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1. Introduction

Development of new drugs is costly, time-consuming, and
achieves only a minor success rate (Morgan et al. 2011;
Kesselheim, Avorn, and Sarpatwari 2016). The traditional approach
could potentially take up to 15 years to complete clinical testing
and gain authority approval. Furthermore, the failure rate of new
drugs is about 95%, and each one that makes it to final approval
has an estimated cost of $1 billion (Morgan et al. 2011;
Kesselheim, Avorn, and Sarpatwari 2016; Collins 2011). Therefore,
there is an urgent need to both reduce costs and accelerate the
drug development process while also increasing the success rate
for newly-developed drugs. As such, a new approach is vital. This
can begin with methods for re-inventing existing drugs by screen-
ing them for new indications for either common or rare diseases.
‘Drug repositioning’ or ‘drug repurposing’ has emerged as a
prospective approach for helping the bio-pharmaceutical industry,
with a primary focus on improving the business of pharmaceuti-
cals and a secondary focus on improving the therapeutic aspect
of the industry (Sardana et al. 2011; Ashburn and Thor 2004). Con-
ceptually, drug repurposing is the process of finding and develop-
ing new uses for pre-existing drugs, applying them to functions
other than the diseases they were originally geared towards
(Ashburn and Thor 2004). This strategy relies on having approved
compounds with well-characterized pharmacology, which are thus
already associated with a safety profile, allowing the time frame for
approval to be substantially reduced relative to novel drug devel-
opment. It is therefore not surprising that among new medications
in 2009 (including vaccines and new formulations), 51 were repo-
sitioned drugs, and those represented 30% of all approved drugs
brought to market that year (Sardana et al. 2011; Graul and
Cruces 2011). Moreover, the profits realized from drug repurposing
could exceed billions. For instance, an initial attempt in repurpos-
ing thalidomide has led to it now being used for multiple myeloma,
reaching profits of $272 million in 2003(Singhal et al. 1999); it also
has recently been approved by the United States as a treatment for
Type 2 Diabetes due to having dopamine agonist properties similar
to bromocriptine (Pijl et al. 2000).

Even though drug repurposing has been highly successful to
date, the potential of this strategy is still not fully realized due to
a lack of meaningful and complete results (Abdelhakim et al.
2020). This can be attributed to the fact that much of the estab-
lished knowledge on which drug repurposing depends was
obtained through a serendipitous approach rather than a method-
ical and systematic approach (Mithun and Khairnar Shubham,
2020). In addition, the lack of knowledge dissemination between
both computer applications and drug data sectors only continues
to hinder the progress and expansion of drug development/repur-
posing (Alshahrani and Hoehndorf 2018). Recently, scientists have
developed many applications to help elucidate and understand the
complexities of biological and pharmacological systems, which are
beneficial in this regard (Althubaiti et al. 2019; Assiri and Noor
2020; Noor et al. 2017; Alshahrani and Hoehndorf 2018;
Campillos et al. 2008; Qu et al. 2009). However, despite these
advances, extant computational repurposing studies have focused
only on repurposing a single potential drug at a time.

In this work, we draw upon the power of Semantic Web (SW)
technologies to mine the interconnections in diverse biomedical
data, building an inferential query Semantic Web-basedmodel that
is able to identify multiple potential drug candidates for repurpos-
ing in the context of a given disease. This approach allows knowl-
edge discovery to distill insights from the complex mechanistic
concoction underlying drug-disease entities with an accuracy that
ultimately protects patients and their health. The core hypothesis
of our strategy is that upon identification of the disease-associated
genes that cause dysfunction in disease-related biological path-
ways and processes, it is possible to identify drugs that act upon
the same pathways and processes, thus narrowing the range of
potential available drugs to the most selective and specific
candidates. Furthermore, this new framework for discriminatory
drug discovery has the advantage of requiring the drug to also
act upon the single nucleotide polymorphisms (SNPs) identified
and described as associated with the disease. To demonstrate the
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useability and validity of the computational biology approach for
drug repurposing, a test was done on the complex disease Systemic
Lupus Erythematosus (SLE), no cure for which is yet available.
2. Materials and methods

This study proposes an integrative drug repurposing framework
using SW technologies to precisely enable the discovery of the hid-
den mechanisms underlying drug-disease interactions. To realize
this approach, it was necessary to first develop a knowledge frame-
work that incorporates a variety of data sources, including pharma-
cological, bimolecular, phenomenological, and genetic data; there
is, unfortunately, no single source that serves the purpose. Thus,
this data was semantically integrated and stored in a drug repur-
posing network using the Java framework Jena.(Carroll et al.
2004) Fig. 1 shows the overall architecture of the drug repurposing
framework.
2.1. Data sources

To generate a network of drug-disease associations, five trusted
biomedical sources that contain information about drug and dis-
ease mechanisms were used. The Pharmacogenomics Knowledge
Base (PharmGKB),(Klein et al. 2001) from which we obtained
drug-SNPs and disease-SNPs associations, was downloaded in Jan-

uary 2020 (https://www.pharmgkb.org/downloads). The other four
sources were all part of the Unified Medical Language System
(UMLS) terminology system,(Bodenreider 2004) and so were
extracted from the UMLS (Version2020). These comprised the
National Drug File – Reference Terminology (NDF-RT)(Brown
et al. 2004) for drug-indication associations; the National Cancer
Institute Thesaurus (NCI)(de Coronado et al. 2004) and Entrez Gene
from the National Center for Biotechnology Information (NCBI)
(Maglott et al. 2005) for disease-gene and gene-pathway associa-
tions; and the Gene Ontology (GO)(Ashburner et al. 2000) for
gene-biological process associations. These data sources encom-
passed 1810 drugs and 3062 diseases.
2.2. Constructing the drug repurposing knowledgebase

We used the UMLS as the backbone of the drug repurposing
knowledgebase as it was primarily developed to provide an inte-
gration system based on terminology similarity in the biomedical
domain. Construction of the knowledgebase consisted of two main
steps: 1) building a drug-disease semantic network with the
Resource Description Framework (RDF) and 2) adding the semantic
relationships. Fig. 2 illustrates this process.
Fig. 1. Drug repurposing workflow. To build the drug repurposing knowledgebase, five
SW and UMLS. Predictions were made using a complex semantic inference query, and t
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2.3. Building the RDF network

UMLS Metathesaurus version 2020 was downloaded from the
UMLS knowledge server with a MySQL loading script. Then, all
biomedical datasets were either extracted or integrated to build
the drug-disease network. The Concept Unique Identifiers (CUIs)
provided by the UMLS were used as the main identifiers for
drug-disease RDF nodes. Specifically, we used only three files from
the UMLS Metathesaurus: MRCONSO for names, MRREL for seman-
tic relations, and MRSTY for semantic type information. We then
retrieved from those tables the NCBI, NIH, NDF-RT, and GO ontol-
ogy datasets using the UMLS CUI IDs, and integrated PharmGKB
into the drug-disease network through the x-reference identifier
since a reference to the UMLS CUI ID was provided in the
PharmGKB dataset. Finally, a Java script was written to generate
RDF nodes using the Jena application programming interface (API).
2.4. Normalization and assertion of semantic relationships

Semantic relationships between instances (CUIs) in the RDF
network were asserted from the UMLS Metathesaurus and
PharmGKB; more specifically, we used a MySQL to query the
semantic relationships from MRREL, which is a table in the UMLS
Metathesaurus that stores semantic relations, and directly added
genetic associations for the drug-disease network from the
PharmGKB dataset. Moreover, all semantic relationships between
entities have been reviewed and grouped as much as possible.
For instance, we grouped four different relations of drug-disease
pairs from the NDFRT ontology, may_treat, may_prevent, may_diag-
nose, and induces, into the single semantic relationship has_indica-
tion. We believe that such groupings ensure the simplicity of our
knowledge base and remove any redundancy. The ultimate result
was a set of ten asserted semantic relationships that linked
instances in the knowledgebase. Those relationships were then
used to make axioms with which to infer potential drug repurpos-
ing candidates.
2.5. Drug repurposing discovery through mining semantic
infrastructure

Using description logic and the SW, we defined axioms to iden-
tify possible candidates for drug repurposing. We used the SPARQL
Query Language for RDF(’Apache Jena - Reasoners and rule
engines: Jena inference support [Internet]. [cited 2020 Jen 13].
Available from: https://www.w3.org/TR/rdf-sparql-query/’) as an
inference tool to identify candidate drugs over the drug-disease
network under the hypothesis that upon identification of the dis-
ease-associated genes that cause dysfunction in disease-related
biological pathways and processes, it is possible to identify drugs
different data sources representing drug-disease information were integrated using
he results were validated by literature review.
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Fig. 2. Creation of the drug repurposing knowledgebase. Drug and disease information were downloaded from multiple sources, mapped to the UMLS, and finally
converted to RDF nodes using the Jena framework.
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that also act upon the same pathways and processes and so to
identify candidate treatments. We further required that the drug
also act upon the same SNPs as identified and described in the dis-
ease. Taking the rare disease SLE as a test case, we thus considered
multiple biological features and identified drugs that could poten-
tially treat SLE. More specifically, our method starts with a disease
as input, and the inference engine then runs over drug-disease net-
works to find drugs that satisfy predefined biological rules with
respect to the targeted disease. Fig. 3 illustrates the complex infer-
ence query for this case study.
3. Results

Applied to 1810 FDA-approved drugs, the computational biol-
ogy approach yielded 11 drugs that satisfy the axioms (i.e. shown
to have links with SLE through genes acting in the same pathways
and processes, and additionally through acting upon SNPs identi-
fied and described as associated with the disease). These drugs
could potentially affect 13 genes that may relate to the pathophys-
iology of SLE through four different biological pathways.
3.1. Gene-pathway associations in relation to SLE

The drug-disease association network yielded four pathways
with potential contribution to SLE pathophysiology, and about 13
Fig. 3. SLE inference query identifying candidate disease-associated drugs. For a drug
namely genes, pathways, biological processes, and SNPs.
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coding genes as essential elements within them. The identified
pathways were: Inflammatory Response Pathway (IL1A, IL5, IL6,
IL12, IL17, Lymphotoxin A pathway signaling), T-Cell Polarization
Pathway, Hematopoiesis Pathway, and Telomere Pathway. In addi-
tion, the genes associated with these pathways were: Cluster of
Differentiation 4 (CD4), Interleukin-1A (IL1A), Interleukin-5 (IL5),
Interleukin-6 (IL6), Interleukin-17 (IL17), Lymphotoxin Alpha
(LTA), C-C Motif Chemokine (CCR1), Janus Kinase 2 (JAK2), X-ray
Repair Cross-complementing Protein 5 (XRCC5), X-ray Repair
Cross-complementing Protein 6 (XRCC6), Retinoblastoma Protein
1 (RB1), MYC Proto-oncogene (MYC), and Tumor Protein 53
(TP53). All identified pathways and the associated genes are sum-
marized in Table 1.

3.2. Drugs candidates associated with SLE

Of the 11 drugs identified by the drug-disease association net-
work ten (91%) are known to have either potential benefit or
potential worse outcome in association with SLE. Among these,
seven drugs (aspirin, azathioprine, cyclophosphamide, indometha-
cin, methotrexate, leflunomide, and warfarin)(Iudici et al. 2016;
Fanouriakis et al. 2019; Cao et al. 2015) are currently included in
the SLE treatment guidelines for one purpose or another, while
three drugs (clopidogrel, peginterferon alfa-2a, and peginterferon
alfa-2b)(Hewitt, Carton, and Wakelin 2018; Rizvi and Hojjati
2011; Yilmaz and Cimen 2009) are associated with either worsen-
to be selected for repurposing, it had to share biological features with the disease,
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ing outcome or the potential to induce SLE. Only one candidate
(propranolol) was not associated with a known benefit or poor out-
come. All drugs with associated benefits or harmful outcomes are
summarized in Table 2.

4. Discussion

The framework analysis used SLE as a case study in utilizing the
SW technologies to identify drugs with potential disease-related
effects. This method allows the prediction of biological pathways
that potentially contribute to disease progression and subse-
quently the prediction of drugs having potential association with
the identified pathways, which may provide new treatment
Table 1
Drug candidates associated with predicted pathways.

Gene Interaction Pathway
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options or identify medications as having potential harmful effects
when used to treat the disease in question.

Among the results of our case study, the Inflammatory
Response Pathway was represented by several cytokines and
proteins, including Interleukin-17, which is an important cyto-
kine known to be associated with tissue damage in SLE
(Nalbandian, Crispín, and Tsokos 2009). Likewise, several cytoki-
nes and proteins in the Inflammatory Response Pathway con-
tribute substantially to SLE progression, including interleukin-1
alpha, interleukin-5, interleukin-6, and lymphotoxin-alpha (LT-
alpha, LTA)(Wallace et al. 2017; Lieberman and Tsokos 2010;
Nalbandian, Crispín, and Tsokos 2009; Tucci et al. 2008; Parks
et al. 2004; Wen et al. 2004; Zhang et al. 2015; Hohensinner,
Drug Candidate Evidence

Aspirin

Azathioprine

Clopidogrel

Cyclophosphamide

Indomethacin

Leflunomide

Methotrexate

(continued on next page)



Propranolol

Warfarin

Peginterferon alfa-2a

Peginterferon alfa-2b
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Goronzy, and Weyand 2011). Regarding the NO2-dependent IL12
Pathway, a study by Tucci et al. found that the overexpression of
IL-12 was associated with increased SLE complications, specifi-
cally lupus nephritis. Additionally, IL-12 promotes several factors
that in turn subsequently promote T-cell polarization and wors-
ening of SLE (Tucci et al. 2008). Lastly, several studies have
reported an association for telomere dynamics in SLE patients,
which opens a new avenue for therapeutic targeting strategies
such as that proposed informatically in this work
(Hohensinner, Goronzy, and Weyand 2011).
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In addition, the case study yielded 11 drugs, of which ten (91%)
were identified as having potential effect on SLE progression
through four biological pathways and had prior reports of
association with SLE in some respect. For example, aspirin is
widely used in SLE patients on account of its potential role in pri-
mary prophylaxis of cardiovascular coronary events (Iudici et al.
2016). However, upon further assessment, it was found that a
considerable number of SLE patients may have aspirin resistance,
suggesting that a treatment alternative be considered for this pop-
ulation (Akdogan et al. 2013). In this work, aspirin was proposed to



Table 2
Drug candidates associated with SLE benefits/risks.

Drug Candidate Better Outcomes Harmful Outcomes

Aspirin Primary prophylaxis of cardiovascular events (Iudici et al.
2016)

NA

Azathioprine Used for lupus nephritis and severe SLE (Fanouriakis et al.
2019)

NA

Clopidogrel NA Potential to induce SLE (Hewitt, Carton, and Wakelin 2018)
Cyclophosphamide Used for lupus nephritis, and severe SLE (Cao et al. 2015) NA
Indomethacin Used for lupus joint pain (Fanouriakis et al. 2019) NA
Leflunomide Used for lupus nephritis (Cao et al. 2015) NA
Methotrexate Used for arthritis, cutaneous lupus, serositis, severe SLE

(Fanouriakis et al. 2019)
NA

Propranolol NA NA
Warfarin Used for treatment of antiphospholipid syndrome (APS) in

the context of SLE (Fanouriakis et al. 2019)
NA

Peginterferon alfa-2a &
Peginterferon alfa-2b

NA Induce lupus in patients with Hepatitis B or C
(Yilmaz and Cimen 2009)
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contribute to SLE pathophysiology through the Inflammatory
Response Pathway, as indicated in Table 1. As with aspirin, azathio-
prine, cyclophosphamide, methotrexate, and nonsteroidal anti-
inflammatory drugs (indomethacin) are all listed in the SLE guide-
lines to be used with specific recommendations and precautions
(Fanouriakis et al. 2019). Both azathioprine and cyclophosphamide
are recommended for lupus nephritis and those who have severe
SLE, while methotrexate is mainly recommended for arthritis,
cutaneous lupus, serositis, and those with severe SLE. In regard
to nonsteroidal anti-inflammatory drugs, they are mainly recom-
mended for lupus joint pain (Fanouriakis et al. 2019).

Among the identified drugs, threewere associatedwith unpleas-
ant outcomes in the context of SLE. Recent reports have raised an
alert that clopidogrel might trigger SLE, suggesting other alterna-
tives be recommended for patients with such risk (Hewitt, Carton,
and Wakelin 2018). Similarly, Yilmaz et al. documented a case in
which a patient on peginterferon alfa-2b for treatment of hepatitis
B developed SLE, suggesting a potential contribution of this drug to
SLE induction. As both peginterferon alfa-2a and peginterferon alfa-
2b were identified in our informatic framework, this concern may
apply to both forms (Yilmaz and Cimen 2009). Lastly, the frame-
work predicted propranolol to be associatedwith SLE. Upon review-
ing the literature, not a single studywas found to explain or provide
evidence supporting this potential. However, propranolol may have
clinical use in treating SLE-associated symptoms. The potential
benefit or risk of propranolol in SLE patients might warrant further
investigation if clinical evidence becomes available.

The computational biology approach for drug repurposing
undertaken in this study largely yielded findings that had well-
supported associations with SLE. However, the pure framework
was not able to predict all drugs having established clinical use
for SLE treatment, and even for those it did predict, it was not able
to rank the candidates. One explanation is that even for drugs cur-
rently in clinical use, the exact mechanism of action is not neces-
sarily well-understood, thus key details are not present in
current databases. Furthermore, the computational approaches
such as the one in this study require the precise and narrow selec-
tion of results to minimize false-positive and true-negative find-
ings. Therefore, a broad-spectrum prediction approach might be
warranted in future studies, especially for new and rare diseases.
Another notable limitation of this work is that the prediction pro-
cess considered only the existence of an association with SLE, with-
out clear implication as to whether the association is beneficial.
Future integration of additional filtering and selection approaches
into such a framework would definitely add more value for
researchers and clinicians alike.
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5. Conclusion

In conclusion, this study utilized advanced technology such as
the Semantic Web to predict drugs associated with a rare disease.
Taking SLE as a case study, the framework yielded four pathways
having potential association with the disease, and ten drugs with
the potential to affect SLE either for good or ill. This unique
approach opens avenues for predicting new indications for existing
drugs while minimizing the potential risk of drug-induced disease.
Future studies that draw upon more thoroughly-networked infor-
matic data sources are warranted to help advance drug repurpos-
ing and offer new treatment options, especially for new and rare
diseases.
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