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Abstract

This paper presents an experimental comparison of four different hierarchical self-tuning

regulatory control procedures in enhancing the robustness of the under-actuated systems

against bounded exogenous disturbances. The proposed hierarchical control procedure

augments the ubiquitous Linear-Quadratic-Regulator (LQR) with an online reconfiguration

block that acts as a superior regulator to dynamically adjust the critical weighting-factors of

LQR’s quadratic-performance-index (QPI). The Algebraic-Riccati-Equation (ARE) uses

these updated weighting-factors to re-compute the optimal control problem, after every

sampling interval, to deliver time-varying state-feedback gains. This article experimentally

compares four state-of-the-art rule-based online adaptation mechanisms that dynamically

restructure the constituent blocks of the ARE. The proposed hierarchical control procedures

are synthesized by self-adjusting the (i) controller’s degree-of-stability, (ii) the control-

weighting-factor of QPI, (iii) the state-weighting-factors of QPI as a function of “state-error-

phases”, and (iv) the state-weighting-factors of QPI as a function of “state-error-magni-

tudes”. Each adaptation mechanism is formulated via pre-calibrated hyperbolic scaling func-

tions that are driven by state-error-variations. The implications of each mechanism on the

controller’s behaviour are analyzed in real-time by conducting credible hardware-in-the-loop

experiments on the QNET Rotary-Pendulum setup. The rotary pendulum is chosen as the

benchmark platform owing to its under-actuated configuration and kinematic instability. The

experimental outcomes indicate that the latter self-adaptive controller demonstrates supe-

rior adaptability and disturbances-rejection capability throughout the operating regime.

1. Introduction

The design principles of under-actuated self-stabilizing systems are extensively used in the fab-

rication of humanoid robotic systems, aeronautical systems, self-balancing transporters,
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robotic manipulators, and underwater vehicles, etc [1, 2]. These systems have high dexterity,

better control-input economy, and a lesser propensity to break down [3]. However, the under-

actuated systems have fewer actuators than the degrees-of-freedom to be regulated [4]. The

system’s under-actuated configuration, nonlinear dynamics, and open-loop instability poses a

challenging problem to the researchers in developing robust controllers that can effectively

reject the exogenous disturbances encountered by the physical system in real-time applications

[5, 6].

1.1. Literature review

Conventional controllers have been extensively used to optimize the disturbance compensa-

tion behavior of the aforementioned class of mechatronic systems [7, 8]. The integer-order

PID controllers are widely preferred in the control industry due to their simple structure and

reliable control effort [9]. However, they cannot efficiently mitigate the influence of parametric

uncertainties owing to their limited degrees-of-freedom and simple structure [10]. The frac-

tional-order PID controllers offer relatively better flexibility of controller design, which

increases the controller’s degrees-of-freedom and enables it to quickly reject the nonlinear dis-

turbances [11]. However, tuning the controller parameters is an ill-posed problem [12].

Despite their enhanced flexibility, the fuzzy controllers require a large number of empirically-

defined qualitative rules to deliver robust control decisions [13]. Apart from degrading the

controller’s computational economy, this arrangement also increases the human-rendered

inaccuracies in the synthesized rule-base [14]. The neural controllers require rigorous training

and large sets of training-data to deliver an accurate data-driven control model [15]. They also

puts an excessive recursive computational burden on the digital computer [16]. The Linear-

Quadratic-Regulator (LQR) is a state-space control procedure that minimizes a quadratic-per-

formance-index (QPI), which captures the state and control-input variations, to compute an

optimal set of state-feedback gains [17, 18]. Despite its optimality and guaranteed stability, the

LQR lacks robustness against exogenous disturbances, model variations, and identification

errors [19, 20]. The robustness of the generic LQR can be improved by prescribing a “Degree-

of-Stability” (DoS) in its structure [21]. The DoS design relocates the system’s eigenvalues on

the left-hand of the line s = −β in the complex plane, where, "s" is the Laplace operator and

β>0 is a preset parameter that defines the LQR’s DoS [22]. The repositioning of eigenvalues

enhances the controller’s response speed and its damping against exogenous disturbances by

manipulating its phase-margin [23]. However, this technique compromises the control-input

expenditure of the controller [24].

The robust nonlinear controllers put unnecessary restraints on deriving the exact solution

due to the boundary conditions and complex geometry of the system’s model [5, 25]. The non-

linear control scheme proposed in [26] effectively handles the actuated state-constraints, un-

actuated state-constraints, and composite variable constraints for a specific class of under-

actuated systems. However, it does not address the effect of parametric uncertainties encoun-

tered by the system. The sliding-mode controllers are also renowned for delivering robust con-

trol efforts [27]. However, they apply highly discontinuous control force which inevitably

injects chattering in the response [28]. The back-stepping controllers are also used to regulate

the performance of the nonlinear systems [29]. However, the cancellation of indefinite cross-

coupling terms, which is done to maintain the negativity of the Lyapunov function’s first-

derivative throughout the operating regime, contributes to a higher control activity and

degrades the system’s robustness as well [30].

The adaptive controllers are used as an important tool in disturbance-compensators for

under-actuated systems [31]. They perform on-board reasoning to dynamically restructure the
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control procedure by self-tuning the critical controller parameters [32]. This setup enables the

system to quickly adapt to the abrupt state-variations [32–34]. Historically, the adaptive con-

trollers are categorized via their direct or indirect nature. The direct approach self-adjusts the

critical controller-parameters as a function of the error-variables [13]. In the indirect

approach, an identification scheme is used to estimate the system’s unknown model-parame-

ters to update the control law [14].

Extensive research has been done to synthesize robust adaptive controllers for under-actu-

ated mechatronic systems [35, 36]. The Model-Reference-Adaptive-Controllers utilizes the

Lyapunov theory to track a reference control model which leads to the online dynamic adjust-

ment of the critical controller parameters [37, 38]. However, identifying an accurate reference

model for the tracking purpose is a difficult task [39]. The gain-scheduling mechanism

employs a state-driven look-up table to select pre-configured feedback controllers; where, each

controller is designed specifically for a given operating condition [40]. The calibration and sta-

bility assurance of the constituent controllers for a system with a big range of uncertainty

become quite laborious [41]. The model-predictive-controllers use smaller time frames to

solve the receding-horizon optimization problem and deliver time-varying controller gains

[42]. However, they render wrong predictions which may lead to a fragile control effort under

long drifting disturbances or model variations [43]. The State-Dependent-Riccati-Equation

based controllers require accurate state-dependent-coefficient matrices to update the Riccati

Equation solutions [44]. However, an accurate definition of these matrices is quite hard due to

the restrictions imposed by the nonlinear dynamics of higher-order systems [45]. The Mar-

kov-Jump-Linear-System is a stochastic control technique that is renowned for its reliance

against the random faults occurring in the cyber-physical system [46]. However, the cost and

likelihood of acquiring accurate a priori transition probabilities for necessary computations is

expensive and arguable, respectively [47].

The state-error-driven nonlinear scaling functions have also been extensively used for the

development of expert adaptive systems to online adapt the controller parameters [48]. Retro-

fitting the linear compensators with nonlinear scaling functions to adaptively modify the criti-

cal controller gains has garnered a lot of traction in developing robust control for non-

minimum phase systems [49]. The nonlinear-type feedback controllers tend to improve the

system’s damping against oscillations, reference-tracking accuracy, and error-convergence

rate [50, 51]. There are two main categories of nonlinear-type gain adaptation laws that are

widely used in the adaptive control field; namely, the state-error-magnitude observers and

state-error-phase observers. In state-error-magnitude observers, the online dynamic gain-

adjustment depends on the magnitude of the state-error variable and its higher-order deriva-

tives [52]. In state-error-phase observers, the online dynamic gain-adjustment is driven by the

magnitude of the classical state-error as well as the direction of motion of the state response

(commonly referred to as the “phase” of the state-response) [53]. The phase information helps

in flexibly manipulating the controller’s characteristics as the response deviates from or con-

verges to the reference [54]. The biologically-inspired artificial-immune system is a computa-

tionally intelligent adaptive mechanism that efficiently rejects the exogenous disturbances

[55]. They mimic the self-regulation capability of biological immune systems to adaptively

tune the controller parameters which optimizes the controller’s adaptability to environmental

indeterminacies [56].

The hierarchical self-tuning state-feedback regulators are yet another emerging control par-

adigm [57, 58]. They are implemented by dynamically adjusting the constituent weighting

matrices of LQR’s QPI to indirectly modify the controller gains [59]. The online variations in

these weighting-factors manipulates the critical parameters in the succeeding layers of the con-

troller’s structure which eventually delivers time-varying state-feedback gains.
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1.2. Proposed approach

The main contribution of this article is the development and experimental comparison of four

unique state-of-the-art nonlinear-type hierarchical self-tuning state-feedback regulators for

under-actuated mechatronic systems in order to improve their disturbance-rejection capabil-

ity against exogenous disturbances. The proposed control scheme follows a hierarchical archi-

tecture that re-computes the state-feedback gains, after every sampling-interval, based on the

state-error-dependent adaptive tuning of weighting-factors associated with LQR’s quadratic-

performance-index (QPI). For this purpose, the generic LQR structure is retrofitted with an

auxiliary online self-tuning mechanism that acts as a superior regulator to adaptively tune the

constituent weighting-factors associated with the QPI. The Riccati equation uses these

adjusted weights to deliver the time-varying state-feedback gains. Each self-tuning mechanism

is designed such that it exploits a specific aspect of the system’s state-error profile and har-

nesses it to effectively reposition the system’s closed-loop eigenvalues in the stable region of

the complex-plane. The said hierarchical control procedure is quite innovative because, apart

from adjusting the state-feedback gains online, the solution of Riccati equation concurrently

guarantees the asymptotic-convergence of the control law as long as the concerned weighting-

factors are varied within pre-defined bounds. Hence, additional stability proofs are not

required. The salient innovative contributions of this article are postulated as follows:

1. Development of a self-tuning mechanism for the LQR’s “degree-of-stability”.

2. Development of a self-tuning mechanism for the control-weighting-factor associated with

the QPI.

3. Development of a self-tuning mechanism for the state-weighting-factors of QPI that

depends on the system’s state-error-phase.

4. Development of a self-tuning mechanism for the state-weighting-factors of QPI that

depends on the magnitudes of the system’s state-error variables.

5. Formulation of each self-tuning mechanism by using pre-configured hyperbolic functions

to re-scale the critical weighting-factors in real-time.

6. Comparative performance assessment of the proposed self-tuning controller variants by

conducting credible real-time experiments, designed specifically to emulate practical distur-

bance scenarios in the physical environment, on the standard QNET Rotary Pendulum

setup [11].

The experimental results (shown later in this article) indicate that each self-tuning-regulator

variant significantly enhances the system’s robustness against the exogenous disturbances and

the control-input economy to a certain degree while preserving the system’s asymptotic-stabil-

ity throughout the operating regime. The experimental comparison of the four different struc-

tures of hierarchical self-tuning regulators, that employ innovative rule-based adaptation

mechanisms to dynamically adjust the critical weighting-factors of the QPI, has not been

attempted previously in the open literature. Hence, this is the main focus of this article.

The remaining paper is organized as follows: The pendulum system is mathematically mod-

eled in Section 2. The baseline fixed-gain LQR is synthesized in Section 3. The detailed design

of the four prescribed hierarchical self-tuning regulators is presented in Section 4. The experi-

mental comparison of the proposed self-tuning regulator is presented in Section 5. The paper

is concluded in Section 7.
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2. System model

In this paper, a standard rotary inverted pendulum (RIP) system is used as the benchmark

platform to experimentally analyze the implications of the proposed control procedure [60]. It

requires an active control system to stabilize itself vertically. Apart from being under-actuated

in nature, the said multivariable system also exhibits all the properties typically associated with

mechatronic systems; such as open-loop (or kinematic) instability, complex geometry, and

nonlinear dynamics [61]. The block diagram of an RIP system is illustrated in Fig 1. The sys-

tem employs a DC geared servo-motor to apply the necessary control torque to rotate the pen-

dulum’s arm, which is coupled to the motor’s shaft. The arm’s angular displacement energizes

the pendulum rod to swing-up and balance itself vertically. The angular-displacements of the

arm and the rod are denoted as α and θ, respectively.

The system’s nonlinear equations of motion are formulated via the Euler-Lagrange

approach [62]. The system’s Lagrangian (L), expressed in Eq 1, is evaluated by computing the

difference between the total kinetic energy (T) and the total potential energy (V) of the system

is computed in terms of the coordinates (φ and θ) and their corresponding angular-velocities

( _φ and _y).

L ¼ T � V ð1Þ

The Euler-Lagrange equations of the RIP system are derived as follows [62].

d

dt
dL
d _a

� �

�
dL
da
¼ t;

d

dt
dL
d _y

� �

�
dL
dy
¼ 0 ð2Þ

where, τ represents the torque applied by the DC motor. It is expressed as follows.

t ¼
KtðVm � Km _aÞ

Rm
ð3Þ

The viscous damping forces and frictional forces are neglected in this research. The

Fig 1. Hardware schematic of a typical rotary pendulum system.

https://doi.org/10.1371/journal.pone.0256750.g001
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resulting nonlinear relationship between α, θ, and τ is expressed as follows [62].

€a ¼
� rM2

p l
2
pgðcos yÞy � JpMpr2 cos y sin yð _aÞ2 � ðJp þMpl2pÞt
ðMpr2ðsin2yÞ � Je � Mpr2ÞJp � Mpl2pJe

;

€y ¼
� MplpððMpr2g sin2 y � Jeg � Mpr2gÞyþ rðJe _a2 sin y � t cos yÞÞ

ðMpr2ðsin2yÞ � Je � Mpr2ÞJp � Mpl2pJe
: ð4Þ

The aforementioned set of nonlinear equations can be linearized around the point

a ¼ y ¼ _a ¼ _y ¼ 0. Furthermore, the small-angular displacements of the pendulum rod are

approximated via the following expressions.

siny � y; cosy � 1 ð5Þ

The state-space model of a linear dynamical system is represented via Eq 6 [11].

_x ¼ Axþ Bu; y ¼ Cxþ Du ð6Þ

where, x is the state-vector, y is the output-vector, u is the control input signal, A is the state-

transition matrix, B is the input matrix, C is the output matrix, and D is the feed-forward

matrix. The state-vector and the control input-vector of the RIP system are identified in Eq 7

[59].

x ¼ ½a y _a _y�
T
; u ¼ Vm ð7Þ

where, Vm is the control-input voltage applied to operate the DC motor. The nominal state-

space model of the RIP system is presented as follows [59].

A ¼

0 0 1 0

0 0 0 1

0 a1 a2 0

0 a3 a4 0

2

6
6
6
6
6
4

3

7
7
7
7
7
5

;B ¼

0

0

b1

b2

2

6
6
6
6
6
4

3

7
7
7
7
7
5

;C ¼

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

2

6
6
6
6
6
4

3

7
7
7
7
7
5

;D ¼

0

0

0

0

2

6
6
6
6
6
4

3

7
7
7
7
7
5

: ð8Þ

where,

a1 ¼
rM2

p l
2
pg

JpJe þ Jel2pMp þ JpMpr2
; a2 ¼

� KtKmðJp þMpl2pÞ
ðJpJe þ Jel2pMp þ JpMpr2ÞRm

;

a3 ¼
MplpgðJe þMpr2Þ

JpJe þ Jel2pMp þ JpMpr2
; a4 ¼

� rMplpKtKm

ðJpJe þ Jel2pMp þ JpMpr2ÞRm
;

b1 ¼
KtðJp þMpl2pÞ

ðJpJe þ Jel2pMp þ JpMpr2ÞRm
; b2 ¼

rMplpKt

ðJpJe þ Jel2pMp þ JpMpr2ÞRm

The model parameters of the QNET RIP are identified in Table 1 [11].

3. Linear quadratic regulator

The LQR is a standard state-space control strategy that is widely favored for optimal position-

regulation of multivariable electro-mechanical systems [19]. The LQR yields an optimal con-

trol trajectory by minimizing an energy-like QPI, expressed in Eq 9, that captures the state-
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variations and the control input associated with the linear dynamical system [17].

Jlq ¼
1

2

Z 1

0

½xðtÞTQxðtÞ þ uðtÞTRuðtÞ�dt ð9Þ

where, Q 2 R4×4 and R 2 R are the state and control-input weighting matrices, respectively.

The QPI minimization is followed by the solution of Hamilton-Jacobi-Bellman (HJB) equation

to acquire the state-feedback gains offline [17]. The weighting-matrices are selected such that

Q is a positive semi-definite matrix and R is a positive definite matrix. For the RIP system con-

sidered in this research, the Q and R matrices are symbolically represented as shown in Eq 10.

Q ¼ diagðqφ qy q _a q _yÞ; R ¼ r ð10Þ

where, qx and ρ represent the real-numbered coefficients of the Q and R matrices, respectively.

The value of ρ is selected as unity to maintain a reasonable control-input economy. The Q
matrix is tuned in this research by iteratively minimizing the performance criterion given in

Eq 11 to minimize the position-regulation error as well as the control-input energy [63].

Jc ¼

Z 1

0

jeaðtÞj
2
þ jeyðtÞj

2
þ juðtÞj2dt ð11Þ

such that; eaðtÞ ¼ aref � aðtÞ; eyðtÞ ¼ p � yðtÞwhere, eα(t) and eθ(t) represent the error in the

angular displacement of arm and rod from their corresponding reference positions, respec-

tively. The reference position of the pendulum’s rod is set as π radians in order to stabilize it

vertically. The angular position of the pendulum’s arm recorded at the beginning of every

experimental trial is considered as its reference, αref. The LQR delivers the optimal set of state-

feedback gains with the lowest cost of Jlq. However, these optimal gains are computed by using

a specific set of Q and R matrices. This arrangement may not always contribute a good posi-

tion-regulation behavior with respect to Jlq. Hence, to optimize the selection procedure, Jc is

used to tune the state-weighting factors in this research [59]. To acquire the best-fit solution,

each state weighting-factor is selected from the range [0, 500] in this research. The search is

initiated from a random point in the range-space. The search is conducted in the direction of

descending gradient of Jc and it is terminated when the minimum cost is achieved. The coeffi-

cients of Q and R matrices acquire for this research (corresponding to the minimum cost of Jc)

Table 1. Model parameters of QNET Rotary Pendulum.

Parameter Description Identified value

Mp Mass of pendulum 0.027 kg

lp Pendulum center of mass 0.153 m

Lp Length of pendulum rod 0.191 m

r Length of horizontal arm 0.083 m

Marm Mass of arm 0.028 kg

g Gravitational acceleration 9.810 m/s2

Je Moment about motor shaft 1.23×10−4 kgm2

Jp Moment about pendulum 1.10×10−4 kgm2

Rm Motor armature resistance 3.30 O

Lm Motor armature inductance 47.0 mH

Kt Motor torque constant 0.028 N.m

Km Back e.m.f. constant 0.028 V/(rad/s)

Tm Maximum torque 0.14 Nm

https://doi.org/10.1371/journal.pone.0256750.t001
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are presented as follows.

Q ¼ diagð32:8 52:2 6:1 2:5Þ; R ¼ 1 ð12Þ

The Algebraic-Riccati-Equation (ARE) utilizes the system’s nominal model as well as the

tuned Q and R matrices to compute the solution, P, as shown in Eq 13.

ATP þ PA � PBR� 1BTP þ Q ¼ 0 ð13Þ

where, P2R4×4, is a symmetric positive definite matrix. It is well-known that if the system is

controllable and that Q = QT� 0 and R = RT > 0, the solution of ARE yields an asymptotically-

stable control behavior [17]. The state-feedback gain vector, Kf, is calculated as shown in Eq

14.

K ¼ R� 1BTP ð14Þ

where, K ¼ ½ka ky k _a k _y �. The optimal control law is expressed as follows.

uf ðtÞ ¼ � KxðtÞ ð15Þ

The evaluation of the gain vector yields K ¼ ½� 6:21 130:56 � 4:22 17:83�. The linear

control law is restructured by equipping it with the following state-error-integral variables.

εφ ¼

Z t

0

eφðtÞdt; εy ¼
Z t

0

eyðtÞdt ð16Þ

This augmentation improves the pendulum’s damping against fluctuations and its refer-

ence-tracking behavior [18]. The integral control law is expressed as follows.

uiðtÞ ¼ K iεðtÞ ¼ ½Kiφ Kiy�
εφ

εy

" #

ð17Þ

The integral-gain vector Ki is tuned by iteratively minimizing the cost function, Jc, to mini-

mize the position-regulation error. The Ki vector that yields the minimum cost in the range

[-5, 0] is selected. In this paper, the integral gains are tuned as K i ¼ ½� 2:06 � 7:47� 10� 6�.

The baseline control law is given by the linear combination of the optimal control law and the

integral control law as shown in Eq 18.

uðtÞ ¼ � Kf xðtÞ þ K iεðtÞ ð18Þ

4. Hierarchical self-tuning-regulator design

The ubiquitous LQR uses the system’s linear state-space model to deliver fixed state-feedback

gains. Thus, it lacks robustness against the state-deviations caused by the bounded distur-

bances, modeling uncertainties, identification errors, and other parametric variations. To

solve this problem, the LQR is augmented with an online adaptation law that dynamically

reconfigures the critical controller parameters. The adaptation law is realized by using state-

error-dependent nonlinear scaling functions. These synthetic “nonlinear” functions flexibly

manipulate the control profile to reject the exogenous disturbances. This arrangement signifi-

cantly improves the controller’s adaptability and disturbance-rejection capability; although,

the resulting self-tuning regulator continues to utilize the system’s linear state-space model.

This section presents the theoretical background and formulation of four different state-of-

the-art hierarchical adaptive state-feedback control procedures. Each self-tuning mechanism

adaptively modulates the gains of the LQR. The proposed mechanisms redesign the nominal

LQR, after every sampling interval, to flexibly manipulate the control-input trajectory which
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aids in efficiently rejecting the exogenous disturbances and parametric variations. It is to be

noted that only the state-feedback gains are being updated online in the proposed adaptive

control procedures; whereas, the integral gains are kept fixed at Ki ¼ ½� 2:06 � 7:47� 10� 6�

as discussed in the previous section. Each proposed adaptive control procedure undertakes to

achieve a beneficial compromise between the position-regulation behaviour and control

energy expenditure while maintaining the system’s stability across a broad range of operating

conditions. As discussed earlier, the proposed adaptation laws self-adjust specific parameters

(existing naturally) within the hierarchical structure of the LQR control system. The online

reconfiguration of these targeted parameter indirectly leads to the re-computation of state-

feedback gains, after every sampling interval. In this article, four unique hierarchical self-tun-

ing control procedures are investigated. These control procedures are individually synthesized

by:

1. Self-adjusting the degree-of-stability of the LQR by using state-error feedback.

2. Self-adjusting the R matrix by using state-error feedback.

3. Self-adjusting the coefficients of Q matrixby using a well-established rationale that depends

on the state-error-phase feedback.

4. Self-adjusting the Q and R matrices by using well-postulated meta-rules that depend on the

state-error-magnitude feedback.

The adaptation laws are formulated via pre-calibrated hyperbolic nonlinear scaling func-

tions. These functions are continuous which allows for a smooth variation of the concerned

weights as the operating conditions change. These functions are bounded which limits the var-

iation of the concerning weights and thus, ensures an asymptotically-stable control behaviour.

The symmetry of the hyperbolic functions, about the vertical axis, helps to appropriately steer

the control trajectory as the polarities of the state-error variables change. Finally, these alge-

braic equations can be easily solved in a single-step after every sampling interval. Unlike the

iterative auto-tuning or gradient-descent techniques, the real-time computation of hyperbolic

scaling functions does not put an excessive recursive computational burden on the embedded

processor. Hence, they are computationally economical and can be easily programmed in the

control software by using modern-day digital computers.

4.1. Adjustable degree-of-stability

The baseline LQR is transformed into a self-tuning-regulator by retrofitting it with a self-

adjusting degree-of-stability (DoS) [21]. The QPI is equipped with a reconfiguration block that

relocates the system’s closed-loop poles on the left-hand side of the vertical line, s = −β(t), on

the complex s -plane; where, β(.) is a state-error dependent time-varying positive constant.

The original QPI is modified by associating a time-varying exponential multiplying factor of

the form e2β(t)t with it as shown in Eq 19 [22].

J�lq ¼
1

2

Z 1

0

e2bðtÞt½xðtÞTQxðtÞ þ uðtÞTRuðtÞ�dt ð19Þ

The multiplication of the typical cost-function with the time-varying exponential term

shifts the position of eigenvalues of the state-transition matrix A on the left side of the line s =

−β(t) which ensures the asymptotic-stability of the controller’s operation [22]. The revised
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cost-function can be simplified according to the following expression.

J�lq ¼
1

2

Z 1

0

½ðebðtÞtxðtÞÞTQðebðtÞtxðtÞÞ þ ðebðtÞtuðtÞÞTRðebðtÞtuðtÞÞ�dt ð20Þ

This simplification implies that the expressions of the state-vector, as well as the control-

input vector, can be revised as expressed below [23].

�xðtÞ ¼ ebðtÞtxðtÞ; �uðtÞ ¼ ebðtÞtuðtÞ ð21Þ

The substitution of the revised expressions of the state-vector and control-input vector

yields the following expression of the cost-function.

J�lq ¼
1

2

Z 1

0

½�xðtÞTQ�xðtÞ þ �uðtÞTR�uðtÞ�dt ð22Þ

The system’s state-equation is also modified as expressed below [40].

_�xðtÞ ¼ ðAþ bðtÞIÞ�xðtÞ þ B�uðtÞ ð23Þ

The expression in the Eq (18) reveals that the augmentation of the exponential term, e2β(t)t,

in the quadratic cost-function ends up transforming the system’s state-matrix A into A+β(t)I.
Hence, this arrangement contributes in varying the coefficients of the state-matrix as a func-

tion of the state-variables. The modified expression of ARE is shown below [24].

ðAþ bðtÞIÞTPðtÞ þ PðtÞðAþ bðtÞIÞ � PðtÞBR� 1BTPðtÞ þ Q ¼ 0 ð24Þ

The time-varying state-feedback gain vector is updated online as follows.

KdðtÞ ¼ R� 1BTPðtÞ ð25Þ

The updated gain vector, Kd(t), flexibly steers the control trajectory using the following

Self-Tuning-Regulator (STR) control law.

uðtÞ ¼ � KdðtÞxðtÞ þ K iεðtÞ ð26Þ

In order to constitute the adaptive control law, the value of β is dynamically adjusted via an

online adaptation law. The proposed adaptation mechanism is formulated by using continu-

ous nonlinear scaling functions that dynamically reconfigures the value of β online based on

the real-time variations in the system’s cumulative position-regulation error. The cumulative

position-regulation error and projected error, contributed by the pendulum’s arm and the rod,

is evaluated by taking the linear combination of the individual state-error variables. The modi-

fied Riccati equation (expressed in Eq 24) uses the updated values of β to re-compute its solu-

tion after every sampling interval, and thus, yield a time-varying state-feedback gain vector.

The structure of the STR employing the aforementioned adjustable-DoS (ADoS-STR) mecha-

nism is illustrated in Fig 2 [64].

The online adaptation law for β is formulated by using a pre-calibrated continuous Hyper-

bolic-Secant-Function (HSF) that depends on the weighted sum of state-error variables [64].

The HSF is chosen because its waveform is continuous, bounded, and even-symmetric. The

shape of HSF’s waveform is calibrated according to the following rationale [64].

The magnitude of β is enlarged when the state-error magnitudes increase in order to place

the eigenvalues farther from the imaginary-axis. This arrangement yields stronger damping

against overshoots and quickly reverses the direction of response.
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1. The magnitude of β is reduced when the state-error magnitudes decrease in order to place

the eigenvalues closer to the imaginary-axis. This allows the response to settle naturally

(and smoothly).

These characteristics yield rapid convergence with strong damping against oscillations

without contributing large actuating torques under the influence of bounded exogenous dis-

turbances. The proposed HSF is formulated as follows.

bðtÞ ¼ bmax � ½ðbmax � bminÞ � sechðzðtÞÞ� ð27Þ

such that; zðtÞ ¼ s1eaðtÞ þ s2eyðtÞ þ s3 _eaðtÞ þ s4 _eyðtÞwhere, sech(.) represents the HSF, βmin

and βmax represent the minimum and maximum limits of the HSF, z(t) is the weighted sum of

all state-error variables in real-time, and the parameters σ1, σ2, σ3, and σ4 are the preset weights

linked with each state-error variable in z(t). The waveform of the weight-adjusting function is

shown in Fig 3.

The inclusion of the four state-error variables in the computation of z(t) informs the adap-

tation law regarding the effect of the disturbance on the system’s behavior. This self-reasoning

capability improves the controller’s adaptability. To acquire the proposed self-reasoning capa-

bility, “positive” weights are selected for each state-error variable in z(t). Hence, when the

state-responses diverge from the reference, the positive weights promote an increment in the

magnitude of z(t) owing to the same polarities of the classical error variables and their deriva-

tives in this phase. Conversely, when responses revert and approach the reference, the positive

weights allow a decrement in the magnitude of z(t) owing to the opposite polarities of the clas-

sical error variables and their derivatives in this phase. This arrangement enhances the control-

ler’s flexibility and ensures a stiff damping control effort under large error conditions to

quickly attenuate the oscillations, and a softer control effort under small error conditions. The

parameters are selected by minimizing Je to improve the reference-tracking and disturbance-

rejection behavior. The tuned parameters are recorded in Table 2.

Fig 2. The block diagram of the ADoS-STR.

https://doi.org/10.1371/journal.pone.0256750.g002
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4.2. Adjustable control-weighting-factor

In the LQR problem, the control-weighting-factor (ρ) steers the control input trajectory. The

selection of ρ makes a compromise between the system’s position-regulation behavior and

control energy expenditure [22]. A small value of ρ increases the controller’s robustness against

disturbances but also induces highly discontinuous control activity. On the contrary, a large

value of ρ limits the system’s control activity under disturbance conditions which inevitably

degrades the position-regulation and transient-recovery behavior [65]. Hence, the fixed value

of ρ renders the overall control mechanism uneconomical under rapidly changing operating

conditions [66, 67]. On one hand, it applies superfluous control force under small error condi-

tions. On the other hand, it contributes to inadequate control resources under transient distur-

bances. A viable solution is to adaptively modulate the ρ in LQR’s QPI, while keeping the

coefficients of Q matrix fixed at their prescribed values, as shown below.

Q ¼ diagð32:8 52:2 6:1 2:5Þ;RðtÞ ¼ rðtÞ ð28Þ

The idea is to smoothly slide the factor ρ across a continuous surface so that the control pro-

file can be flexibly manipulated to minimize the reference-tracking error and to maintain a

reasonable control-input economy throughout the operating regime. This arrangement auto-

matically relocates the eigenvalues of the closed-loop system to effectively compensate for the

disturbances. With the modification, R(t) = ρ(t), incorporated in the nominal LQR procedure,

Fig 3. The waveform of hyperbolic-secant-function.

https://doi.org/10.1371/journal.pone.0256750.g003

Table 2. Parameter selection of the HSF for the ADoS-STR mechanism.

Parameter symbol Parameter Range Tuned value

βmin [0, 10] 0.311

βmax [0, 10] 0.716

σ1 [0, 100] 7.82

σ2 [0, 100] 23.37

σ3 [0, 100] 2.19

σ4 [0, 100] 6.73

https://doi.org/10.1371/journal.pone.0256750.t002
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the QPI is revised as follows.

J�lq ¼
1

2

Z 1

0

xðtÞTQxðtÞ þ uðtÞTRðtÞuðtÞdt ð29Þ

The modified Riccati Equation is expressed in Eq 30.

ATPðtÞ þ PðtÞA � PðtÞBRðtÞ� 1BTPðtÞ þ Q ¼ 0 ð30Þ

The gain vector is re-computed online as follows.

KcðtÞ ¼ RðtÞ� 1BTPðtÞ ð31Þ

The time-varying gain vector, Kc(t), delivers the following STR control law.

uðtÞ ¼ � KcðtÞxðtÞ þ K iεðtÞ ð32Þ

The STR equipped with the adjustable-control-weighting-factor (or ACWF) is denoted as

ACWF-STR in this research [68]. Its block diagram is shown in Fig 4. The ACWF-STR yields

an asymptotically-stable control behavior, as long as ρ(t)>0.

The proposed STR is implemented by augmenting the baseline LQR with a reconfiguration

module that self-adjusts the value of ρ as a pre-calibrated nonlinear scaling function of state-

error variables. The following meta-rules are used to formulate the proposed reconfiguration

module [68].

1. Under small error conditions (or equilibrium state), the value of ρ is enlarged to allow for

position-regulation with minimal control input expenditure.

2. Under large error conditions (or disturbance state), the value of ρ is proportionally reduced

to deliver a tighter control effort to efficiently reject the disturbances.

3. If the control-input inflates drastically under the influence of bounded disturbances, the

variation-rate of ρ is reduced to economize the control effort and limit the peak servo

requirements.

Fig 4. The block diagram of the ACWF-STR.

https://doi.org/10.1371/journal.pone.0256750.g004
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With these qualities, the module dynamically restructures the control procedure to enhance

the system’s response speed, strengthen its damping against oscillations, and ensure optimum

allocation of control resources under exogenous disturbances. The HSF is used to ensure

smooth transitions in the value of ρ as the operating conditions change [64]. The linear combi-

nation of the real-time state-error variables is used as the input to the HSF which aids in diag-

nosing the occurrence (and impact) of the exogenous disturbances. The feature dictated by the

third meta-rule prevents the RIP’s DC motor from getting saturated while maintaining a rea-

sonable response-speed and damping against oscillations [68]. This feature is incorporated in

the HSF-based adaptation law by means of an auxiliary control-input-dependent function.

The proposed ACWF adaptation law is formulated as follows.

rðtÞ ¼ rmin þ ½ðrmax � rminÞ � sechðgðu; tÞ � zðtÞÞ� ð33Þ

such that; g u; tð Þ ¼ go � oþ 1� o

1þjZuðtÞjc

� �
where, ρmax and ρmin represent the upper and

lower bounds of the HSF, μc is the preset variation-rate of the HSF, z(t) is the same state-error-

driven variable as shown in Eq 27 [64], and γ(u, t) is the control-input-dependent self-adjust-

ing variance of the HSF. The function γ(u, t) is specifically designed and implanted in the

adaptation-law to realize the third meta-rule. The augmentation of γ(u, t) dynamically adjusts

the variance of the adaptation law to maintain the controller’s robustness without contributing

highly discontinuous control activity. The shape of the HSF waveform is adjusted, under large

servo requirements, as shown in Fig 5.

The parameter γo is the basic variance of the function, ω is the positive constant between

[0, 1] that presets the lower bound of the variance, η is the positive weight of u(t), and ψ is the

positive fractional exponent of the scaled u(t) that prevents the self-adjustment at smaller con-

trol signals. The aforementioned parameters are tuned offline by iteratively minimizing Je. The

selected values of these parameters are recorded in Table 3 [68].

4.3. Adjustable swfs using error-phase observers

This section presents another practical adaptive control scheme that self-tunes the LQR gains

by adaptively modulating all the state weighting-factors associated with the QPI [57].

For the under-actuated systems, the degrees-of-freedom to be stabilized are greater than the

rank of R which makes it quite hard to establish a correlation between ρ and the state-variables

[58]. However, the coefficients of the state-weighting-matrix Q (denoted as qx) hold a one-to-

one correspondence with the respective state-variables. This arrangement provides a

Fig 5. Automatic adjustment in the HSF waveform for the ACWF mechanism.

https://doi.org/10.1371/journal.pone.0256750.g005
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pragmatic approach to dynamically adjust the values of qx online. Apart from obviating the

necessity to tune and preset the state-weighting-factors based on a specific performance crite-

rion, this approach increases the degree-of-freedom of the controller design [58]. Each weight-

ing-factor is dynamically adjusted by using pre-calibrated nonlinear functions that are driven

by the corresponding state-error variables of the system, as shown in Eq 34.

QðtÞ ¼ diagðqaðtÞ qyðtÞ q _aðtÞ q _yðtÞÞ;R ¼ 1 ð34Þ

The control weighting-factor is preset to unity to maintain an economical control activity.

The time-varying state weighting-matrix, Q(t), is used to modify the solution of the Matrix-

Riccati-Equation, after every sampling interval, as shown below [17].

ATPðtÞ þ PðtÞA � PðtÞBR� 1BTPðtÞ þ QðtÞ ¼ 0 ð35Þ

The updated P(t) re-computes the state-feedback gains online by using the following update

law.

KsðtÞ ¼ R� 1BTPðtÞ ð36Þ

The STR equipped with adjustable State-Weighting-Factors (SWF) is shown below.

uðtÞ ¼ � KsðtÞxðtÞ þ KiεðtÞ ð37Þ

The block diagram of SWF-STR is shown in Fig 6. The following Lyapunov function is

used to verify the asymptotic stability of the SWF-STR architecture [17].

VðtÞ ¼ xðtÞTPðtÞxðtÞ > 0; for xðtÞ 6¼ 0 ð38Þ

The first-derivative of V(t) is expressed as follows.

_V ðtÞ ¼ xðtÞTð _PðtÞ þ ATPðtÞ þ PðtÞA � PðtÞBR� 1BTPðtÞÞxðtÞ ð39Þ

The term _PðtÞ approaches to zero in an infinite horizon control problem [35]. Thus, the

simplified expression of _V ðtÞ reduces to Eq 40.

_V ðtÞ ¼ � xðtÞTQðtÞxðtÞ < 0 ð40Þ

The expression of first-derivative is negative-definite as long as Q(t)>0, which justifies the

stability of the proposed STR.

This adaptation law relies upon the “phase” of the system’s state-response(s) to adaptively

tune the state-weighting-factors [53]. The baseline weight-adjusting functions are imple-

mented via pre-calibrated HSFs that depend on the variations in the magnitude of the classical

state-error and phase of the state-response. These HSFs are retrofitted with an auxiliary phase-

Table 3. Parameter selection of the HSF for the ACWF-STR mechanism.

Parameter symbol Parameter Range Tuned value

ρmin [0, 10] 1.04

ρmax [0, 10] 0.21

γo [0, 10] 9.18

ψ [0, 10] 1.52

η [0, 1] 0.08

ω [0, 1] 0.25

https://doi.org/10.1371/journal.pone.0256750.t003
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observer that accurately “deduces” and informs the adaptation mechanism regarding the

movement of the state-response (away or towards the reference) based only on the instanta-

neous polarities of the classical state-error and the state-error-derivative variables [54]. The

“phase” information is also used to automatically “mutate” the shape of each HSF waveform.

This synthetic self-deduction and self-mutation capability significantly enhances the robust-

ness of the adaptive control procedure against exogenous disturbances; thus, making it highly

suitable for damping control applications. The following qualitative rules are used to constitute

the online adaptation mechanism [53].

1. When the response is diverging from the reference, the values of qx are inflated to apply a

stiff control effort which damps the overshoots and reverses the direction of response.

2. When the response is converging to the reference, the values of qx are reduced to apply a soft

control effort which allows the response to settle (naturally) with minimum fluctuations.

These characteristics induce rapid transits in the response with strong damping against

oscillations while suppressing the peak servo requirements. However, this rationale requires

precise information regarding the phase (direction of motion) of the response to restructure

the control procedure. Consider the time-domain error profile of an arbitrary under-damped

system, shown in Fig 7, under the influence of a bounded disturbance.

The error profile is divided into four phases; A, B, C, and D. Each phase represents a dis-

tinct operating condition that is addressed individually to attain the best control effort. The

polarities of error and error-derivative are the same when the response is deviating from the

reference (phases A and C). The polarities of error and error-derivative are opposite when the

response is converging to reference (phases B and D) [53, 54]. In lieu of this state-error behav-

ior, the phase is observed as follows [69].

mx ¼ stepðexðtÞ � _exðtÞÞ ð41Þ

where, and mx is a step(.) function that yields a “zero” if its internal product yields a negative

value and a “one” if the internal product yields a positive value, and ‘x’ denotes the state-

Fig 6. The block diagram of the ASWF-based STR scheme.

https://doi.org/10.1371/journal.pone.0256750.g006
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variable being considered. This phase-observer is embedded within the structure of a state-

error-dependent HSF to alter the waveform’s shape as the state-error changes [69]. The pro-

posed self-mutating HSF is given in Eq 42 [59].

qxðtÞ ¼ mxax � ðbx � ð1 � mxÞaxÞ � sechðgxexðtÞÞ ð42Þ

where, ax and bx are the positive upper and lower bounds of each function such that ax�bx to

ensure qx(t)�0, and γx represents the variance of each function. The proposed HSF complies

with the aforementioned meta-rules. Each weight-adjusting function is augmented with its

corresponding Boolean operator, mα or mθ.

The logical rules governing the self-mutation of qx(t) are defined in Table 4. The mutation

scheme is illustrated in Fig 8 [59]. In phases A and C, the response deviates from the reference.

Since the error and error-derivative variables have the same polarities, the Boolean-setting of

mx = 1 selects the growing function of the form �qxðtÞ. This setting delivers a tight control effort

to damp the overshoot (or undershoot). In phases B and D, the response converges to refer-

ence. The error and error-derivative variables have opposite polarities which lead to the Bool-

ean-setting of mx = 0. This setting contributes a relatively gentle control effort to allow for a

quick yet smooth settlement of the response.

With the commissioning of the phase-observer, the weight-adjusting function(s) autono-

mously reconfigure their waveforms as illustrated in Fig 9 [53]. The proposed augmentation

strengthens the controller’s disturbance-rejection capability by autonomously transforming

the growing behaviour of the waveform into a decaying behaviour as the state-response tran-

sits from divergence phase to convergence phase, and vice-versa. The self-mutating error-

phase-based HSFs are formulated as follows [59].

qaðtÞ ¼ maaa � ððba � ð1 � maÞaaÞ � sechðgaeaðtÞÞÞ ð43Þ

qyðtÞ ¼ myay � ððby � ð1 � myÞayÞ � sechðgyeyðtÞÞÞ ð44Þ

q _aðtÞ ¼ maa _a � ððb _a � ð1 � maÞa _aÞ � sechðg _aeaðtÞÞÞ ð45Þ

q _yðtÞ ¼ mya _y � ððb _y � ð1 � myÞa _yÞ � sechðg _yeyðtÞÞÞ ð46Þ

such that; ma ¼ stepðeaðtÞ � _eaðtÞÞ; my ¼ stepðeyðtÞ � _eyðtÞÞ

Fig 7. Error profile of an arbitrary under-damped system.

https://doi.org/10.1371/journal.pone.0256750.g007
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The hyper-parameters associated with each weight-adjusting function are tuned by itera-

tively minimizing Je to yield strong damping control. The tuned parameters are shown in

Table 5 [59].

The adapted values of qx(t) remain positive throughout the operating regime, which ensures

the system’s stability. The STR equipped with the self-mutating error-phase-dependent HSFs

is denoted as the “EP-STR” [59].

4.4. Adjustable SWFs using error-magnitude observers

The proposed scheme dynamically updates the state-feedback gains, after every sampling

interval, by adaptively modulating the state-weighting-factors as well as the control-input

weighting factor associated with the QPI, concurrently, by using online state-error dependent

expert self-tuning mechanism(s) [57]. This arrangement is beneficial because it indirectly

alters the state-feedback gains by harnessing the full potential of the proposed hierarchical

adaptive LQR scheme by dynamically adjusting all the user-specified constituent weighting-

factors of the Riccati equation.

It enhances the adaptability of control procedure to realize the environmental indetermina-

cies and flexibly steer the control profile to compensate for the consequent parametric varia-

tions. The weighting-matrices containing the self-adjusting coefficients are represented as

follows.

QðtÞ ¼ diagðqaðea; tÞ qyðey; tÞ q _að _ea; tÞ q _yð _ey; tÞÞ;RðtÞ ¼ rðea; ey; tÞ ð47Þ

The value of R is maintained at unity to economize the control energy expenditure. The

rationale and the methodology used to formulate the state-error dependent online self-tuning

mechanism(s) for the state-weighting-factors is discussed in the following discussions. The

restructured Riccati Equation is expressed in Eq 48.

ATPðtÞ þ PðtÞA � PðtÞBRðtÞ� 1BTPðtÞ þ QðtÞ ¼ 0 ð48Þ

The Riccati Equation yields a time-varying solution, P(t), after every sampling instant. The

self-adjusting state-feedback gain vector is calculated by using Eq 49.

KðtÞ ¼ RðtÞ� 1BTPðtÞ ð49Þ

The proposed STR law is defined as follows.

ûðtÞ ¼ � KðtÞxðtÞ þ K IεðtÞ ð50Þ

This self-tuning strategy observes the real-time variations in the state-error magnitudes to

dynamically adjust the weighting-factors while preserving the system’s stability throughout the

operating regime. The rationale used to develop the error-magnitude observer for self-tuning

control of robotic systems has been experimentally verified in the available literature [11]. It

relies upon the following two meta-rules to modify the critical controller parameters [52].

Table 4. Mutation of weight-adjusting functions.

Phase ex _e_
x

Response mx Mutation of qx(t) waveform

A > 0 > 0 Diverging +1 �qxðtÞ ¼ ax � ðbx � sechðgxexðtÞÞÞ
B > 0 < 0 Converging 0 �qx ðtÞ ¼ ðax � bxÞ � sechðgxexðtÞÞ
C < 0 < 0 Diverging +1 �qxðtÞ ¼ ax � ðbx � sechðgxexðtÞÞÞ
D < 0 > 0 Converging 0 �qx ðtÞ ¼ ðax � bxÞ � sechðgxexðtÞÞ

https://doi.org/10.1371/journal.pone.0256750.t004
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1. The proportional state-weighting-factors (qα and qθ) are inflated as the magnitude of corre-

sponding classical state-errors tend to reduce, and vice-versa.

2. The differential state-weighting-factors (q _a and q _y) are inflated as the magnitude of corre-

sponding state-error-derivatives tend to increase, and vice-versa.

Together, these characteristics dynamically reconfigures the control procedure to

strengthen the system’s disturbance-compensation capability [11, 52]. To ensure a smooth

transition of the weighting-factors, nonlinear scaling functions are required to be continuous,

bounded, and even-symmetric. Hence, the weight-adaptation functions are implemented via

partial-hyperbolic-functions (PHFs), whose shapes and forms are configured offline according

to the above-mentioned qualitative rules [70]. It is to be noted that the hyperbolic secant func-

tions and zero-mean Gaussian functions can also be used instead of the PHF to mathematically

Fig 8. Self-mutation scheme for weight-adjusting functions.

https://doi.org/10.1371/journal.pone.0256750.g008

Fig 9. Variation rules for weighting coefficients in every phase.

https://doi.org/10.1371/journal.pone.0256750.g009
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program the said adaptation law [64, 68]. The error-magnitude driven PHFs used to scale each

state and control weighting-factor are formulated below [71].

qa ea; tð Þ ¼ aa þ
ba

1þ jgaeaðtÞj
2

ð51Þ

qy ey; tð Þ ¼ ay þ
by

1þ jgyeyðtÞj
2

ð52Þ

q _a _ea; tð Þ ¼ a _a �
b _a

1þ jg _a _eaðtÞj
2

ð53Þ

q _y _ey; tð Þ ¼ a _y �
b _y

1þ jg _y _eyðtÞj
2

ð54Þ

r ea; ey; tð Þ ¼ au �
bu

1þ jguðgaeaðtÞ þ gyeyðtÞÞj
3

ð55Þ

where, ax and bx represent the prescribed upper and lower bounds of the state-weighting func-

tions, and γx represents the variance of the state-weighting functions. The waveforms of the

weighting-adjusting functions are shown in Fig 10.

A proper selection of the γx enables the controller to apply a stiffer control effort under dis-

turbed state and a softer control effort under equilibrium state of the system. This arrangement

strengthens the system’s damping against fluctuations, yields minimum-time transient recov-

ery and renders a smoother control activity [71]. It also averts the limit-cycles contributed by

static-friction during dead-zones. In this mechanism, the value of ρ is also adaptively modu-

lated as a nonlinear function of the classical state-error variables. This arrangement prevents

the actuator from getting saturated due to the rapid fluctuations and large overshoots in the

control-input profile, without trading-off the system’s robustness, under exogenous distur-

bances [52]. It contributes rapid transits with strong damping against disturbances while econ-

omizing the control-energy expenditure [71].

Table 5. Parameter selection of the error-phase-dependent HSFs.

Parameter symbol Parameter range Identified value

aα [0, 500] 351.60

bα [0, 500] 168.45

aθ [0, 500] 200.00

bθ [0, 500] 95.55

a _a_
[0, 50] 10.15

b _a_
[0, 50] 5.42

a _
y_

[0, 50] 8.22

b _
y_

[0, 50] 4.36

γα [0, 50] 6.10

γθ [0, 50] 19.88

g _a_
[0, 50] 2.11

g _
y_

[0, 50] 5.95

https://doi.org/10.1371/journal.pone.0256750.t005
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The prescribed bounds of each hyperbolic function are carefully selected so that qx(.)>0

and ρ(.)>0, under every operating condition, to ensure an asymptotically stable control behav-

ior. The hyper-parameters associated with each weight-adjusting function are tuned by itera-

tively minimizing Jc to attain the best position-regulation accuracy. The tuned parameters are

presented in Table 6 [71]. The STR constructed via the error-magnitude driven PHFs is

denoted as “EM-STR”.

5. Comparative performance assessment

This section presents a detailed overview of the hardware setup, testing procedure, and com-

parative experimental analysis of the proposed control schemes.

5.1. Experimental setup

The proposed self-tuning control mechanisms are analyzed by conducting hardware experi-

ments on QNET RIP hardware setup [62]. The angular displacements, θ and α, are measured

in real-time by using the optical rotary encoders that are commissioned on-board the hard-

ware setup. These encoders are installed at the pivot of the pendulum rod and with the motor’s

shaft, respectively. The hardware setup uses NI-ELVIS II data-acquisition board to capture the

Fig 10. The waveforms of the proportional (left) and the differential (right) weight-adjusting functions.

https://doi.org/10.1371/journal.pone.0256750.g010

Table 6. Parameter selection of the error-magnitude-dependent PHFs.

Parameter symbol Parameter range Identified value

aα [0, 500] 1.85

aθ [0, 500] 2.41

a _a_
[0, 50] 11.05

a _
y_

[0, 50] 10.05

au [0, 50] 2.11

bα [0, 500] 408.15

bθ [0, 500] 291.62

b _a_
[0, 50] 10.88

b _
y_

[0, 50] 9.97

bu [0, 50] 1.11

γα [0, 50] 2.12

γθ [0, 10] 5.96

g _a_
[0, 10] 1.10

g _
y_

[0, 10] 3.05

γu [0, 10] 0.52

https://doi.org/10.1371/journal.pone.0256750.t006
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encoder measurements and digitize them at a sampling rate of 1000 Hz [11]. The digitized

measurements are then serially transmitted to the software control routine at 9600 bps. The

customized control routine is digitally implemented by using the “Block Diagram” tool as well

as the built-in mathematical functions available in the virtual-instrument file of the LABVIEW

Software. The said software is running on a 2.0 GHz digital computer with 8.0 GB RAM. After

every sampling instant, the control routine receives the updated sensor measurements, adjusts

the critical controller parameters, and computes the modified control signal. The control rou-

tine uses the computer’s built-in real-time clock to plan the successive updates in weighting

factors after every sampling interval. The front-end of the control software acts as a user inter-

face that records and graphically displays the real-time variations in the state and control-

input. The generated control signals are serially transmitted back to the motor driver circuit

that is installed on-board the hardware setup. The driver circuit translates the incoming motor

control signals into pulse-width-modulated commands that are subsequently amplified to

actuate the DC motor. The DC motor and its driving circuit, commissioned on the RIP hard-

ware setup, are durable and agile enough to handle the discontinuous control activity contrib-

uted by the proposed control schemes. The QNET Rotary Pendulum’s hardware setup is

shown in Fig 11.

5.2. Tests and results

The position-regulation and disturbance-compensation capability of the proposed adaptive

control schemes are compared by conducting five unique “hardware-in-the-loop” experiments

on the QNET pendulum setup. The time-domain state and control-input variations are

recorded for comparative analysis. The graphical results pertaining to θ and α are depicted in

degrees (or deg.) to simplify the visual understanding. The detailed testing procedures along

with the corresponding graphical results are presented as follows:

A. Reference tracking: The position-regulation behavior of the pendulum under normal con-

ditions is analyzed by allowing the rod and the arm to track their respective reference posi-

tions. The variations in θ(t), α(t), Vm(t), and K(t) are shown in Fig 12.

B. Impulsive-disturbance compensation: The controller’s ability to compensate the impact

of bounded impulsive disturbances is examined by applying a pulse-signal in the Vm(t) pro-

file to perturb the state-response(s). The applied pulse has a time-duration and a peak-mag-

nitude of 100.0 ms and -5.0 V, respectively. The pulse signal is injected in the control

response at discrete intervals. The resulting variations in θ(t), α(t), Vm(t), and and K(t) are

shown in Fig 13.

C. Step-disturbance attenuation: The controller’s ability to attenuate random exogenous tor-

ques is assessed by injecting a -5.0 V step-disturbance signal in the Vm(t) profile at t� 5.0 s

mark. The behavior of θ(t), α(t), Vm(t), and and K(t) are illustrated in Fig 14.

D. Noise suppression: The controller’s ability to suppress the chattering and control-input

ripples induced by the lumped disturbances, measurement noise, or the hysteresis contrib-

uted by the parasitic impedances in electronic components is analyzed by injecting a low-

amplitude and high-frequency sinusoidal signal, d(t) = 1.5 sin(20πt), in the system’s con-

trol input voltage, Vm(t). The time-domain profiles of θ(t), α(t), Vm(t), and and K(t) are

depicted in Fig 15.

E. Model-error rejection: The controller’s ability to reject the identification errors and the

real-time model variations is evaluated by changing the pendulum arm’s mass to modify

the coefficients of state and input matrices of the system’s model, expressed in Section 2.
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This modification is realized by attaching a 0.10 kg metallic mass beneath the pendulum’s

arm via a hook, as shown in Fig 11, at t� 5.0 s mark. This modification abruptly changes

the coefficients of the system’s model during the experiment, and thus, induces perturba-

tions in the pendulum’s response. The behavior of θ(t), α(t), Vm(t), and K(t) are illustrated

in Fig 16.

5.3. Analysis and discussions

The quantitative analysis of the experimental results is done with the aid of the following seven

Key-Performance-Indicators (KPIs):

a. The root-mean-squared value of error (RMSEx) in the pendulum angle response(s).

b. The mean-squared value of the applied DC motor voltage (MSVm).

c. The magnitude of the peak overshoot (OSθ) observed in θ(t).

Fig 11. The QNET Rotary Pendulum’s hardware setup.

https://doi.org/10.1371/journal.pone.0256750.g011
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Fig 12. Pendulum’s response under normal conditions.

https://doi.org/10.1371/journal.pone.0256750.g012
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Fig 13. Pendulum’s response under impulsive disturbances.

https://doi.org/10.1371/journal.pone.0256750.g013
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Fig 14. Pendulum’s response under step disturbance.

https://doi.org/10.1371/journal.pone.0256750.g014
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Fig 15. Pendulum’s response under sinusoidal disturbance.

https://doi.org/10.1371/journal.pone.0256750.g015
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Fig 16. Pendulum’s response under model variation.

https://doi.org/10.1371/journal.pone.0256750.g016
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d. The time taken by pendulum’s rod (tset) to settle within ±2% of the reference after a

disturbance.

e. The disturbance-induced angular offset in the arm’s position (αoffset).

f. The peak-to-peak amplitude of the disturbance-induced fluctuations in the arm’s position

(αpp).

g. The magnitude of peak motor voltage (Vm,p).

The aforementioned KPIs are used as the standard performance measures in the available

literature to critically analyze the position-regulation behavior, disturbance-rejection capabil-

ity, and control energy requirements of the system [15, 64]. The experimental results,

expressed in terms of the aforementioned KPIs, are summarized in Table 7. The proposed con-

trol schemes remain stable under every disturbance condition. The results clearly indicate that

the generic LQR underperforms as compared to the adaptive controller variants in every test

case. The ADoS-STR exhibits a moderately better position regulation behavior as compared to

generic LQR. Its control-input economy is relatively better than ACWF-STR in every test-

case. The ACWF-STR manifests significant improvement in the robustness but also renders

highly discontinuous control activity which contributes to chattering in the response of θ(t).
The EP-STR exhibits a time-optimal behavior as compared to ACWF-STR and ADoS-STR.

Apart from contributing enhanced disturbance-rejection; it delivers better control-input effi-

ciency than other STR variants while maintaining the system’s asymptotic-stability throughout

the operating regime. However, its time-domain performance is inferior to that of EM-STR,

especially under the testing scenarios Test A, C, and E. The EM-STR demonstrates significant

enhancement in the disturbance compensation capability and position-regulation accuracy as

Table 7. Summary of experimental results.

Test KPI Controller Types

LQR ADoS-STR ACWF-STR EP-STR EM-STR

A RMSEθ (deg.) 0.50 0.48 0.47 0.38 0.27

RMSEα (deg.) 14.64 11.08 9.97 7.23 6.79

MSVm (V2) 6.33 6.75 8.28 7.70 7.98

B RMSEθ (deg.) 0.80 0.53 0.47 0.35 0.40

|OSθ| (deg.) 2.81 2.19 1.75 1.49 1.67

trec (s) 0.77 0.67 0.62 0.53 0.59

RMSEα (deg.) 14.04 9.92 11.93 7.80 6.89

MSVm (V2) 9.14 8.21 12.79 8.04 9.94

Vm,p (V) -11.38 -10.19 -15.76 -11.97 -13.68

C RMSEθ (deg.) 0.97 0.53 0.52 1.05 0.84

RMSEα (deg.) 32.23 22.90 21.16 19.03 16.25

αoffset (deg.) -39.05 -27.50 -23.13 -21.25 -17.75

αpp (deg.) 28.50 20.52 13.25 12.89 13.24

MSVm (V2) 25.02 24.89 31.47 31.73 31.34

D RMSEθ (deg.) 0.48 0.45 0.47 0.21 0.21

RMSEα (deg.) 10.93 7.65 8.73 5.32 5.39

MSVm (V2) 13.18 13.44 17.65 8.10 8.53

E RMSEθ (deg.) 1.12 1.04 1.03 0.55 0.78

RMSEα (deg.) 16.84 14.22 11.39 9.54 7.65

MSVm (V2) 11.29 10.72 17.69 11.83 11.81

https://doi.org/10.1371/journal.pone.0256750.t007
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compared to the EP-STR. However, amid transient disturbances, the EM-STR consumes rela-

tively large control energy and exhibits large peaks in the control voltage profile. A concise

qualitative analysis of the performances of the proposed STR variants is summarized as

follows:

In Test-A, the RIP exhibits the largest deviations in the angular responses under the influ-

ence of LQR. The deviations in the responses of θ and α progressively reduce as the nominal

LQR is retrofitted with enhanced adaptation mechanisms. The ASWF-adapted EM-STR

shows optimum position-regulation accuracy with minimum reference-tracking error, mini-

mum chattering, and reasonably low control-energy consumption as compared to other adap-

tive controller variants (except for EP-STR). The EP-STC shows the second-best position-

regulation performance and the best control energy expenditure amongst the other STR vari-

ants. The pendulum response of ADoS-STR shows a fixed offset of 0.3 deg. from the vertical

reference throughout the experimental trial. The ACWF-STR shows persistent chattering in θ
(t).

In Test-B, the ILQR demonstrates the slowest transient-recovery and insufficient damping

against the impulsive disturbances. It demonstrates the largest magnitude of the peak over-

shoot in the pendulum’s response, which is followed by persistent steady-state oscillations.

The ACWF-STR continues to exhibit a highly discontinuous control activity. The EP-STR

exhibits minimum transient-recovery time to effectively attenuate the oscillations and shows

minimum OSθ while attenuating the impulsive disturbances. The EP-STR consumes mini-

mum average control-input energy (MSVm). Its peak servo requirements are also much

smaller than that of EM-STR. The EM-STR shows minimum steady-state fluctuations upon

convergence, owing to the augmentation of the phase-based self-learning capability of the

controllers.

In Test-C, the step-disturbance permanently displaces the arm from its reference position.

The LQR manifests the largest post-disturbance displacement in the arm’s position and large

oscillations in the rod. The intermediate STR variants demonstrate moderately better tran-

sient-recovery behavior with reasonable damping against the oscillations. The EM-STR, how-

ever, effectively suppresses the influence of the applied step-disturbance by contributing

minimum RMSE and offset in the nominal positions of the pendulum and the arm, respec-

tively. It exhibits the minimum αoffset and the minimum peak-to-peak amplitude of the oscilla-

tions in the pendulum’s responses, θ(t). Furthermore, EM-STR contributes a slightly better

control-input economy as compared to EP-STR. The ADoS-STR exhibits the most economical

control-input behavior in this test-case.

In Test D, the EP-STR effectively attenuates the ripples in the response caused by the noise.

Despite the noise, the EP-STR controlled system manages to regulate the pendulum at the

desired reference position(s) with minimal RMSE and minimum control voltage require-

ments. The EM-STR exhibits the second-best time-domain behavior, in terms of the control-

energy expenditure and position-regulation accuracy.

In Test-E, the EM-STR again surpasses other STR variants compared in this article. It

robustly compensates the perturbations induced by the modeling-error by delivering strongly

damping against the oscillations in the state-responses, and thus, minimizing the reference-

tracking error as well as the control energy consumption. The EM-STR effectively attenuates

the peak-to-peak amplitude of the post-disturbance oscillations in the state-responses. The

control activity of the AI-STC controlled system is relatively smoother than the EP-STR vari-

ants. The EP-STR exhibits the minimum RMSE in the pendulum’s angular profile, θ(t). The

ADoS-STR exhibits the most economical control-input behavior in this test-case.

From a functional point of view, the state-feedback gains associated with EM-STR respond

and adapt to the real-time state-variations relatively quickly. Unlike other STR variants, the
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abrupt yet small variations of EM-STR gains justify its enhanced adaptability, robustness, and

smoother control activity under exogenous disturbances. This flexibility is attributed to the

dynamic self-adjustment of all weighting-factors associated with the ARE. The enhanced

adaptability of EM-STR comes at the cost of tuning a relatively large number of hyper-parame-

ters (as compared to other adaptation mechanisms discussed here). However, the betterment

in the performance is sufficient to ignore this drawback.

The experimental analysis validates the superior position-regulation accuracy and

enhanced robustness of the EM-STR in almost every test-case. It manifests better adaptability

under perturbed conditions as compared to other STC variants. It effectively removes the

inherent shortcomings of other adaptation mechanisms, which enables it to flexibly steer the

control trajectory. However, EM-STR does consume large control energy as compared to the

other controllers in almost every test-case. The EP-STR shows the second-best time-domain

performance after EM-STR.

The proposed hierarchical control procedure is highly scalable. Each controller variants

exhibits a certain degree of resilience against the aforementioned disturbance scenarios. How-

ever, in future, the proposed control procedure can also be augmented with auxiliary neuro-

fuzzy adaptive compensators, suggested in [72, 73], to effectively handle the hardware limits

imposed on under-actuated systems; such as input and actuator dead-zones, limit cycles, and

parametric uncertainties associated with the system’s actuated and un-actuated state-variables.

The constitution of the proposed hierarchical control procedure only requires the a priori

identification of the systems linear state-space model and pre-calibrated weight-adjusting

functions. Thus, apart from the self-stabilizing mechatronic platforms, the proposed control

schemes can be easily extended to flexible-joint robotic manipulators and other classes on

under-actuated systems as well [74].

6. Conclusion

This paper presents the comparative performance assessment of four state-error-driven hierar-

chical adaptive control strategies that enhance the disturbance-rejection capability of closed-

loop under-actuated mechatronic systems. Each adaptation mechanism dynamically reconfig-

ures the constituents of the Riccati equation in an innovative manner to self-tune the state-

feedback gains of LQR. The proposed architecture delivers adaptive actions in real-time with-

out explicitly relying on the estimation of state-dependent-coefficients in the system’s state-

space model. This feature makes it highly scalable and computationally economical. The

improvement in time-domain performance and robustness imparted by each self-tuning-regu-

lators, discussed in this article, is analyzed under practical disturbance scenarios by conducting

real-time hardware experiments on the QNET rotary pendulum system. The experimental

outcomes validate the superior robustness and position-regulation accuracy of the EM-STR

scheme in almost every test case. It is a resourceful scheme that utilizes the full state-error-

feedback to self-adjust the state and control-input weighting-factors of the QPI online. The

EP-STR delivers the second-best time-domain performance and maintains a reasonable con-

trol-input economy. Furthermore, EP-STR excels EM-STR under the influence of the step-dis-

turbance. Its ability to self-mutate in real-time increases the controller’s degree-of-freedom

which enhances the system’s response speed and damping against disturbances. In the future,

the performance of the proposed control scheme can be further investigated by employing

expert adaptive systems that are driven by soft computing techniques. The proposed reconfig-

uration schemes can also be enhanced by self-regulating the variances and exponents of the

hyperbolic functions. The feasibility of the proposed controller(s) can also be analyzed by

extending it to other mechatronic systems.
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