immediate post-concussion symptom reports (i.e., loss of consciousness, amnesia) were available 
for only 56 participants. Medical characteristics were collected via parent/child report, and validated via 
electronic medical records where available

Total (n = 112) non-PPCS (n = 80) PPCS (n = 32) p value

Total participants 112 80 32
Total samples 505 351 154
Demographic
 Female (%) 49 (44) 34 (43) 15 (47) 0.83
 Age, mean (SD) 16.1 (3.7) 16.5 (3.5) 15 (4) 0.06
 White (%) 52 (87) 37 (84) 15 (94) 0.58
 BMI (SD) 24.2 (6.0) 24.5 (5.6) 23.4 (7) 0.41

Medical
 ADHD (%) 4 (4) 4 (5) 0 (0) 0.48
 Anxiety (%) 1 (1) 1 (1) 0 (0) 1.00
 Depression (%) 2 (2) 1 (1) 1 (3) 1.00
 Chronic headaches (%) 10 (9) 3 (4) 7 (23) 0.01

Concussion characteristics
 Days since injury, initial assessment (SD) 5 (3.6) 4.9 (3.4) 5.2 (4.1) 0.77
 Sports cause (%) 82 (73) 64 (80) 18 (56) 0.02
 Football cause (%) 34 (30) 27 (33) 7 (22) 0.31
 Loss of consciousness (%) 22 (20) 12 (16) 10 (31) 0.12
 Post-traumatic amnesia (%) 36 (65) 20 (56) 16 (80) 0.17
 Previous concussion (%) 36 (33) 25 (32) 11 (36) 0.70
 Number of previous concussions (SD) 1.5 (0.7) 1.4 (0.6) 1.8 (0.8) 0.23
  1 previous concussion 16 (59.3) 12 (66.7) 4 (44.4)
  2 previous concussions 8 (29.6) 5 (27.8) 3 (33.3)
  3 previous concussions 3 (11.1) 1 (5.6) 2 (22.2)

Source
 Penn State College of Medicine—Hershey 69 48 21
 Adena Bone and Joint Center 14 10 4
 Colgate University 7 5 2
 SUNY University at Upstate 3 0 3
 Vanderbilt University 16 14 2
 SUNY University at Buffalo 3 3 0
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ncRNA differences between PPCS and non-PPCS groups 
that became more distinguishable over time, mirroring 
changes in balance and cognition (Fig. 2d, e). Most between-
group differences involved increased levels of piRNA clus-
ters (wiRNAs) among PPCS participants.

Predictive modeling

A combination of machine learning techniques was used to 
identify ncRNA features whose levels best predicted PPCS 
status when measured within 14 days of concussion. The 
final algorithm included 16 ncRNA features (seven miR-
NAs, one snoRNA, eight piRNA clusters) and age (Fig. 3a), 

and achieved a testing AUC of 0.87 (Fig. 3b, c). Post-hoc 
analysis revealed that individuals contributing multiple 
swabs (n = 37) did not display improved rates of prognostic 
accuracy, with 79% classification accuracy versus 86% for 
samples from naïve participants (Supplemental Fig. 6B). 
To understand how the ncRNA classifier compared with a 
conventional clinical tool for assessing PPCS risk, we opti-
mized a rSVM model using nine features from the 12-point 
clinical risk score for PPCS [21]. Figure  3d shows the 
results of a tenfold cross-validation, comparing the clinical 
risk score with the ncRNA model. The performance of the 
ncRNA model (AUC = 0.83; 95% CI 0.81–0.85; Supplemen-
tal Table 2) was superior to that of the modified clinical 

Fig. 1   Longitudinal patterns in self-reported symptoms among indi-
viduals with or without persistent post-concussion symptoms (PPCS). 
a A scatter plot of symptom severity score versus time post-injury 
for all study participants. Participants having symptom scores > 5 
persisting ≥ 21 days post-injury (black dotted lines) were considered 
to have PPCS. b The 22 PCSS symptoms were grouped and normal-
ized to account for unequal numbers of symptoms per group. Longi-

tudinal symptom scores, normalized by symptom category for PPCS 
and non-PPCS cohorts, were fit with a local regression and visual-
ized with the 95% confidence intervals (gray). c Longitudinal trends 
for the nine symptoms most commonly reported by the PPCS cohort, 
grouped by PPCS status. d Table comparing the most frequently 
reported symptoms at initial and follow-up time points for PPCS and 
non-PPCS participants
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risk score (AUC = 0.73; 95% CI 0.70–0.75) by DeLong’s 
test for two ROC curves (p = 1.05e−10). The model com-
bining ncRNAs with clinical risk features performed best 
(AUC = 0.86; 95% CI 0.84–0.88), surpassing the ncRNA 
model (p = 3.24e−05).

The ability of ncRNA levels ≥ 21 days post-injury to 
identify symptom recovery was compared against balance 
and cognition. The best performing ncRNA model consisted 
of four miRNAs, four wiRNAs, three snoRNAs and age 
(Fig. 4a). The heat map of GBM-ranked “recovery” features 
in Fig. 4a demonstrates that individuals with PPCS have 
poorer balance and cognitive scores at ≥ 21 days post-injury 
compared to non-PPCS counterparts. The balance/cognition 
model displayed an AUC of 0.79 (95% CI 0.76–0.83) for 
differentiating “recovered” and “non-recovered” partici-
pants. The ncRNA model displayed an AUC of 0.83 (95% 

CI 0.79–0.86). A model combining balance, cognition, and 
ncRNA levels displayed an AUC of 0.86 (95% CI 0.83–0.89) 
(Fig. 4b). The combined model performed significantly bet-
ter than the balance/cognition model (p = 0.006), but not the 
ncRNA model (p = 0.16).

Associations between ncRNAs and clinical features

The relationships of prognostic and recovery ncRNAs with 
symptom reports and measures of balance and cognition 
were modest (Supplemental Fig. 5A, B). The only ncRNA 
associated with a functional test was miR-148a-5p, which 
was associated with PRT (Table 2). Several ncRNAs were 
significantly associated with self-reported symptom scores: 
seven (none from the predictive models) with “sensitivity 
to noise”; six wiRNAs, including the prognostic feature 

Fig. 2   Differences in balance, cognition, and salivary RNA levels 
between PPCS and non-PPCS participants emerge ≥ 21  days post-
injury. a Box and whisker plots comparing grouped symptom scores 
between PPCS and non-PPCS participants at both initial (< 14 days) 
and follow-up (≥ 21  days post-injury) time points. b Plot compar-
ing balance test performance between PPCS and non-PPCS groups 
across eight different tests at initial and follow-up time points. c 
Plot comparing cognitive test performance between PPCS and non-

PPCS groups across four different tests. d, e Volcano plots compar-
ing RNA abundance between PPCS and non-PPCS subjects at initial 
and follow-up timepoints. Statistical significance, − log10(p value), 
was plotted against the log2(fold change). A false discovery rate of 
0.05 (red) and absolute fold change > 1.5 (yellow) were used as sig-
nificance cut-offs. ncRNAs passing both criteria are shown in green. 
*p ≤ 0.05, **p ≤ 0.01, and ***p ≤ 0.001
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Fig. 3   Predicting PPCS risk. A model employing 16 small non-
coding RNAs and age accurately predicted PPCS a. A GBM algo-
rithm was used to rank model features in order of variable impor-
tance. Normalized counts were scaled across RNAs, averaged across 
PPCS class, and plotted as a heat map to illustrate relative abun-
dance. b A receiving-operating characteristic (ROC) curve demon-
strates the ability of a rSVM classifier to identify PPCS in a train-
ing (green) and testing (blue) set. The testing confusion matrix and 
AUCs are reported in the plot. c ROC curves comparing the per-

formance (AUC) of the RNA PPCS model (“RNA”) with a clinical 
standard (“Zemek”), as well as an additive model (“RNA + Zemek”). 
Performance was evaluated using tenfold cross-validation repeated 
10 times. The 95% confidence intervals were calculated using the 
method of DeLong. d Table showing the sample breakdown and per-
formance characteristics for the training, evaluation, and testing sets. 
Sensitivity, specificity, positive (PPV) and negative (NPV) predictive 
values, and balanced accuracy were calculated using a probability 
threshold of 0.26, which was optimized using the evaluation set

Fig. 4   Identifying mTBI recov-
ery using balance, cognitive, 
and ncRNA measures. a 11 
RNAs, eight balance test scores, 
four cognitive test scores, and 
age were used to determine 
mTBI recovery with high 
accuracy (AUC = 0.86). The 
Clear Edge platform was used 
for objective measurement of 
balance and cognition. b ROC 
curve showing the ability of 
three random forest classifiers 
to classify recovered partici-
pants at ≥ 21 days, using either 
(1) 12 balance and cognitive 
test scores and age (“BalCog”), 
(2) 11 RNA features and age 
(“RNA”), or (3) an additive 
model combining 1 and 2 
(“RNA + BalCog”). Perfor-
mance was evaluated using ten-
fold cross-validation repeated 
10 times. The 95% confidence 
intervals were calculated using 
the method of DeLong
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Table 2   ncRNAs associated 
with symptom and functional 
measures

RNA Score r t P adj_sig_thresh

hsa-miR-205-5p Neck pain 0.190 3.805 1.65E−04 1.66E−04
wiRNA_1383 Sensitivity to noise − 0.158 − 3.146 1.78E−03 1.83E−03
wiRNA_3304 Sensitivity to noise 0.155 3.092 2.13E−03 2.41E−03
SNORD100 Sensitivity to noise − 0.152 − 3.030 2.61E−03 2.66E−03
SNORD31 Sensitivity to noise − 0.155 − 3.077 2.24E−03 2.49E−03
SNORD104 Sensitivity to noise − 0.153 − 3.050 2.45E−03 2.57E−03
RNA5S17 Sensitivity to noise 0.159 3.173 1.63E−03 1.74E−03
RNA5-8SN3 Sensitivity to noise − 0.158 − 3.144 1.80E−03 2.16E−03
wiRNA_396 More emotional − 0.228 − 4.592 5.96E−06 8.31E−05
wiRNA_1073 More emotional − 0.169 − 3.371 8.25E−04 8.31E−04
wiRNA_1500 More emotional − 0.209 − 4.199 3.33E−05 5.81E−04
wiRNA_3304 More emotional 0.224 4.515 8.41E−06 3.32E−04
wiRNA_6967 More emotional − 0.206 − 4.132 4.42E−05 7.48E−04
wiRNA_9246 More emotional 0.220 4.429 1.23E−05 4.98E−04
hsa-miR-148a-5p PRT 0.245 4.142 4.61E−05 8.31E−05
hsa-miR-1290 Days post injury − 0.132 − 2.975 3.07E−03 5.15E−03
hsa-miR-30E-5p Days post injury − 0.214 − 4.890 1.36E−06 2.49E−04
hsa-miR-101-3p Days post injury − 0.163 − 3.698 2.41E−04 2.91E−03
hsa-miR-29c-3p Days post injury − 0.155 − 3.504 5.00E−04 3.32E−03
hsa-miR-29b-3p Days post injury − 0.173 − 3.922 1.00E−04 2.24E−03
hsa-miR-141-3p Days post injury − 0.205 − 4.681 3.69E−06 4.98E−04
hsa-miR-15a-5p Days post injury − 0.140 − 3.154 1.71E−03 3.99E−03
hsa-miR-17-5p Days post injury − 0.173 − 3.921 1.00E−04 2.33E−03
hsa-miR-20a-5p Days post injury − 0.161 − 3.654 2.86E−04 3.07E−03
hsa-miR-19b-3p Days post injury − 0.144 − 3.258 1.20E−03 3.82E−03
hsa-miR-203a-5p Days post injury − 0.131 − 2.961 3.21E−03 5.32E−03
hsa-miR-203b-5p Days post injury − 0.169 − 3.836 1.41E−04 2.57E−03
hsa-miR-203a-3p Days post injury − 0.172 − 3.894 1.12E−04 2.41E−03
hsa-miR-193b-3p Days post injury − 0.130 − 2.941 3.43E−03 5.48E−03
hsa-miR-451a Days post injury − 0.138 − 3.111 1.97E−03 4.07E−03
hsa-miR-423-5p Days post injury 0.126 2.846 4.61E−03 5.81E−03
hsa-miR-21-5p Days post injury − 0.136 − 3.080 2.19E−03 4.49E−03
hsa-miR-23a-3p Days post injury − 0.248 − 5.724 1.80E−08 1.66E−04
hsa-let-7E-5p Days post injury 0.135 3.051 2.40E−03 4.82E−03
hsa-miR-10b-5p Days post injury − 0.167 − 3.780 1.76E−04 2.82E−03
hsa-miR-1246 Days post injury − 0.162 − 3.669 2.69E−04 2.99E−03
hsa-miR-26b-5p Days post injury − 0.151 − 3.416 6.87E−04 3.49E−03
hsa-miR-28-3p Days post injury 0.159 3.592 3.60E−04 3.16E−03
hsa-miR-148a-5p Days post injury 0.168 3.814 1.54E−04 2.74E−03
hsa-miR-106b-5p Days post injury − 0.124 − 2.804 5.25E−03 5.98E−03
hsa-miR-183-5p Days post injury − 0.169 − 3.830 1.44E−04 2.66E−03
hsa-miR-29a-3p Days post injury − 0.186 − 4.226 2.83E−05 6.64E−04
hsa-miR-30b-5p Days post injury − 0.157 − 3.552 4.19E−04 3.24E−03
hsa-miR-151a-3p Days post injury 0.128 2.880 4.15E−03 5.65E−03
hsa-miR-151a-5p Days post injury 0.149 3.368 8.15E−04 3.57E−03
hsa-let-7a-5p Days post injury 0.136 3.072 2.24E−03 4.73E−03
hsa-let-7d-5p Days post injury 0.196 4.464 9.96E−06 5.81E−04
hsa-miR-23b-3p Days post injury − 0.262 − 6.070 2.52E−09 8.31E−05
hsa-miR-221-3p Days post injury − 0.133 − 3.004 2.80E−03 5.07E−03
hsa-miR-222-3p Days post injury − 0.151 − 3.426 6.62E−04 3.41E−03
hsa-miR-502-3p Days post injury − 0.132 − 2.972 3.10E−03 5.23E−03
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wiRNA 1500, with “more emotional”; and the prognostic 
feature, miR-205-5p, with “neck pain.” Numerous ncRNAs 
were associated with time post-injury, four of which were 
prognostic ncRNAs that also displayed an effect of time on 
one-way ANOVA (Supplemental Fig. 6D).

Discussion

This study, involving 112 individuals with mTBI, defined an 
algorithm using salivary levels of 16 ncRNAs (eight wiR-
NAs, seven miRNAs, one snoRNA) obtained within 14 days 
of injury that demonstrated prognostic utility for PPCS. The 
saliva ncRNA model outperformed a validated clinical pre-
diction tool [21], and displayed additive utility when used 
in combination with the clinical prediction tool. Computer-
ized cognitive and balance tests differed between partici-
pants with PPCS and non-PPCS, but these differences did 
not emerge until ≥ 21 days after mTBI. These assessments 
were strong indicators of mTBI recovery. They performed 
comparably to a set of 11 ncRNAs (four miRNAs, four wiR-
NAs, three snoRNAs).

Clinical implications

A saliva ncRNA test could provide an objective, biologic 
adjunct, aiding PPCS prognosis in individuals with mTBI. 
Guidelines for mTBI management recommend that clini-
cians screen for PPCS risk factors using validated pre-
diction rules [1]. Though prediction rules are relatively 
simple to administer and interpret, they can be difficult to 
implement in busy clinics, have not been widely validated 

outside of an emergency department settings [28], and are 
less than 70% accurate [21]. In the current cohort, drawn 
from multiple clinical settings, combination of the predic-
tion rule with saliva ncRNA levels identified PPCS risk 
with 81% accuracy. Validation of this dual approach in a 
larger cohort could improve prognostic accuracy and pro-
vide opportunities for the development of early, targeted 
interventions. It may also yield mechanistic insights about 
the underlying biology of PPCS.

Guidelines advise health care professionals to use a 
combination of symptom scales, cognitive testing, and 
balance to assess mTBI recovery. The rationale for multi-
ple measures is that no single tool strongly predicts mTBI 
outcome [29], and subjective symptom reports can be 
manipulated if an individual seeks to expedite or delay 
return to activities [30, 31]. Even baseline cognitive test-
ing can be “sand-bagged” by competitive athletes [32, 33] 
who may exhibit “volitional poor performance motivated 
by desire to subvert concussion detection and potential 
removal from play" [34] and guidelines acknowledge that 
evidence for balance testing is limited to older adoles-
cent athletes [35]. Here, we show the relative ability of 
computerized cognitive assessment, balance testing, and 
saliva ncRNA to differentiate symptomatic recovery sta-
tus ≥ 21 days after mTBI. An algorithm incorporating all 
8 balance and 4 cognitive test scores accurately differen-
tiated symptomatic individuals from recovered individu-
als ≥ 21 days after injury (AUC = 0.79). An algorithm 
employing 11 ncRNAs identified recovered individuals 
with slightly higher performance (AUC = 0.83). Combin-
ing cognitive and balance testing with ncRNAs yielded the 
best results (AUC = 0.86).

Table 2   (continued) RNA Score r t P adj_sig_thresh

hsa-let-7f-2-3p Days post injury − 0.133 − 3.011 2.73E−03 4.98E−03
hsa-miR-374c-3p Days post injury − 0.176 − 3.987 7.69E−05 8.31E−04
hsa-miR-374a-3p Days post injury − 0.134 − 3.013 2.72E−03 4.90E−03
hsa-miR-374a-5p Days post injury − 0.207 − 4.740 2.79E−06 3.32E−04
hsa-miR-361-5p Days post injury − 0.126 − 2.831 4.83E−03 5.90E−03
wiRNA_1436 Days post injury 0.123 2.768 5.86E−03 6.56E−03
wiRNA_3506 Days post injury 0.124 2.794 5.41E−03 6.23E−03
wiRNA_3828 Days post injury − 0.123 − 2.768 5.84E−03 6.40E−03
wiRNA_7971 Days post injury − 0.148 − 3.357 8.47E−04 3.65E−03
wiRNA_9363 Days post injury − 0.129 − 2.902 3.87E−03 5.56E−03
wiRNA_9447 Days post injury 0.142 3.214 1.39E−03 3.90E−03
RNY4 Days post injury 0.131 2.958 3.24E−03 5.40E−03
RNA5S17 Days post injury − 0.173 − 3.933 9.59E−05 2.16E−03
RNA5-8SN4 Days post injury 0.148 3.343 8.90E−04 3.74E−03
RNA5-8SN3 Days post injury 0.137 3.095 2.08E−03 4.40E−03

Pearson correlation statistics
Bold signifies ncRNA features from PPCS or recovery algorithms
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Many miRNAs identified in our previous studies of mTBI 
were not included in the current predictive model. This 
likely resulted from our inclusion of piRNA clusters (wiR-
NAs) that may provide more granular information about 
PPCS risk, and may therefore be preferentially selected 
over miRNAs in our machine learning approach. Additional 
differences between our current and past studies are likely 
explained by: (1) severity of brain injury (the current study 
excludes severe TBI); (2) participant age (the current study 
involves adult participants); and (3) method of sample col-
lection (the current study involves saliva swabs, rather than 
expectorant).

Strengths and limitations

To our knowledge this is the largest study of ncRNA in 
PPCS and among the first to pair longitudinal ncRNA 
assessment with functional measures. However, several limi-
tations should be acknowledged. The age (predominantly 
adolescent), race (mostly white), and low rates of anxiety/
depression among participants may limit generalizability, 
despite the fact that individuals were enrolled from six dif-
ferent institutions. Loss of consciousness was slightly more 
common among participants with PPCS. Although strict 
clinical criteria excluded participants with severe TBI, the 
severity of injury among the PPCS group may have been 
marginally higher and is reflected in symptom scores at the 
time of injury. However, the PPCS and non-PPCS groups 
showed no difference in balance or cognitive performance 
at the time of injury, and these would be expected to differ 
with TBI severity [36]. We note that complete balance and 
cognitive data were absent for 34/112 participants, and this 
may have resulted in selection bias. To boost the predictive 
power of our study, we employed multiple swabs from a sin-
gle participant when training and testing ncRNA predictive 
models. This approach allowed us to use a semi-naïve hold 
out model, as opposed to the cross-validation used in most 
prior molecular biomarker studies of PPCS. Though no par-
ticipants provided > 1 swab on a single day, we acknowledge 
this approach may have artificially reduced inter-individual 
variability and increased predictive accuracy of the ncRNA 
model. We also acknowledge that the hold-out set was still 
underpowered (74%), thus impacting interpretability. How-
ever, sensitivity analyses show that the algorithm is: (1) 
consistent across training set cross-validation folds (Sup-
plemental Fig. 7, Supplemental Table 3), (2) stable across 
a range of probability cutoffs (Supplemental Table 4), and 
(3) robust to outliers (Supplemental Fig. 8, Supplemental 
Table 5). Although ncRNA accuracy was compared to a 
validated prediction rule [21], a modified version of this 
rule was employed because some of our participants fell 
outside the published age range, a different measure of bal-
ance problems was employed, and we did not have complete 

symptom duration data from prior concussions. We note that 
performance of the modified prediction rule in our cohort 
(AUC = 0.73) is similar to published performance of the 
validated prediction rule (AUC = 0.68).

Conclusions

Saliva ncRNAs measured within 14 days of mTBI provide 
prognostic information about risk for PPCS. Combining this 
novel measure with an existing clinical prediction rule may 
increase prognostic accuracy for PPCS. Longitudinal meas-
urement of saliva ncRNAs alongside cognition and balance 
assessment may also improve ability to objectively identify 
concussion recovery. Such information could aid informed 
decisions about safe return to activities. Prospective valida-
tion of ncRNA measures in a large, diverse cohort would 
provide additional evidence necessary for clinical adoption 
of this technology.
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