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Clinical responses to anti-tumor monoclonal antibody (mAb) treatment have been 
regarded for many years only as a consequence of the ability of mAbs to destroy tumor 
cells by innate immune effector mechanisms. More recently, it has also been shown 
that anti-tumor antibodies can induce a long-lasting anti-tumor adaptive immunity, likely 
responsible for durable clinical responses, a phenomenon that has been termed the 
vaccinal effect of antibodies. However, some of these anti-tumor antibodies are directed 
against molecules expressed both by tumor cells and normal immune cells, in particular 
lymphocytes, and, hence, can also strongly affect the host adaptive immunity. In addition 
to a delayed recovery of target cells, lymphocyte depleting-mAb treatments can have 
dramatic consequences on the adaptive immune cell network, its rebound, and its func-
tional capacities. Thus, in this review, we will not only discuss the mAb-induced vaccinal 
effect that has emerged from experimental preclinical studies and clinical trials but also 
the multifaceted impact of lymphocytes-depleting therapeutic antibodies on the host 
adaptive immunity. We will also discuss some of the molecular and cellular mechanisms 
of action whereby therapeutic mAbs induce a long-term protective anti-tumor effect and 
the relationship between the mAb-induced vaccinal effect and the immune response 
against self-antigens.

Keywords: adaptive immunity, antibody-induced immunogenic cell death, CD20, hematologic malignancies, 
immunotherapy, therapeutic monoclonal antibodies, vaccinal effect

iNTRODUCTiON

Immunotherapy has now gained its place among the therapeutic arsenal of cancer therapies, 
based on the demonstration that tumors are under the surveillance of the host immune system 
(1), brought by studies performed on large cohorts of cancer patients with a high incidence case 
(2–4). In particular, monoclonal antibody (mAb) biotherapies have shown remarkable results in 
a significant number of cancer patients. A first category of antibodies are directed against tumor 
cells. It includes antibodies directed against tumor cells belonging to the hematopoietic lineage, 
lymphocytes (CD20, CD52, CD38, etc.), and myeloid cells (CD30, CD33, etc.). A number of other 
anti-tumor antibodies are directed against molecules expressed by a large variety of cell types (HER2/
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neu, EGFR, etc.). These antibodies are classically thought to 
work through a variety of mechanisms. It includes the inhibition 
of ligand binding to specific receptors, the blockade of receptor 
activation, thus interfering with signaling pathways, and/or 
through their ability to deplete tumor cells. Also, some antibod-
ies block the neovasculature formation that accompanies tumor 
development [anti-vascular endothelium growth factor (VEGF), 
anti-EGFR, or anti-VEGFR2]. Moreover, another category of 
antibodies directed against immune checkpoint (ICP) molecules 
has emerged over the last decade, able to modulate the cellular 
and molecular microenvironment of tumors, as exemplified by 
the successful use of anti-CTLA-4 or anti-PD-1 antibodies.

The capacity of anti-tumor antibodies to deplete cancer cells 
has been largely documented in vitro and in preclinical animal 
settings. Antibodies exhibiting a human IgG1 Fc region (which 
represents a large proportion of antibodies used for cancer 
treatment) trigger Fc-dependent effector mechanisms [comple-
ment-dependent cytotoxicity (CDC), antibody-dependent cell 
cytotoxicity (ADCC), and phagocytosis]. The activation of the 
classical pathway of complement through the binding of C1q 
to the Fc portion of mAbs and the recruitment of Fcγ receptors 
(FcγRs) expressed by NK  cells, neutrophils, monocytes, and 
macrophages lead to the formation and/or the release of effector 
molecules (membrane attack complex made of C5b-C9, perforin 
and granzymes, TNF-α, Reactive Oxygen Intermediates, etc.) that 
induce cell death. This has stimulated a lot of engineering efforts 
over the last 20  years, aimed at boosting effector mechanisms 
relying on the Fc region of IgG (5, 6).

Strikingly, reports based on clinical data and on in vivo animal 
models have suggested that antibody treatments leading to cell 
lysis and depletion could also induce a long-term anti-tumor 
response through the triggering of an adaptive memory response, 
a phenomenon that has been termed the “vaccinal” effect of 
antibody treatment (7–21). Anti-CA125- (8), anti-MUC1- (9), 
anti-HER2/neu- (10, 11), and anti-EGFR (12)-specific B and 
T cell responses have been reported in cancer patients following 
mAb therapy. Studies in murine models reported also that the 
therapeutic effect of anti-CD20 (13–16), anti-HER2/neu (17–20), 
or anti-EGFR (21) mAbs depends on the induction of an adaptive 
immune response and on the presence of T cells. The anti-HER2/
neu studies revealed an antibody-mediated mechanism in which 
danger signals activate both innate and T cell-mediated immune 
responses (17–20). In addition, these studies showed that an 
immunological memory is required for tumor control and to 
enable animals to resist a tumor rechallenge (13–21). The idea that 
antibody treatment can lead to a long-lasting adaptive immune 
response in patients has therefore opened an exciting avenue for 
the manipulation of the host immune surveillance. Interestingly, 
chemotherapy that is often used in combination with therapeutic 
anti-tumor antibodies can also, in some circumstances, induce an 
immune adaptive response. A number of studies have launched 
the concept of immunogenic cell death (ICD) induced by chemo-
therapeutic drugs (22, 23) and have suggested that these drugs 
can induce an adaptive immune response against tumor cells. The 
molecular mechanisms of ICD induction involves the exposition 
of calreticulin (CRT) on the surface of the dying tumor cells, the 
release of danger signals such as the high-mobility group box 1 

protein (HMGB-1) and ATP, leading to the processing of tumor 
antigens by stimulated dendritic cells (DCs) and to Tc1 polariza-
tion of CD8+ T lymphocytes (24).

However, a number of anti-tumor antibodies target molecules 
expressed by tumor cells belonging to the hematopoietic lineage 
and, hence, also target their normal cell counterparts, notably 
lymphocytes (anti-CD20, -CD52, -CD38, SLAMF7, etc.) and 
myeloid cells (anti-CD30, -CD33, etc.). These antibodies are 
mostly depleting antibodies and one can think, therefore, that it 
may impact the effects of mAb therapy on the long-term immune 
response of the patients. In patients with inflammatory/autoim-
mune diseases and in cancer patients, the iterative infusion of 
anti-lymphocyte depleting mAbs leads to a profound, selective, 
and, sometimes, long-lasting depletion of B and/or T  cells. 
Quantitative and qualitative changes in B and T cell subsets and 
repertoires have been reported following reconstitution (25–33). 
Some patients with rheumatoid arthritis (RA) remain lympho-
penic 12 years after alemtuzumab (anti-CD52) treatment, and the 
analysis of their peripheral T cell compartments shows that naïve 
and central memory T cell (TCM) numbers are reduced, while that 
of effector memory T cells (TEM) is similar to that of RA patients 
not treated with alemtuzumab (32). There is also an extensive 
literature concerning abnormalities of B cell repopulation after 
rituximab (anti-CD20) treatment, including a delayed recovery 
of circulating CD27+ memory B cells and/or changes in immu-
noglobulin repertoires, in patients with autoimmune diseases 
(RA, systemic lupus erythematosus, and active primary Sjögren’s 
syndrome) or with B cell non-Hodgkin lymphoma (B cell NHL) 
(25–31, 33). Moreover, B cell depletion after rituximab treatment 
in autoimmune disorders affects T cell differentiation and activa-
tion and provokes an increase in regulatory T cell (Treg) numbers 
(34–38).

Together, these different studies indicate that the conse-
quence of antibody treatment on the host adaptive immunity 
is multifaceted. Some therapeutic mAbs, particularly mAbs 
directed against immune cells, could not only have overall long-
term unwanted effects on T cell compartments but also favor the 
emergence of specific anti-tumor adaptive immune responses.

ANTiBODY TReATMeNTS CAN iNDUCe 
SPeCiFiC MeMORY CeLLULAR 
ReSPONSeS

Studies have demonstrated that, although the clearance of CD20+ 
lymphoma cells or of HER2+ or EGFR+ carcinoma cells by anti-
CD20 (13), anti-HER2/neu (17), or anti-EGFR (21) antibodies, 
respectively, requires innate immunity, a phase of tumor growth 
control involving antigen-specific T cell response is then estab-
lished (13–21).

With regard to anti-CD20 therapy, this phenomenon was 
initially shown in our laboratory using an experimental set-
ting where mouse lymphoma T  cells expressing human CD20 
(huCD20) molecules (EL4-huCD20) injected intravenously (i.v.) 
into C57Bl/6 mice were targeted with an anti-huCD20 antibody 
(13–15). In this preclinical model, the depletion of CD4+ T cells, 
both at the initiation of the treatment and upon tumor rechallenge 
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in surviving mice, dramatically reduced the protective effect 
of the antibody (13). Interestingly, a lack of CD8+ T cells at the 
beginning of the treatment did not impair its efficacy. By contrast, 
these latter cells were required when animals were rechallenged 
with tumor cells (13). This long-term protective effect based on 
T  cell immunity, specifically directed against CD20+ and not 
CD20− tumor cells, could be reinforced by IL-2 treatment at the 
time of rechallenge (13). Importantly, the anti-CD20 treatment 
modified the phenotype of CD4+ T cells by preventing the expan-
sion of pro-tumor CD4+ Treg cells and by inducing a polarization 
toward a Th1 phenotype through the IFN γ/IL-12 axis. This was 
associated with an expansion of a pool of memory CD4+ T cells 
in long-term surviving mice (14) as well as by a change in the 
CD4+/CD8+ T  cell ratio. The vaccinal effect of this anti-CD20 
therapy was also shown to be dependent on the presence of the 
Fc region of the antibody (13), and on the activation of myeloid 
DC producing IL-12 (14). It was further demonstrated by oth-
ers, using transgenic mice that this vaccinal effect relies on the 
binding of anti-CD20 antibody to human FcγRIIa and FcγRIIIa 
(15). Thus, the use of a depleting mAb targeting an antigen such 
as CD20 enables the triggering of a cascade of events that leads 
to the setting of a long-term adaptive immunity against this 
molecule. A recent study explored the relative role of CD4+ and 
CD8+ T cells in the host adaptive immune response triggered by 
an anti-CD20 mAb. A model of immune-competent mice bear-
ing syngeneic mouse B  cell lymphoma (A20) and treated with 
a mouse anti-mouse CD20 mAb was set up (16). The authors 
observed in this model that CD8+ T cells, instead of CD4+ T cells 
as described in the EL4-huCD20 model, played an essential role 
in CD20 mAb-mediated tumor regression. Anti-CD20 mAb 
induced type I IFN production by macrophages that promoted 
DC-mediated cross-presentation and priming of tumor-specific 
CTL (16). Interestingly, anti-CD20 mAb treatment resistance and 
tumor relapse in this model were associated with a much higher 
percentage of CTLA-4 expressing Treg. Finally, CTLA-4 blockade 
could synergize with anti-CD20 treatment to overcome the resist-
ance to the development of an adaptive immune response in this 
preclinical model (16).

The differences in the results about T  cell compartments 
involved in the mAb-induced long-term protective effect 
observed between the latter study and the previous one might 
be related to the differences in the nature of tumor cells injected 
(syngeneic vs xenogeneic) and the injection route (subcutane-
ously vs i.v.). Although highlighting the potential vaccinal effect 
of therapeutic mAbs, mice models based on the inoculation with 
EL4-huCD20 tumor cells (13–15) present some limitations: (i) 
the huCD20 molecule is a xenoprotein which likely displays a 
weak immunogenicity, reinforcing the mAb-induced anti-tumor 
specific T cell responses in mice; (ii) the anti-huCD20 mAb used 
in the studies on the vaccinal effect (13–15) does not exhibit any 
cross-reactivity with mouse CD20 and, hence, does not deplete 
non-malignant mouse B  cells, contrary to mouse syngeneic 
models where mouse anti-mouse CD20 are used or to rituxi-
mab treatment in FL patients. Of note, in the different studies 
described above, anti-CD20 mAbs are used as a single agent. 
This does not reflect anti-CD20 treatment usually indicated for 
initiation therapy in NHL patients, performed in combination 

with chemotherapy (cyclophosphamide, doxorubicin, vincris-
tine, prednisone) (CHOP). It suggests that further studies in 
patients with cancer or autoimmune/inflammatory diseases and 
treated with rituximab only or in combination with other drugs 
could be of major interest to decipher the long-term impact 
of anti-CD20 mAbs on B and T cell compartments and on the 
emergence of specific anti-CD20 T cell responses. Some data sug-
gest that anti-CD20 therapy is capable of reinforcing the priming 
of tumor-specific T cells in patients. First, in vitro experiments 
have shown that bone marrow-derived macrophages present an 
increased cross-priming function when cocultured with human 
B cell lymphoma cells in the presence of rituximab (16). Second, 
anti-idiotype T  cell responses have been detected in some FL 
patients following rituximab therapy (39).

Several preclinical studies have shown the important role of 
the host adaptive immune system in the anti-HER2/neu mAb-
mediated anti-tumor immunity using HER2/neu+ mouse tumor 
models (17–20). Park and his collaborators demonstrated that the 
anti-tumor activity of an anti-HER2/neu antibody is abrogated 
into Rag-1−/− mammary tumor-bearing mice (17). Of note, the 
same anti-HER2/neu antibody treatment in immune-competent 
mice induced tumor-specific CD8+ T cells producing IFN-γ and a 
protective memory T cell response that could be evidenced when 
mAb-treated surviving animals were rechallenged with tumor 
cells (17). It has also been demonstrated in another preclinical 
investigation that CD8+ T cell depletion in HER2/neu+ tumor-
bearing mice treated with a combination of antibodies directed 
against HER2/neu and death receptor 5 abrogates the anti-tumor 
protective effect (19). A recent study using mouse models of 
HER2/neu+ breast cancer and examining tumor samples from 
HER2/neu+ breast cancer patients revealed that IL-21 expression 
in tumor-infiltrating CD4+ T  cells is enhanced following anti-
HER2/neu mAb therapy and that IL21R expression on CD8+ 
T  cells is required for optimal mAb efficacy (40). Mortenson 
et  al. have also evaluated the role of CD4+ T cells using mice 
engrafted with tumor cells overexpressing HER2/neu and treated 
with an anti-HER2/neu antibody in conjunction with CD4 
depletion or CD40L blockade. They have shown that, in addition 
to CD8+ T cells, CD4+ T cells are also essential for anti-HER2/
neu antibody-mediated tumor regression. The role of CD4+ in 
this model was not limited to CD8+ T  cells help, but was also 
dependent on the production of IFNγ by innate cells, leading to 
MHC II expression on the tumor cells used in the model, allowing 
direct recognition of these cells by CD4+ T cells (18). This result 
suggested that mAb treatment can favor a direct recognition by 
specific CD4+ T  cells of tumor-associated antigens (TAAs) in 
complex with MHC II molecules at the surface of tumor cells. 
However, this observation is strongly tempered by the fact that, 
unlike MHC I molecules that are ubiquitously expressed in 
human nucleated cells, the expression of MHC II molecules on 
solid tumors is far more restricted. MHC II expression has been 
detected on a variety of human cancer types (including ovarian, 
colorectal and lung cancer, melanoma, and breast carcinomas) 
(41), but is highly dependent on the immunological environ-
ment and can be modulated by cytokines (41). Furthermore, the 
capacity of MHC II+ tumor cells to prime naive CD4+ T cells is 
dependent on their ability to process tumor-derived antigens (41, 
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TABLe 1 | Effects of monoclonal antibody (mAb) treatment on host adaptive immunity.

mAb target mAb Preclinical model/disease effects on adaptive immunity Reference

gp70 (Friend 
leukemia virus 
envelope)

A9D41 gp70 positive Friend Leukemia cells (tumoral 
mouse model)

Induces anti-tumor humoral immunity and depletion of CD4 
cells reduces the efficacy of A9D41 mAb

(46)

MUC1 BrevaRax 
(AR20.5) 

MUC1+ tumors in cancer patients Induces specific anti-MUC1 B and T cell responses (9)

CA125 B43.13 Ovarian cancer patients Induces specific anti-CA125 B and T cell responses (8)

CD20 Rituximab Non-Hodgkin lymphoma patients Induces anti-idiotype T cell responses (39)

CD20 CAT.13 Human CD20+ thymoma (mouse model) Induces long-term protective T cell immunity (13–15)

CD20 Mouse 
anti-mouse 
CD20

Syngeneic B cell lymphoma (mouse model) Induces long-term protective T cell immunity (16)

HER2/neu 7.16.4/
Trastuzumab

HER2/neu+ tumor (mouse model) and biopsies 
from breast cancer patients

Induces anti-tumor memory T cell responses (17–20, 40)

HER2/neu Trastuzumab Breast cancer patients Induces specific anti-HER2/neu B and T cell responses (10, 11)

EGFR Cetuximab Human EGFR+ tumor cells (mouse model) Induces anti-tumor T cell responses (21)

EGFR Cetuximab Head and neck cancer patients Induces anti-EGFR T cell responses (12)

FrCas(E) 667 Retroviral infection (mouse model) Prevents regulatory T cell expansion and induces long-term 
protective immunity

(43, 44)
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42). In patients, several clinical studies have demonstrated the 
induction of specific anti-TAA T and B cell responses following 
mAb treatment (8–12). An induction of CA125-specific B and 
T  cell responses after injection of a murine anti-CA125 mAb 
(used as an immunoscintigraphic agent in patients with ovarian 
cancer) has been observed and correlated with improved survival 
(8). Moreover, an increase in MUC1-specific T cells frequency has 
been observed in cancer patients treated with anti-MUC1 mAb 
(9). The analysis of metastatic breast cancer patient immunity 
before and after trastuzumab (anti-HER2/neu) therapy showed 
that the percentage of patients exhibiting specific anti-HER2/
neu B and T cell responses was increased, and the frequencies of 
memory specific cells were higher following mAb treatment (10). 
Patients with head and neck cancer (HNC) who have been treated 
with cetuximab (anti-EGFR) also presented a dramatic increase 
in tumor-specific CTL cells, their activation being dependent on 
NK-DCs cross-talk (12).

Finally, one can argue that the vaccinal effect of therapeutic 
antibodies is induced in many different immune contextures, 
including infectious diseases (Table  1). It was shown that the 
treatment of FrCas(E) retrovirus-infected mice with a neutral-
izing mAb resulted in a strong long-lasting immunity (43). 
The authors demonstrated that the mAb therapy inhibited an 
expansion of immunosuppressive Treg, reinforcing antiviral 
CD8+ T cell responses (44). Likewise, a study examining efficacy 
of mAbs against the gag envelop protein of HIV showed that 
monkeys receiving the anti-gag treatment exhibited higher gag-
specific T cell responses (45).

vACCiNAL eFFeCT: HOw DOeS iT 
wORK?

Until recently, mAb therapy was viewed as a passive therapy act-
ing rapidly and directly against tumor cells and was not classified 
as “biotherapy.” CDC and ADCC/ADCP exerted by cells from the 

innate immunity through the engagement of FcγR are considered 
to play an important role in the in  vivo efficacy of anti-tumor 
antibodies both in preclinical tumor models and in treated cancer 
patients (47). The significant correlations of FcγR polymorphisms 
with the clinical outcome in patients treated with rituximab (48, 
49), trastuzumab (50, 51), and cetuximab (52, 53) argue in favor 
of a role of FcγR+ immune cells activation in the clinical responses 
to mAb-based treatment. However, as other studies revealed no 
such associations in patients with breast cancer (54) and in fol-
licular lymphoma (55, 56), it raises the possibility of additional 
immune mechanisms to account for the clinical benefit of mAb-
based immunotherapy. Notably, the duration and strength of 
clinical responses following mAb treatment may be linked to the 
ability of tumor antigen-specific mAb to elicit an adaptive cellular 
immunity.

Various hypotheses may explain the induction of an adap-
tive immunity following antibody-mediated effector func-
tions (Figure  1). A role for DCs present at the tumor site is 
supported by their ability to internalize immune complexes 
via activating FcγR and to promote efficient MHC II- and 
MHC I-restricted presentation of peptides from exogenous 
IgG-complexed antigens (57–59). It has been reported that 
anti-CD20 antibody-treated lymphoma cells are taken up 
and processed by DCs with subsequent cross-presentation 
of tumor-derived antigens to T cells (60). In a human glioma 
model, FcγR-dependent engulfment of cetuximab-coated glial 
tumor cells by DCs leads to an increased number of anti-tumor 
CD8+ T  cells (61). Interestingly, DC cross-presentation of  
MHC I-restricted tumor peptides derived from exogenous 
immune complexes could be improved using blocking anti-
body directed against inhibitory FcγRIIb (58, 61). Moreover, 
the crucial role of FcγR-expressing DC has also been recently 
demonstrated when comparing a bispecific anti-GD2 x anti-
GD3 antibody (BsAb) lacking the immunoglobulin Fc region 
vs the same trifunctional BsAb comprising an appropriate Fc 
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FigURe 1 | The circuits of the vaccinal effect of monoclonal antibodies in cancer. Tumor cells opsonized with antibodies recruit C1q molecule and FcγR-expressing 
innate cells, such as macrophages and NK cells (63–84). This leads to cell lysis and to the formation of cell debris through phagocytosis, ADCC, and CDC (5, 6). 
Immature DCs then capture the resulting immune complexes (made of Ag-containing tumor lysate and antibody) (57–61). In parallel, tumor cells treated by 
radiotherapy or chemotherapy may undergo ICD, leading to the exposure of CRT on the surface of dying cells and to the release of ATP and HMGB-1. The latter 
molecule triggers TLR-mediated inflammation (22–24). These multiple signals then lead to DC maturation (upregulation of MHC II, CD80, CD83, and CD86) and to 
the production of Th1-prone cytokines (IFNγ, IL-12) (85, 86). A tolerance break can occur, marked by the presentation of tumor-associated self-antigens on MHC I 
and MHC II, possibly reinforced by the capacity of C3 to enhance MHC II exposure (57–61, 87). The activation of IL-12-producing DCs could also be strengthened 
by a positive cross-talk with IFNγ-producing NK cells, leading to a stronger activation of both cell types (64, 65). Altogether, these mechanisms lead to the priming of 
self-reactive tumor-specific CD4+ and CD8+ T cells that can act back against tumor cells and eventually circumvent the pro-tumor immunosuppression (regulatory 
T cells, IL-10, TGF-β, etc.) (Table 1). These self-reactive T cells could also impact endogenous cells expressing the same targeted antigens, with a long-term 
depletion and biased subsets upon reconstitution (25–33). FcγRIV is only expressed in mouse on myeloid cells. ADCC, antibody-dependent cell cytotoxicity; APC, 
antigen-presenting cell; CDC, complement-dependent cytotoxicity; CRT, calreticulin; CTL, cytotoxic T lymphocyte; C3bR, receptor for the C3b complement 
fragment; DCs, dendritic cells; IC, immune complex; ICD, immunogenic cell death; DAMP, damage-associated molecular pattern; FcγR, receptors for the Fc region 
of IgG; HMGB-1, high-mobility group box 1 protein; MHC, major histocompatibility complex; TLR, toll-like receptor.
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region. Only the trifunctional antibody elicited a polyvalent, 
DC-dependent long lasting anti-tumor T cell response (62).

Several studies demonstrated that, upon mAb therapy, a 
cross-talk between NK cells and DC can occur (12, 63, 64). One 
of the most illustrative studies showed that cetuximab-activated 
NK cells could induce an IFNγ-dependent expression of DC mat-
uration markers, of antigen processing machinery components 
such as TAP-1/2 and Th1-related cytokines, resulting in enhanced 
cross-presentation to CTL specific for EGFR-derived peptides 
(12). MAb-mediated NK-DC cross-talk may also favor antigen 
spreading by promoting DC maturation, tumor cells destruction, 

and CD8+ T cells priming. Moreover, in the same study, mature 
DCs stimulated mAb-activated NK cells in return, leading to an 
increased secretion of IFNγ (12). In a mouse model of C57Bl/6 
mice injected i.v. with huCD20+ tumor cells and treated with an 
anti-huCD20 antibody, we have shown that IFNγ-producing 
NK  cells, costimulatory molecules-expressing mature DC, and 
IL-12 production are critical for mAb-induced vaccinal effect 
(14). Recently, a study using the same model of anti-huCD20 
mAb treatment of tumors in transgenic mice expressing human 
FcγR has demonstrated that the induction of anti-tumor adaptive 
immunity is dependent on the expression of FcγRIIA on DC and 
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on FcyRIIIA-mediated ADCC (15). A recent study using a synge-
neic model of B cell lymphoma in mice has shown that depletion 
of DC impairs the anti-tumor effect of anti-CD20 mAb (16). In 
this model, mAb treatment increased the cross-presentation of 
DC and the cross-priming of anti-tumor CD8+ T cells involved 
in tumor regression (16). Moreover, IL-12 and IFNγ production 
by NK cells enhanced the anti-tumor efficacy of trastuzumab in a 
model of murine colon adenocarcinoma (65).

The relationship between macrophages and tumors is complex 
as some of them exhibit anti-tumor activity (M1 macrophages) 
and others, termed M2 macrophages, secrete tumor growth 
factors and favor angiogenesis. In a clinical trial, the addition of 
cetuximab to bevacizumab (a humanized anti-VEGF-A mAb) 
plus chemotherapy resulted in a decreased progression-free sur-
vival in metastatic colorectal cancer. The authors could then show 
that M2 macrophages were the dominant FcγRIII+ population in 
the tumor microenvironment of these patients (66). However, 
macrophages are likely crucial to the efficacy of therapeutic 
antibodies thanks to their expression of different types of FcγR, 
enabling ADCP. There are several in vitro and in vivo evidence 
supporting macrophages as effectors of therapeutic antibod-
ies in cancer. In vitro macrophage phagocytosis of tumor cells 
in response to anti-CD20 and anti-HER2/neu mAbs has been 
demonstrated in a number of studies using human macrophages 
(67–71). Interestingly, all human IgG subclasses, including iso-
types which exhibit a low NK cell-mediated ADCC due to their 
poor binding to FcγRIIIa, have the potential to engage other 
FcγRs [FcγRI and FcγRIIa] expressed on macrophages and to 
stimulate macrophage-dependent phagocytosis (72). It has also 
been demonstrated that macrophage-mediated phagocytosis 
contributes to the therapeutic activity of anti-CD38 antibody in 
multiple myeloma and potentially other hematological tumors 
(73). In vivo studies using anti-CD20 mAbs have also demon-
strated a crucial role of monocytes and macrophages as effectors 
of anti-tumor activity of antibodies, while depletion or defects in 
these populations induce impaired responses to mAb treatment  
(74, 75). Some studies have also shown that Kupffer cells in the liver 
immobilize and eliminate circulating tumor cells by engulfment 
of opsonized cells, thus probably contributing to the prevention 
of metastasis (75–77). Several clinical investigations have found 
that a high number of macrophages within tumors correlate with 
poor prognosis in many different types of cancers (78). However, 
the impact on prognosis of macrophage infiltration is depend-
ent on the tumor microenvironment and on the combination of 
therapeutics as shown in different studies in lymphoma patients  
(79, 80). High tumor-associated macrophages number was 
associated with an adverse outcome in chemotherapy-treated 
patients, while it was associated with longer survival rates when 
chemotherapy was combined with rituximab (79). This study 
further implicates macrophages as important effectors for the 
therapeutic benefit of antibody treatment in patients and sug-
gests that the balance between macrophages and mature DCs 
may provide some clues in the differential priming of the T cell 
response after antibody therapy. Interestingly, it has been reported 
that human macrophages and DCs for therapeutic use equally 
present TAA to CD8+ T cells after phagocytosis of γ-irradiated 
melanoma cells, indicating that macrophages can contribute to 

the recruitment of T cells as efficiently as DCs (81). Thus, one can 
hypothesize that phagocytosis of IC by FcγR+ macrophages can 
lead to an efficient CD8+ T cell cross-presentation. Of note, a role 
of type I IFN-producing macrophages in promoting cross-pres-
entation of B cell lymphoma antigens by DCs has been recently  
reported (16).

Finally, the recruitment of complement molecules has also 
been reported after antibody infusions. The binding of C1q to 
the Fc region of mAbs can induce the lysis of target cells and pro-
motes the recruitment of complement receptor-expressing effec-
tor cells (82, 83). These mechanisms are central in the anti-tumor 
activity of some therapeutic antibodies, such as ofatumumab, 
an anti-CD20 mAb that has been optimized for its capacity to 
bind C1q and to induce CDC (84). Interestingly, recent studies 
suggest that the C3 complement molecule has a role in the T cell 
response to apoptotic cell-associated antigens. The authors of the 
study showed that C3 acts as a chaperone protein in the intracel-
lular processing of antigens derived from apoptotic cells and can, 
therefore, modulate T  cell responses to self-antigens displayed 
on dying cells (87). This study underlines a new link between 
complement molecules recruited by immune complexes and the 
ability to promote presentation of tumor-derived antigens from 
dying cells to T cells.

ANTiBODY-iNDUCeD eXPANSiON OF 
AUTOReACTive T CeLLS? TO Be OR NOT 
TO Be iMMUNOgeNiC…
Thus, all these data strongly support the hypothesis that the 
induction of a T cell response against mAb-targeted cells plays a 
key role in the long-term efficacy of mAb-based therapies, rais-
ing important questions about the specificity and the evolution 
of these responses all along the treatment. Furthermore, it is still 
unclear whether the induction of a long-term adaptive response 
that follows mAb treatment is related to the tumor nature of 
the target cells or whether it also applies to non-malignant cells 
depleted upon mAb treatment. Finally, since there are different 
forms of mAb-induced killing of target cells, it is unclear whether 
differences arise between normal and tumor cells in terms of 
immunogenicity once killed.

Most tumor antigens are self-antigens that elicit weak 
T cell responses if any as a consequence of immune tolerance. 
However, anti-tumor mAb treatment may at least transiently 
break tolerance to self-antigens expressed on tumor cells (17, 
88). In cancer patients, treatment with trastuzumab and chemo-
therapy increases the frequency of CD4+ T specific for HER2/neu 
peptides already known to bind multiple HLA-DR molecules. 
Some of these peptides have recently been identified as epitopes 
exhibiting a high affinity to a variety of HLA class II molecules 
(10, 89, 90). Likewise, T cell responses to MUC1 were observed 
following anti-MUC1 mAb treatment using ELISPOT assays in 
response to stimulation with wild-type 31mer MUC1 peptide (9). 
Furthermore, the staining of CD3+ CD8+ T cells with a tetramer 
showed a higher frequency of EGFR853–861-specific T cells in HNC 
patients treated with cetuximab alone or in combination with 
chemotherapy than in cetuximab-naïve patients. It suggests that 
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wild-type EGFR expressed on HNC cells could induce a specific 
immune response in vivo (12).

These results suggest that therapeutic mAbs treatment can lead 
to the expansion of preexisting T cells specific for non-mutated 
self-antigens. An emerging concept is that thymic deletion prunes 
but does not eliminate self-specific CD4+ and CD8+ T cells and 
that some self-peptide/MHC-restricted T  cells can be detected 
in frequencies similar to those of the T cells specific for non-self 
antigens (91–96).

Interestingly, several studies of HLA ligandome or self- 
immunopeptidome have identified CD4+ and CD8+ T  cell 
epitopes derived from B  cell differentiation antigens (in par-
ticular, from CD19 and CD20 antigens) that could generate 
autoreactive cytotoxic T  cell responses to B  cell leukemia and 
lymphoma in patients with B cell malignancies (97–100). In one 
study, the authors analyzed the natural ligandome in primary 
chronic lymphocytic leukemia (CLL) patients by immunoaffin-
ity purification of HLA-I and HLA-II molecules from PBMC 
followed by liquid chromatography/mass spectrometry analysis 
of HLA ligands. This analysis allowed the identification of 
non-mutated tumor-associated T  cell self-antigens exclusively 
and frequently found in the HLA ligandome of CLL cells, by 
comparison with the HLA ligand proteomes of healthy donors. 
Furthermore, they evidenced an immune recognition by T cells 
of these self-antigens in CLL patients (99). Moreover, a recent 
report has demonstrated the role of T cells bearing low-avidity 
TCR for self-antigens in the immune surveillance of spontane-
ous lymphoma B cells that express MHC molecules presenting 
self-peptides in conjunction with high levels of costimulatory 
molecules and Fas (101). In line with these observations, T cells 
directed against tumor B cells could be expanded from tumor and 
peripheral blood of patients with B cell NHL (102). In hemato-
logical diseases, endogenous preexisting T cell response directed 
against tumor-specific clonal immunoglobulin expressed by 
lymphoma B cells [idiotype (Id)] has been used as a target for 
active immunotherapy (103). In addition, it has been shown that 
peptides derived from B-cell receptor pathway components are 
presented in the context of MHC I and MHC II molecules in 
patients with lymphoma (104). The CD20 molecule itself could 
give rise to self-peptides targeted by T cells. A strategy to detect 
and expand allo-MHC-restricted T cells reactive to self-tumor 
antigens resulted in the detection of 37 non-mutated epitopes 
from CD20 and myeloperoxydase (100).

Of note, a large majority of cancer patients are treated with 
tumor-targeting mAbs in combination with chemotherapy 
or radiotherapy. Thus, one can think that the capacity of mAb 
treatment to induce adaptive immune responses against self-
antigens could be related to inflammatory signals provided by 
chemotherapy or radiotherapy-induced ICD. The molecular 
mechanisms of ICD implicate the exposure of CRT on the cell 
surface, the secretion of ATP, and the release of the non-histone 
chromatin-binding protein HMGB-1. The emission of these 
damage-associated molecular patterns (DAMPs) is associated 
with the secretion of immunostimulatory cytokines such as type 
I IFN. Such DAMPs are then able to recruit antigen-presenting 
cells, including DCs, to the site of ICD and promote dead cell-
associated antigens presentation to CD4+ and CD8+ T  cells 

resulting in the priming of a robust cellular response (85). Several 
drugs, including various chemotherapeutics commonly used in 
the clinic (doxorubicin, mitoxantrone, bleomycin, bortezomib, 
cyclophosphamide, oxaliplatin, etc.), have the ability to provoke 
ICD (86). However, there is growing evidence that some thera-
peutic mAbs, as single agents, could also be ICD inducers. In a 
mouse model of mammary tumors where animals were treated 
with an anti-HER2/neu antibody, the release of HMGB-1 was 
essential for antibody-mediated tumor regression. Based on the 
results obtained in Myd88−/− mice, the authors suggested that 
anti-HER2/neu antibody could induce HMGB-1 release in the 
tumor microenvironment, which enhanced innate responses 
via the MyD88 pathway and promoted the priming of adaptive 
immune cells, leading to an increased tumor clearance (17). 
Moreover, 7A7, an anti-murine EGFR mAb, could elicit strong 
tumor-specific CTL responses in hosts by inducing ICD of tumor 
cells in an Fc-independent manner (105). Interestingly, a recent 
study has shown that programmed-cell death induced by the 
type II anti-CD20 antibody obinutuzumab (GA-101) is associ-
ated with the release of significant levels of DAMP that could 
enhance DC maturation and subsequent T cell activation (106). 
Moreover, a recent study reported that both obinutuzumab and 
rituximab induced HMGB-1 release from diffuse large B-cell 
lymphoma (DLBCL) cells after a 4-h treatment (107). The same 
study showed that treatment with rituximab plus cyclophospha-
mide, doxorubicin, vincristine, and prednisone, but not CHOP 
alone, significantly increased plasma HMGB-1 and decreased 
IL-10 concentrations in DLBCL patients. Furthermore, the 
conditioned medium from rituximab-treated DLBCL cells could 
induce DC maturation and increased their capacity to activate 
T cell responses (107). In line with these observations, long-term 
complete remissions have been reported after single-agent rituxi-
mab treatment in different clinical trials in patients with follicular 
lymphoma (108, 109).

CONCLUDiNg ReMARKS

Therapeutic mAbs used in oncology, inflammatory, and/or 
autoimmune disorders can exert depleting activity against target 
cells by inducing direct apoptosis and/or by recruiting effector 
cells from the innate immunity. Besides delayed recovery of 
target cells and impaired reconstitution of depleted populations 
in terms of frequencies and phenotype, lymphocytes depleting-
mAb treatment could also have dramatic consequences in the 
network of cells from the adaptive immune compartment. As 
expected, the depletion of one particular immune population 
could have bystander effects on the homeostasis and the func-
tions of other non-targeted immune compartments. This effect 
has been extensively described in autoimmune disorders treated 
with rituximab, where B cell depletion induces dramatic changes 
in T cell compartments.

Moreover, as depleting mAbs are potentially ICD inducers, 
it is likely that an adaptive immune response against target cells 
could be mounted following mAb treatment. Different preclini-
cal studies (mostly in models with tumor-bearing mice treated 
with anti-tumor mAbs), strengthened by a few observations in 
human clinical studies, have shown that therapeutic antibodies 
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have a vaccinal effect likely responsible for the long-lasting 
clinical responses that have been observed. These long-lasting 
anti-tumor effects are mediated by CD4+ and CD8+ T cells. The 
role of FcγRs in the induction of this adaptive immune response 
following mAb therapy supports further studies to carefully 
examine the impact of the structural properties of therapeutic 
mAbs on their ability to elicit strong adaptive immune responses. 
In particular, it is now well established that Fc sequences as well as 
the nature of Fc-CH2 domain-N-linked oligosaccharide have an 
impact on IgG/FcγR interactions and, thus, could influence the 
vaccine effect of mAbs. Interestingly, Fc domain variants of anti-
HIV-1 broadly neutralizing antibodies that exhibited enhanced 
binding capacity for activating human FcγR, such as FcγRIIa and 
FcγRIIIa, also presented an augmented in vivo protective activity 
in a model of HIV-infected humanized mice compared to wild-
type or FcγR null binding variants. In this study, Fc-optimized 
variants induced faster and sustained reduction in viral load, with 
a significantly higher proportion of infected mice demonstrating 
viremia suppression (110).

This novel paradigm of a vaccinal effect of therapeutic anti-
tumor antibodies should lead us to reexamine how antibody 
efficacy could be reinforced by the use, possibly in combination, 
of molecules impacting the immune surveillance. Among them 
are antibodies antagonizing ICP molecules that play a key role 
in the inhibition of the anti-tumor immune responses (e.g., 
PD-1, CTLA-4, LAG-3, TIM3, etc.) or antibodies that target 
immunostimulatory molecules (e.g., OX40, GITR, CD137, etc.) 
(111, 112). Furthermore, it has been suggested that the use of 
radiolabeled antibodies in combination with maintenance 
rituximab therapy in lymphoma may lead to an increase in 
complete response, associated with an increased recruitment of 
T cell subsets (113).

Finally, there are currently a number of scattered data 
reported in the literature indicating that mAb treatment may 

result in inflammatory cell death that could lead to a targeted 
adaptive response. The induction of an ICD could be one of the 
mechanisms by which antibodies activate a long-term adaptive 
immunity against tumor cells and possibly normal cells. The latter 
is an important issue as it is still unclear whether a long-term 
adaptive immunity can be achieved when non-malignant cells 
are targeted with depleting mAbs, a situation found during the 
treatment of autoimmune pathologies. Various factors, such as 
the intrinsic immunogenicity of cells, their activation status, and 
the nature of the cell death pathway that is engaged, are all critical 
to determine whether cell death is immunogenic or not. Thus, 
monitoring adaptive immune responses after therapeutic mAb 
treatments might provide a further insight into the vaccine effect 
of mAb treatment, its impact on endogenous cell reconstitution, 
and its role in tumor control or relapse in high- or low-responder 
patients with cancer.
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