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Abstract

Feeding strategies of sympatric squid species help to understand their role in marine eco-

systems. Four loliginid squids, Uroteuthis duvaucelii, Uroteuthis edulis, Uroteuthis chinen-

sis, and Loliolus uyii are the major cephalopod species in the coastal waters of the northern

South China Sea, where they occur together. We investigated their feeding strategies in

terms of foraging behavior and habitat use by comparing fatty acid profiles and spatial distri-

butions. There were no significant differences in the proportions of saturated or polyunsatu-

rated fatty acids among species. Similar findings were obtained for most individual fatty

acids that made up of an average of more than 84% of total fatty acid content for each spe-

cies. Substantial overlap and high similarity in the fatty acid composition were observed.

However, there were no significant effects of individual size or sampling station on the fatty

acid compositions. The spatial overlap analysis demonstrated that there was clear spatial

segregation and habitat use among the species. Cumulatively, our results suggest that the

four squids are opportunistic carnivores, unselectively foraging on similar prey items, while

spatial segregation is likely a major mechanism leading to their coexistence in the northern

South China Sea.

Introduction

Species coexistence depends partly on how organisms utilize their resources and environment

[1, 2]. The ability of sympatric species to exploit different parts of a niche space is essential for

their coexistence if they have similar ecological requirements [3–5]. Consequently, species
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may adopt different strategies in terms of resource use, for example, through differences in

activity patterns (e.g., temporal segregation) and habitat use [3, 6, 7], resource-abundance-

mediated foraging behavior such as trophic niche contraction [4, 8, 9], or body size-related

resource partitioning [10, 11].

Squids occur in almost all the world’s marine environments [12]; and most likely occupy a

similar habitat throughout their lives [13, 14] or coexist seasonally [15]. Squids have been iden-

tified as among the most important organisms in marine ecosystems, not only because they act

as major nutrient vectors but also because they play a key role as “bio-indicators” of environ-

mental conditions [16–19]. Squids are important prey resources for high trophic level preda-

tors, such as large predatory fishes, seabirds and marine mammals [19–21]. On the other

hand, they feed intensively on a wide spectrum of prey items including crustaceans, micro-

neckton and fishes [19–22], and are believed to impose top-down control on low- to mid-tro-

phic level species [19, 23, 24]. They are also cannibalistic, frequently preying on conspecifics

and other squid species [15, 25, 26]. These foraging characteristics lead to complex trophic

interactions [19, 27].

Investigating the feeding strategy and consequences of resource partitioning of squids is

needed for a broader understanding of the dynamics of marine ecosystems. Four sympatric

loliginid squids, Uroteuthis duvaucelii, Uroteuthis edulis, Uroteuthis chinensis, and Loliolus
uyii, coexist in shelf waters from the western Pacific to the Indian Ocean, competing for avail-

able resources [12, 26]. Similar to other squids, these species are characterized by high growth

rates and short lifespan (usually 1 year) [28–30]. The four squids play an important role in

community structure and population dynamics within the shelf ecosystem where they are

found [31, 32]. For example, these squids are the major cephalopod species, and seasonally

dominate the regional biomass, in the coastal waters of the northern South China Sea, i.e., U.

duvaucelii during autumn, and U. chinensis in summer [33]. They are also very important for

the coastal fisheries on the continental shelf off Thailand, China, and Japan [26, 31, 34, 35].

However, little is known about their feeding strategies, with the exception of U. chinensis and

U. duvaucelii being reported as feeding on crustaceans, fish and cephalopods in southwestern

Gulf of Thailand by Islam et al. [26].

Fatty acids are vital for organelle and physiological functions [36, 37]. In cephalopods, fatty

acids are essential dietary components, not only playing a critical role in energy sourcing dur-

ing starvation [38, 39], but more importantly assisting the early stages of development and

growth, mostly through maternal allocation to gametes during sexual maturation [40–43].

However, heterotrophic organisms including cephalopods are subject to biochemical limita-

tions in biosynthesis and modification of fatty acids, and assimilate the fatty acids they con-

sume, particularly the polyunsaturated fatty acids (PUFA), in their basic form [44–48]. Fatty

acids therefore have potential as dietary tracers in marine systems, providing insight into pred-

ator-prey interactions [36, 48–51]. Fatty acid analysis has proved to be a viable way to under-

stand cephalopod diets [52, 53], and is increasingly used as a way to understand their trophic

ecology [54–58].

We used fatty acid analysis and spatial analysis to investigate the feeding strategies and spa-

tial distribution of U. duvaucelii, U. edulis, U. chinensis and L. uyii in the coastal waters of the

northern South China Sea. This area is rich in tropical and subtropical biota, including various

groups of phytoplankton, zooplankton, and zoobenthos, as well as pelagic and demersal fishes

and invertebrates [59]. Many species, including cephalopods, are highly abundant in the shelf

communities of the northern South China Sea [31, 33, 59, 60]. As fatty acids of a heterotrophic

organism effectively reflect those of its diet [44–48], our study was designed to determine (1)

whether the four sympatric squids adopt an opportunistic foraging strategy by feeding on simi-

lar prey items and (2) how they coexist in a coastal area where diets overlap. Our hypothesis
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was that there is significant dietary overlap among the squids and spatial segregation in habitat

use. Our aim was to understand the potential for trophic interactions and the degree of dietary

overlap among the four species, which will assist our understanding of their feeding ecology,

and possibly their inclusion in the coastal ecosystem assessments.

Materials and methods

Ethics statement

Specimens were collected as dead squids from the small-scale trawl fishery landings, during

April 2016. The specimens were analyzed in laboratory using methods that are in line with cur-

rent Chinese national standards, namely Laboratory Animals—General Requirements for Ani-

mal Experiment (GB/T 35823–2018). As all material sampled in this work obtained from

commercial fishermen was already dead, there was no requirement for ethical approval of sam-

pling protocols as it did not include live organisms.

Study area

Data collection was conducted in Guangdong coastal waters, northern South China Sea

(Fig 1). This area is characterized by a broad shelf (< 200m depth), and oceanographically

involves a complex circulation system that is controlled by monsoons, the Kuroshio intrusion,

upwelling in summer and downwelling in winter [61–63]. The Pearl River discharges a large

amount of freshwater into Guangdong coastal waters, forming an approximate plume current,

which interacts with nearshore circulation due to the warm and saline South China Sea Warm

Current [61, 63]. These features lead to a highly complex and dynamic ecosystem, with high

nitrate concentrations and enhanced primary production [64, 65].

Sample collection

Squid were randomly collected from the landings of a small-scale trawl fishery from April 2nd

to April 26th 2016, at six stations (Fig 1). Similar to Philips et al. [56] and Pethybridge et al.

[58], the whole squid were stored immediately at -30˚C after being taken onboard. A total of

709 specimens were randomly sampled and duly labeled, including 286 U. duvaucelii, 66 U.

edulis, 257 U. chinensis and 100 L. uyii (Table 1).

In the laboratory, a subsample of 62 specimens (3 to 8 specimens of each species per sam-

pling station) was randomly selected from the 709 specimens for fatty acid analyses (Table 1).

Before defrosting, muscle tissue (~ 10.0g wet weight) from the ventral mantle of each selected

specimen was obtained, and placed immediately in a drying chamber (Crhist Alpha 1-4/

LDplus, Germany) to lyophilize it to a constant weight. Each dried sample was then ground

into powder, and about 0.2 g of that used for fatty acid analysis. After defrosting at room tem-

perature, measurements of dorsal mantle length (ML, in mm) were taken to the nearest 1 mm

(Table 1).

Lipid and fatty acid analyses

Fatty acid methyl esters (FAME) were analyzed for each tissue sample using a modification of

the GAQSIQ [66] method. This modification was to use a mixture of chloroform and metha-

nol 2:1 (v/v) [67] rather than diethyl ether to extract lipids [66]. The extracted lipid of each tis-

sue sample was immediately subject to FAME analysis to avoid contamination and oxidation.

This involved the addition of 4 mL 0.5mol/L KOH-MeOH to the lipid extract, incubated at

90˚C for 10 minutes. Then 4 mL BF3-MeOH were added, and the solution was incubated at

90˚C for 30 minutes, followed by the addition of 4 mL n-Hexane for 2 minutes incubation at a
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similar temperature. After adding 10 mL saturated NaCl, the solution was stratified at room

temperature. Finally, the upper hexane layer was transferred to a vial, evaporated under nitro-

gen current.

The fatty acid profile for each sample was determined using an Agilent 7890B Gas Chro-

matograph coupled to a 5977A series Mass Spectrometer Detector (MSD, Agilent Technolo-

gies, Inc. USA). Methyl nonadecanoate (19:0) was used as an internal standard. Injection of

samples was carried out in splitless mode, using helium as the carrier gas, and a thermal gradi-

ent from 125˚C to 250˚C, with an auxiliary heater at 280˚C. Fatty acids were identified by com-

parison to relative retention times of a known standard [66] and comprise the fatty acid data

for this study.

Total content of fatty acids (total FAs) was based on dry tissue weight (mg/g dry weight),

and each fatty acid (FA) was reported as a percentage of the total [54–58]. The individual fatty

acids were grouped into three main FA classes: saturated fatty acids (SFA), monounsaturated

fatty acids (MUFA), and polyunsaturated fatty acids (PUFA). Fatty acids that accounted for

<0.5% were excluded from statistical analyses.

Fig 1. Study area and sampling stations in the northern South China Sea. Stars indicate the sampling stations. Grey

lines indicate the selected isobaths of -50m and -200m.

https://doi.org/10.1371/journal.pone.0234250.g001
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Statistical analysis

The fatty acid data were checked for normality (S1 Table), using a one-sample Kolmogorov-

Smirnoff test [68]. The means of each FA profile, main FA class and total FAs by species and

sampling station were compared using one-way analysis of variance (ANOVA) followed by

Tukey’s post-hoc test if necessary [68]. The data were analyzed using the Kruskall-Wallis non-

parametric test and the Games-Howell post-hoc test when the assumption of normality could

not be supported [68].

Permutational multivariate analysis of variance (PERMANOVA) [69], using the Bray-Cur-

tis similarity measure, was used to test whether the FA profiles were related to individual size

or sampling station (assessed independently). The analyses were carried out for each species,

as well as for the four species combined. The squids were categorized into eight size-classes

(< = 80mm, 81-100mm, 101-120mm, 121-140mm, 161-180mm, 181-200mm, 201-220mm

and>220mm ML), starting with the smallest individual among the four squids, for the

analyses related to size of individuals. Loliolus uyii was not tested the influence of individual

size or sampling station on the fatty acid composition since it occurred in only one size-class

(<= 80 mm ML) and at a single sampling station. Canonical analysis of principal coordinates

(CAP) [69] was also used to discriminate between a priori groupings based on size-class or

sampling station, and to visualize the potential groupings from the PERMANOVA. The sam-

ple sizes for each factor level of size-class or sampling station are summarized in Table 2 and

S6 Table.

Nonmetric multidimensional scaling (nMDS) and analysis of similarities (ANOSIM),

employing the Bray-Curtis similarity measure, were applied to the FA compositions by species

to assess whether the species had similar feeding strategy. Morisita’s index of overlap [70], cal-

culated using the full data set (709 specimens) from the 6 sampling stations, was used to deter-

mine whether the spatial distributions of each species were aggregated or separated in the

Table 1. Summary of squid specimens (n = 709) collected from the northern South China Sea, and those used in the fatty acid analyses.

Species Sampling station Sampled Analyzed fatty acid samples

n Mantle length (ML, mm) n Mantle length (ML, mm)

mean±sd min max mean±sd min max

Uroteuthis duvaucelii S4 13 109.2±23.3 52 158 6 116.5±15.8 92 130

S6 273 94.2±20.9 50 165 11 98.8±21.3 75 131

pooled 286 95.2±21.4 50 165 17 105.1±20.9 75 131

Uroteuthis edulis S1 48 183.2±21.2 143 241 8 181.8±11.3 165 195

S4 7 130.0±37.2 90 176 3 168.7±7.0 162 176

S5 11 154.6±29.0 89 186 3 173.7±10.8 166 186

pooled 66 165.1±36.2 89 241 14 177.2±11.3 162 195

Uroteuthis chinensis S1 96 208.7±32.4 134 275 6 202.7±34.3 171 246

S2 39 174.3±37.0 82 226 4 196.0±27.0 166 226

S3 73 206.7±39.5 148 320 8 188.1±25.5 163 240

S5 24 179.7±36.1 66 201 3 192.7±8.0 185 201

S6 25 155.8±23.9 108 199 3 168.3±3.2 166 172

pooled 257 177.3±53.6 66 320 24 191.2±25.8 163 246

Loliolus uyii S4 100 69.3±5.8 55 84 7 71.9±7.3 59 79

pooled 100 69.3±5.8 55 84 7 71.9±7.3 59 79

Sampling station corresponds to the stars in Fig 1.

https://doi.org/10.1371/journal.pone.0234250.t001

PLOS ONE Fatty acid composition of sympatric squids and indication for similar feeding strategy

PLOS ONE | https://doi.org/10.1371/journal.pone.0234250 June 11, 2020 5 / 17

https://doi.org/10.1371/journal.pone.0234250.t001
https://doi.org/10.1371/journal.pone.0234250


coastal waters. The formula for the index is:

CH ¼
2
P

n
i xijyik

P
n
i x2

ij þ
P

n
i y2

ik

Where CH is the overlap index between species j and species k, xij is the percentage of spe-

cies j at station i, yik is the percentage of species k at station i, and n is the total number of sam-

pling stations.

All statistical analyses were conducted using OriginPro version 2015 [71] and R version

3.5.0 [72]. The multivariate analyses (PERMANOVA, CAP, nMDS, ANOSIM) and the calcula-

tion of Morisita’s index of overlap were conducted using the ‘vegan’ and ‘divo’ packages in R,

respectively. Prior to the multivariate analyses, data were square-root transformed to account

for variation in FA abundance. Differences were considered statistically significant when

P< 0.05.

Results

A total of 33 FAs were identified in the four species, with 18 having relative mean

content> 0.5% of the total FAs (Table 3). These 18 FAs made up 96% of total FAs in U. duvau-
celii, 95% in U. edulis, 98% in L. uyii and 97% in U. chinensis.

Fatty acid profiles

Significant differences in total FAs were found between species (F = 30.10, P<0.05), with L.

uyii having highest total FAs, followed by U. duvaucelii, while U. chinensis had the lowest total

FAs (Table 3, S2 Table). No significant differences in the relative content of the main FA clas-

ses were detected, with the exception of MUFA (χ2 = 8.53, P = 0.036), for which the highest

amount was found in U. chinensis and the lowest in L. uyii (Table 3, S2 and S3 Tables).

No significant difference was detected in the relative content of 14:0 among species

(H = 4.94, P = 0.18), and similar results were obtained for 16:0, 17:0, 18:1n9t, 18:1n9c, 18:2n6c,

18:3n6, 20:0, 20:1, 20:2, 20:4n6, 20:5n3 and 22:6n3 (S2 and S3 Tables). These FAs constituted

77–88% (mean±SD, 84.91±3.15) of the total FAs in U. duvaucelii, 72–92% (84.77±5.56) in U.

edulis, 80–89% (84.72±3.15) in L. uyii, and 76–90% (85.35±3.25) in U. chinensis, respectively.

There were significant differences in the relative content of other fatty acids (16:1n7, 18:0,

18:2n6t, 18:3n3 and 22:1n9) among species (S2 and S3 Tables); U. chinensis had the highest

level of 16:1n7, L. uyii the highest level of 18:0, and U. duvaucelii the highest levels of 18:2n6t,

18:3n3 and 22:1n9 (Table 2).

Table 2. Sample size for each factor level of size-class and sampling station for the permutational multivariate

analysis of variance (PERMANOVA) and canonical analysis of principal coordinates (CAP).

Size-class Sampling station (see Fig 1)

Bin groups (mm) n factor level n

<80 9 S1 14

81–100 5 S2 4

101–120 6 S3 8

121–140 4 S4 15

161–180 19 S5 6

181–200 12 S6 15

201–220 4

>220 3

https://doi.org/10.1371/journal.pone.0234250.t002
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Similarity of fatty acid composition among species

The nMDS indicated considerable overlap in fatty acid profiles when the data for the four spe-

cies were combined (Fig 2), and in paired species comparisons (S1 Fig). The overlap between

U. duvaucelii and L. uyii and between U. edulis and L. uyii appeared to be relatively smaller

than the other overlaps (S1 Fig). These findings were confirmed using ANOSIM (R = 0.08;

“pooled” in Table 4). There was considerable similarity in the fatty acid profiles among species,

except between U. duvaucelii and. L. uyii (ANOSIM R = 0.36) (Table 3).

Effects of individual size and sampling station on the fatty acid

composition

PERMANOVA found no effects of individual size on fatty acid composition for any of the spe-

cies (U. duvaucelii, F = 0.66, p = 0.69; U. edulis, F = 1.64, p = 0.11; U. chinensis, F = 0.91,

Table 3. Relative abundance of fatty acids for Uroteuthis duvaucelii, Uroteuthis edulis, Loliolus uyii, Uroteuthis chinensis in northern South China Sea.

Species

Uroteuthis duvaucelii Uroteuthis edulis Loliolus uyii Uroteuthis chinensis
Fatty acid (%TFA)

14:0 2.63±3.10 2.25±2.09 2.66±0.84 2.33±1.46

16:0 19.23±2.66 18.46±2.10 19.01±3.45 19.01±5.24

16:1n7 0.80±0.46ab 0.63±0.45a 0.97±1.20ab 1.79±1.56b

17:0 0.71±0.08 0.70±0.14 0.84±0.10 0.74±0.22

18:0 7.41±2.38a 6.51±3.17a 10.3±2.4b 7.05±2.34a

18:1n9t 0.66±0.40 0.77±0.71 0.69±0.14 0.79±1.13

18:1n9c 2.51±0.47 2.24±0.47 2.79±1.37 3.59±2.27

18:2n6t 1.72±1.10b 1.40±1.33ab 0.44±0.46a 0.93±0.57ab

18:2n6c 0.66±0.22 0.54±0.27 0.50±0.22 0.51±0.19

18:3n6 0.69±0.45 0.55±0.52 0.57±0.15 0.60±0.21

20:0 0.60±0.28 0.52±0.36 0.36±0.13 0.44±0.17

18:3n3 0.97±0.52b 0.72±0.60ab 0.32±0.25a 0.63±0.40ab

20:1 1.85±0.91 2.46±1.05 2.02±0.31 2.04±0.84

20:2 0.72±0.42 0.70±0.53 0.42±0.21 0.47±0.22

20:4n6 (ARA) 2.95±1.32 3.36±1.73 3.32±1.71 3.08±1.60

22:1n9 0.64±0.44b 0.49±0.52ab 0.16±0.11a 0.38±0.22ab

20:5n3 (EPA) 11.15±2.04 12.74±2.38 13.01±2.40 11.55±2.98

22:6n3 (DHA) 41.96±5.45 39.39±7.78 39.22±5.6 40.70±7.48

FAs<0.5% 3.40±1.76 4.09±3.17 1.76±1.14 2.94±1.84

Main FA Classes (%TFA)

SFA 32.59±4.05 30.70±4.97 34.25±4.78 31.12±5.98

MUFA 7.71±2.02ab 8.28±2.84ab 6.70±2.82a 9.64±3.5b

PUFA 59.71±4.43 61.03±6.12 59.05±4.90 59.24±7.94

Total fatty acids (mg/g dry weight)

TFA 66.20±9.78c 59.01±3.35b 71.07±4.62c 50.71±4.54a

FAs <0.5% include 11:0, 12:0, 13:0, 14:1n5, 15:0, 15:1n5, 17:1n7, 21:0, 20:3n6, 22:0, 20:3n3, 23:0, 22:2n6, 24:0, 24:1n9. ARA, arachidonic acid; EPA, eicosapentaenoic

acid; DHA, docosahexaenoic acid; SFA, saturated fatty acids; MUFA, monounsaturated fatty acids; PUFA, polyunsaturated fatty acids; TFA, total fatty acids. Values are

mean ± standard deviation; TFA is reported as dry tissue weight (mg/g dry weight), other values are reported as percentages of TFA (% TFA). Fatty acids highlighted in

bold indicate significant differences (P<0.05) among species. Superscripted letters within rows represent the results of post-hoc test, and different letters indicate

significant differences in the relative content of FA between species.

https://doi.org/10.1371/journal.pone.0234250.t003
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p = 0.57) and when the data were aggregated over species (F = 1.45, p = 0.07). No distinct

groupings of fatty acid profiles were found when the data were grouped by size-class (CAP

p = 0.07, Fig 3a).

There were no significant differences in the relative content of each fatty acid profile and

the main FA classes (SFA, MUFA, PUFA) between sampling stations within U. duvaucelii, U.

Fig 2. Non-metric multidimensional scaling (nMDS) ordination of fatty acid composition among Uroteuthis
duvaucelii, Uroteuthis edulis, Uroteuthis chinensis and Loliolus uyii in the northern South China Sea. Urd,

Uroteuthis duvaucelii; Ure, Uroteuthis edulis; Lou, Loliolus uyii; Urc, Uroteuthis chinensis.

https://doi.org/10.1371/journal.pone.0234250.g002

Table 4. Results of the analysis of similarities (ANOSIM) for the fatty acid composition among Uroteuthis duvau-
celii, Uroteuthis edulis, Uroteuthis chinensis and Loliolus uyii in the northern South China Sea.

Terms R P
Pooled 0.08 0.04

U. duvaucelii vs. U. edulis 0.13 0.05

U. duvaucelii vs. L. uyii 0.36 0.01

U. duvaucelii vs. U. chinensis 0.06 0.11

U. edulis vs. L. uyii 0.12 0.14

U. edulis vs. U. chinensis 0.003 0.43

L. uyii vs. U. chinensis 0.05 0.33

R ranges from -1 to 1, with values close to 0 indicating high similarity.

https://doi.org/10.1371/journal.pone.0234250.t004
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edulis and U. chinensis (S4 and S5 Tables). Similar results were obtained for the analysis of the

effect of sampling station on fatty acid composition using PERMANOVA for U. duvaucelii (F
= -0.001, p = 0.99), U. edulis (F = 1.05, p = 0.42), U. chinensis (F = 0.95, p = 0.54), and when the

data were aggregated over species (F = 1.14, p = 0.29). Obvious overlap in fatty acid profiles

among the sampling stations was observed in the CAP ordination (p = 0.25, Fig 3b).

Spatial overlap

Spatial distribution analyses indicated that there is spatial segregation among Uroteuthis
duvaucelii, U. edulis and L. uyii (Fig 4). Uroteuthis duvaucelii was found predominantly in the

southwest of the study area, with U. edulis primarily in the northeast, and L. uyii at only one of

center stations. A broader distribution was observed for Uroteuthis chinensis, which was found

at the five out of the six sampling stations, with higher abundance in the northeast (Fig 4).

Consequently, there appears to be considerable spatial distribution niche overlap between U.

chinensis and U. edulis (Moristita’s index of 76.1%; Table 5). In contrast, lesser spatial overlap

was observed between U. duvaucelii and U. chinensis, and between U. edulis and L. uyii, (Mor-

istita’s indices of 14.6% and 12.0%, respectively). There was complete spatial segregation

between U. chinensis and L. uyii (Moristita’s index = 0).

Discussion

The coastal waters of the northern South China Sea are characterized by high nitrate concen-

trations and enhanced primary production, which is responsible for the variety and abundance

of tropical and subtropical biota [32, 59, 60, 64, 65]. These features could affect the feeding

ecology of predators, especially species such as squids that are voracious and opportunistic

predators [12, 19–20, 26]. Here, we demonstrate that the four sympatric squids, U. duvaucelii,
U. edulis, U. chinensis and L. uyii, appear to be opportunistic carnivores, unselectively foraging

on common prey items in the coastal waters of the northern South China Sea. There is also a

clear spatial segregation among the four squids, which arises from niche differences [3–5, 73].

Fig 3. Canonical analysis of principal coordinates (CAP) based on size-class (a) and sampling station (b) of the fatty acid profiles

among Uroteuthis duvaucelii, Uroteuthis edulis, Loliolus uyii and Uroteuthis chinensis in northern South China Sea. Station in (b)

corresponds to the stars in Fig 1.

https://doi.org/10.1371/journal.pone.0234250.g003
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The spatial segregation appears to be a mechanism to reduce competition in resource use for

these sympatric species in the coastal water of the northern South China Sea.

There were significant differences in the total content of fatty acid profiles among U. duvau-
celii, U. edulis, U. chinensis and L. uyii probably due to variation in their lipid contents. Fatty

acids form an essential and integral part of living organism’s lipids, the content of which in

turn is responsible for the total amount of fatty acids [36, 48, 52]. Although squids are well doc-

umented for low lipid content (usually 2% on a wet weight basis [40, 74, 75]), there appear to

be species-specific differences in the lipid content. For example, it has been reported that the

lipid content of muscle tissue on a wet weight basis is around 0.8% for Todarodes filippovae
[58] compared to 2% for Onykia ingens [56]. Thus, although we have not determined the lipid

Fig 4. Percentage of specimens collected by sampling station for Uroteuthis duvaucelii, Uroteuthis edulis, Loliolus uyii, Uroteuthis
chinensis. S1, S2,. . ..S6 correspond to the stations in Fig 1. The size of grey circle represents the percentage of specimens collected at the

station.

https://doi.org/10.1371/journal.pone.0234250.g004

Table 5. Spatial niche overlap (%) among pairs of squid species—Uroteuthis duvaucelii, Uroteuthis edulis, Loliolus
uyii, Uroteuthis chinensis in northern South China Sea.

Species Urd Ure Urc Lou

Uroteuthis duvaucelii (Urd) -

Uroteuthis edulis (Ure) 0.6% -

Uroteuthis chinensis (Urc) 14.6% 76.1% -

Loliolus uyii (Lou) 4.6% 12.0% 0 -

Percentages were calculated based on Morisita’s index.

https://doi.org/10.1371/journal.pone.0234250.t005
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content for the four squid in this study, it would be expected that the difference in the total FA

content is the result of different lipid content due to phylogenetic differences [43, 47].

The revealed little variation in the relative content of the main FA classes (i.e., SFA, PUFA)

among the four squids is mainly contributed by the insignificant differences in the relative

content of most individual FAs used as trophic markers in aquatic systems. These individual

FAs include 16:0, 20:4n6, 20:5n3 and 22:6n3 [36, 76–78]. 20:5n3 indicates diatom-based food

web and is identified as tracer for first-order carnivores [36, 78], 16:0 and 22:6n3 are respec-

tively important tracers for omnivorous copepods and dinoflagellates, and are used as tracers

for second-order carnivores [36, 78, 79], and 20:4n6 is a recognized indicator for benthic

markers and top predators [76, 78]. Thus, the similarity in elevated levels of these FAs among

the four squids implies that these species display first-order and second-order carnivore ben-

thic feeding habit, an indication of opportunistic carnivore foraging strategy in the study area.

Additional evidence can be provided by the little variation in 16:1n7 between U. duvaucelii, U.

edulis and L. uyii, and the insignificant difference in 18:0 among the three Uroteuthis species,

in which 16:1n7 and 18:0 are recognized respectively as indicators for first-order carnivores

and second-order carnivores [78].

The similarity in the relative content of fatty acid profiles among the squids indicates spe-

cies to prey on similar prey items, given heterotrophes generally exhibit parallel patterns of

change in their FAs as they change their diets [36, 40, 46, 47, 50]. This is statistically confirmed

by the multivariate analyses, in which there was substantial overlap and high similarity in the

fatty acid compositions among and between pairs of species (Fig 2, S1 Fig). Although there is

no definitive way to determine and quantify the prey items on which these squids fed, the high

overlap of the fatty acid profiles of these species which justify sharing similar prey items, corre-

sponds with the results of stomach contents by Islam et al. [26] who reported that U. chinensis
and U. duvaucelii from the southwestern Gulf of Thailand displayed dietary similarity by feed-

ing on three major diet groups representing crustaceans, fish and molluscs. It is worthy to note

that each pair of the three Uroteuthis species consistently showed high similarity in fatty acid

composition compared to the high dissimilarity in the fatty acid composition between L. uyii
and U. duvanucelii and the significantly low levels of 18:2n6t, 18:3n3 and 22:1n9 in L. uyii, pos-

sibly suggesting phylogenetic differences in the bioaccumulation of fatty acids among these

species [43, 47]. Further research, however, are needed to address the effects of phylogeny, as

which is increasingly less important in higher trophic groups [78].

We also found that the fatty acid composition among the squids did not change with

increasing body size. This feature suggests that these squids may not shift diet ontogenetically,

but instead adopt a strategy that focuses on the amount and not quality of food as their vora-

cious feeding habits [12, 19–20, 26]. The abundant food resources in the coastal waters of the

northern South China Sea [32, 59, 60] may be a possible reason and meet their requirements

with ontogeny. Islam et al. [26] also reported that U. chinensis and U. duvaucelii in the south-

west of the Gulf of Thailand of different size-classes had high overlap in their food items and

minimal dietary shift with ontogeny. Preying on the common prey items with increasing size

may be an optimal foraging strategy for squid to maximize energy intake, enhance their

growth rate and minimize predation risk [80, 81]. We also found non-significant effects of

sampling station on the fatty acid composition for either species and among the four squids

considered simultaneously. This observation may suggest that the squids unselectively exploit

common prey items, presumably owing to the fairly stable species diversity of the northern

shelf of South China Sea [33].

It is known that overlap in dietary resources between sympatric species may lead to spatial

segregation, which appears to be the essential for coexistence [2, 73, 81]. The four squids

exhibit the characteristics of demersal predators, evidenced by the non-significant differences
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and high levels in the relative content of 16:0, 20:5n3 and 20:4n6, which are indicators for

demersal habitat [76, 78]. However, we found a clear spatial separation of the four squids in

the coastal waters, leading to low niche overlap among them except for U. chinensis and U.

edulis (Fig 3; Table 4). Regarding the spatial overlap between U. chinensis and U. edulis, we

found that the former distributed broadly (five out of the six sample stations) and evenly

whereas the latter was found predominantly in the northeast of the survey area. L. uyii was

only found at one sampling station inside the 50m isobath (Figs 1 and 4), and appears to

occupy a more brackish area as evidenced by the significantly higher level of 18:0, an indicator

for brackish habitats [78]. These observations suggest that the four squids likely exploit differ-

ent parts of the coastal waters. Similar patterns of spatial partitioning have been reported for

the sympatric squids I. argentinus, D. gahi, and O. ingens off the Patagonian Shelf, where they

exploit similar prey resources, with evidence for spatial segregation between mature D. gahi
and other squids [15]. Thus, spatial segregation may be one of the coexistence mechanisms for

these sympatric squids to reduce competition in resource use such as dietary sources.

Conclusion

In conclusion, our findings indicate that the four sympatric squids U. davaucelii, U. edulis, U.

chinensis and L. uyii are opportunistic carnivores, adopting a similar foraging strategy by unse-

lectively preying on common prey items in the coastal waters of the northern South China Sea.

Spatial segregation is likely a major mechanism that promotes their coexistence by reducing

competition for food resources, as well as possibly buffering their trophic interactions. The

abundant prey resources of the shelf waters of the northern South China Sea may allow them

to adopt the similar feeding strategy and also enhance the likelihood of coexistence within the

studied area. This is the first study to use fatty acid profiles to study the feeding ecology of

coastal squids in the northern South China Sea. The findings advance our understanding of

the feeding ecology of these sympatric squids. More importantly, our results provide a new

perspective on their ecology and illustrate how fatty acids can be used to understand feeding

strategy in terms of food resource use and species coexistence.
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