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A global assessment of the mixed layer in
coastal sediments and implications for
carbon storage

Shasha Song1,2,3, Isaac R. Santos 4,5, Huaming Yu6,7, Faming Wang 8,
William C. Burnett9, Thomas S. Bianchi 10, Junyu Dong11, Ergang Lian12,
Bin Zhao1,2, LawrenceMayer13, QingzhenYao1,2, ZhigangYu1,2 &BochaoXu 1,2

The sediment-water interface in the coastal ocean is a highly dynamic zone
controlling biogeochemical fluxes of greenhouse gases, nutrients, andmetals.
Processes in the sedimentmixed layer (SML) control the transfer and reactivity
of both particulate and dissolvedmatter in coastal interfaces. Herewemap the
global distribution of the coastal SML based on excess 210Pb (210Pbex) profiles
and then use a neural network model to upscale these observations. We show
that highly dynamic regions such as large estuaries have thicker SMLs than
most oceanic sediments. Organic carbon preservation and SMLs are inversely
related as mixing stimulates oxidation in sediments which enhances organic
matter decomposition. Sites with SML thickness >60 cm usually have lower
organic carbon accumulation rates (<50 gCm−2 yr−1) and total organic carbon/
specific surface area ratios (<0.4mgm−2). Our global scale observations reveal
that reworking can accelerate organic matter degradation and reduce carbon
storage in coastal sediments.

Coastal sediments record detailed historical changes of land-use and
climate, which can impact source-to-sink particle dynamics across the
land-ocean boundary1. These sediment records can be altered by
physical and/or biological mixing which can modify sedimentary
structures and obscure record interpretations2. Constraining the
thickness and location of the sediment mixed layer (SML) is essential
for resolving key pathways in marine biogeochemical cycles3,4. For
instance, the SML is an important driver of the exchange of nutrients,

organic carbon, redox-sensitive elements and greenhouse gases
between the seafloor and the overlying seawater5,6.

Quantifying the thickness of the SML is challenging, particularly in
highly dynamic coastal sediments. Atmospherically derived 210Pb (half-
life of 22.3 years) is a natural “tracer” for sediments accumulating over
time. Pioneering work using 210Pb for dating marine sediments7,
established chronologies in estuarine and coastal sediments8–10. In
rapidly changing coastal environments, sediments are commonly
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remobilized as stationary fluidmuds, and/or resuspended and laterally
transported as dense suspensions11,12. Particle reworking and remobi-
lization can result in loss of chronological information13–15 and is highly
heterogeneous spatially and temporally. Thus, the distribution and
thickness of the SML are important to improve global flux estimates of
dissolved and particulate constituents of key biogeochemical cycles in
Earth System Models16.

Neural networks have emerged as a powerful tool to resolve
complex spatial and temporal patterns that are common in large
datasets in the geosciences17,18. Some examples of neural networks
applications in the earth sciences include: hydrology, including
flooding forecasts, and water quality modeling19,20; geophysics/
geomorphology, including earthquake predictions, and simulating
land-use change21,22; and atmospheric sciences, by modeling cloud
formation and temperatures23,24. Recently, machine learning (e.g.,
K-nearest neighbor, random forest and neural networks) has been
applied to resolve important questions in oceanography, including
the global distribution of seafloor total organic carbon, benthic
properties, sediment porosity/density and sediment accumulation
rates25–30.

While the SML has been assessed on local and regional scales12,15,
global-scale datasets remain sparse. A tracer-identified surface mixed-
depth global mean value of 9.8 ± 4.5 cm was obtained in the 1990’s31,32

and later updated to 5.75 ± 5.67 cm33. Nevertheless, there remains a
significant gap in our knowledgeof the distributionpatterns of SMLs in
the global coastal ocean. Hence, we posit that a more accurate esti-
mate of SMLs is needed for better incorporation into global biogeo-
chemical ocean models.

Here, we define the SML as the sediment thickness captured by
210Pbex profiles that has been reworked over time scales of months34,35.
We estimated SML thicknesses in the global coastal ocean by compil-
ing data from 742 globally distributed sediment cores. First, we eval-
uated the spatial patterns and drivers of sediment mixing. We then
used a neural network model to estimate the thickness of SMLs in the
entire global ocean shallower than 200m, linked it to organic carbon
burial in marine sediments. This global assessment of coastal SMLs
improves our ability to estimate and interpret the burial capacity and
remineralization of organic matter and nutrients in ocean sediments.

Results and discussion
Estimating the global coastal sediment mixed layer
Profiles of excess 210Pb (210Pbex) in coastal shelf and estuarine sedi-
ments, devoid of sediment mixing, typically reflect exponential decay
with depth1. Vertical 210Pbex profiles have previously been divided into
eight types to cover multiple mixing possibilities12. Here, we simplified
this classification into five common types (Fig. 1a). A Type I profile is
produced by constant sediment accumulation under steady-state
conditions. In contrast, Type II profiles show no excess 210Pb activities
with depth, reflective of scoured, eroded areas with exposures of once
deeply buriedmaterial34. These twoprofiles are produced by sediment
deposition in non-reworked settings; the other three types of 210Pbex
profiles reflect disturbances related to sediment mixing (physical and/
or biological). A Type III profile reflects constant 210Pbex activities along
the upper layers of the core overlaying an exponentially decaying
trend, usually attributed to mixing from sediment resuspension or
reworking very recently (months to years)35,36. A Type IV profile also

Fig. 1 | Profiles of excess 210Pb (210Pbex) in global coastal ocean. a Sketches of five
sedimentary 210Pbex patterns in coastal areas based on downcore 210Pbex profiles;
the x-axis represents 210Pbex activities. The frequency (b) and global distribution (c)
of five types of 210Pbex profiles in the global coastal ocean is based on data from

1093 cores collected from the literature (Supplementary Data 1). Map of panel c
generatedwith python3-mpltoolkits.basemap (version 1.2.1, https://matplotlib.org/
basemap/).
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reveals an intense reworked surficial layer during an episodic dis-
turbance event such as a storm, leading to deep homogenous 210Pbex
activities in the upper section, overlying sediments with no excess
210Pb. The Type V profile can be used as evidence of repetitive
reworking anddeposition in a highly reworkedmud stratigraphy37. The
criteria used here in defining the thickness of the SML is based on the
upper homogenized layer of 210Pbex in Type III and Type IV profiles,
indicative of mud layers reworked on a timescale of months. Since any
exclusion of other 210Pbex profile types can result in an underestimation
of mixing depths. Thus, our use of Type III and Type IV profiles
represents a conservative estimate of SML thicknesses on a global
scale. Furthermore, it is possible that an exponential decrease in the
upper section of a Type I profile could originate from slow/deep bio-
turbation. This kind of reworking is indistinguishable from profiles
originating from sediment accumulation and/or a combination of
sediment accumulation and bioturbation.

We compiled 1093 published 210Pbex profiles from the global
continental shelf (see Methods and Supplementary Data 1). The
geographic distribution of 210Pbex profile types of all 1093 sites
(Fig. 1b, c) revealed a dominance of Type III, followed by Type I.
Studies that used gravity cores to define SML were not applied in
our modeling (except for the Amazon Shelf), because gravity cores
are well-known to create a bow wave artifact that disrupts near-
surface sediments38. However, the significant greater thicknesses of
the SML in the Amazon Estuary made it difficult to obtain a com-
plete 210Pbex profile when using short box-cores (<1 m). So, gravity-
core data were included when analyzing SMLs in Amazon Shelf
sediments. Overall, 742 cores had complete 210Pbex profiles and
recognizable SMLs to be used in our model.

The overall thickness of SMLs in the coastal ocean proved to be
very heterogeneously distributed; ~47% of the SMLs were >5 cm, 36%
had SMLs ranging from 5–20 cm, and only 3% had SMLs thicker than
30 cm(Fig. 2a). ThickSMLsprimarily occurred in large-river delta-front
estuaries (LDEs). Deepmixing could be viewed as inconsistent with the
notion that these sediments are potential “recorders” of past natural
and anthropogenic changes39. However, thick SMLs demonstrate the
heterogeneity of depositional environments in LDEs, and the need for
careful site selection of sampling locations for paleo-reconstruction
work, which has proven to be successful in someLDEs (e.g.,Mississippi
River)40,41. These LDEs include the Yangtze (SML usually >20 cm and
reaching m>100 cm locally, Fig. 2b)12, Amazon (usually >100 cm,
Fig. 2c)42, and Ganges. SMLs in Asia are thicker, with thicknesses of
10–0 cm estimated to be 23% of the total (Supplementary Fig. 1). This
finding is not surprising since Asia has the largest number of great
rivers in the world43. In contrast, much thinner SMLs (0–5 cm, 35%)
were found in North America away from large-river sources. In some
enclosed marginal seas such as the Gulf of Mexico (Fig. 2d), Gulf of
California and the Baltic Sea, the SML thicknesses are also significant,
reaching up to 40 cm. Areas with negligible SMLs are mainly found in
the coastal ocean at high latitudes.

Drivers of SML
The SML thickness is controlled by (1) environmental factors such as
precipitation, temperature, and water depth; (2) physical factors
including winds, tides, waves, and bottom stress; (3) biological activ-
ities including feeding and burrowing; and (4) sediment sources. We
identified 12 influencing factors (Methods) and analyzed their rela-
tionship to SMLs (Supplementary Fig. 2). The strongest correlation

Fig. 2 | The thickness of the sediment mixed layer (SML) estimated by excess
210Pb (210Pbex) profiles. a The global coastal ocean with 742 sites; b The coastal
ocean of East Asia; c The Amazon Estuary; and d Gulf of Mexico. Maps

generated with python3-mpltoolkits.basemap (version 1.2.1, https://matplotlib.
org/basemap/).
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coefficients, in rank order, were river discharge (0.58), bottom stress
(0.52), total suspendedmatter (0.35), primary productivity (0.20), and
water depth (0.16). Correlations between SML and other potential
drivers such as sediment accumulation rate, relative sea level change,
tropical cyclone frequency and mean annual precipitation were non-
significant. Bottom stress alone predicts a tight response of SML
thickness with a range of 2m (Supplementary Fig. 3a). Removing
values with bottom stress >1 Pa shows that primary productivity
(implying food-driven bioturbation) also predicts SML thickness
(Supplementary Fig. 3b), with values consistent with depths mixed by
animals32. Thus, we infer that physical forces account for the greatest
sediment disturbance in coastal oceans, but that bioturbation is a
strong control in regions with little physical mixing. Shallow systems
with large sediment sources (such as deltas) usually have higher SML
thicknesses due to stronger hydrodynamic forcing and larger water-
sheds with more extensive and varied human disturbances.

We incorporated these five strongest SML drivers into our neural
network model to predict global SMLs (see Methods section). Since it
is well established that SMLs largely occur in fine-grained deposits
(e.g., both organic and inorganic particles)44, the 210Pbex profiles used
here are almost exclusively from muddy deposits.

Global upscaling with a neural network model
Our neural network simulation of SMLs in the global coastal oceanwith
water depths shallower than 200m predicts that >50% of the SMLs
have a thickness of 0-5 cm, with only 3% thicker than 30 cm (Fig. 3a).
The maximum SML thickness of nearly 200 cm was found in the
Amazon Delta (Fig. 3b) due to the abundant river particulate sources
and high bottom stress. Other areas with thick SMLs include the inner
shelf of the Gulf of Mexico (Fig. 3c), and the East China Sea (Fig. 3d).

Areas such as the northwest Australia, the Fly River Estuary, the Bay of
Bengal, and the Hudson Bay had SML thicknesses of ca. 30 cm. In high
latitude areas such as the Arctic, southern regions of Africa, northern
America, and southern Australia, SMLs approached 0 cm. Overall,
these model simulation results matched well with empirical observa-
tions (Fig. 2) with a correlation coefficient of 0.73 (Supplemen-
tary Fig. 4).

Based on a probability distribution of modeled average SML
thicknesses (Supplementary Fig. 5), the average SML thickness in fine-
grained sediments of the global coastal ocean is estimated to be in the
range of 7.0 ~ 10.0 cm. Most modeled results occur between
8.0 ~ 9.5 cm, with a mean value of 8.5 ± 0.6 cm, which is between pre-
vious estimates of 5.7 cm33 and 9.8 cm32. The timescale of SML forma-
tion varies depending upon the environmental conditions. Individual
particles within the SML, both organic and inorganic, will range in age
depending upon the sediment accumulation rate and intensity of
physical and biologicalmixing45. For example,mudflats adjacent to the
Amazon River estuary have deposition rates reaching 1 cm per day46.
Similarly, continental shelf sediments near the mouth of the Yangtze
River, have short-term deposition rates of 4.4 cm per month47. In the
northern Gulf of Mexico, near the Mississippi/Atchafalaya LDE com-
plex, SMLs with thicknesses of 10–20 cm, were formed within 1 year48.
Many reported SMLs deposit over seasonal to inter-annual
timescales49.

Marine sediments host significant levels of biogenicmaterials that
drive biogeochemical exchange, carbon storage and regulation of
greenhouse gases50. Previous studies addressed mixing intensity and
depth in marine muds dominated by bioturbation33,51,52. We focus
here on coastal ocean sediments, where mixing is strongly affected
by physical (e.g., waves and/or currents set up by rivers, storms),

Fig. 3 | Simulationof sedimentmixed layer (SML) thicknesses. a The global coastal ocean;bThe Amazon Estuary; cGulf ofMexico; anddThe coastal oceanof East Asia.
Maps generated with python3-mpltoolkits.basemap (version 1.2.1, https://matplotlib.org/basemap/).
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biological (e.g., bioturbation) andhuman (e.g., trawling) driving forces.
The presence of hypoxia/anoxia will limit the presence of infauna
which, in turn, will limit the thickness of SMLs driven by biological
factors. For example, in cases where bottomwaters are anoxic, such as
the basins off California, SMLs are absent8. Hypoxia/anoxia is
increasing inmany areas around the world such as in the northernGulf
of Mexico53, where SML thicknesses are likely to decline with smaller,
more opportunistic benthic species dominating in sediments54. Our
neural network model allows for a more comprehensive and quanti-
tative understanding of reworked muds, induced by physical, biolo-
gical, and anthropogenic factors, in the coastal ocean.

Implications for carbon storage
As anthropogenic climate change modifies the global ocean, the
importance of CO2 sequestration and carbon storage in sediments has
received considerable attention55. Coastal margins including man-
groves and saltmarshes cover ~16% of the global seabed area but
account for > 90% of total ocean OC burial56, thereby playing a central

role in the global carbon cycle. Reworked muds, including mobile
muds, resuspended sediments, and bio-mixed muds, are subject to
long-term hydrodynamic sorting, which has significant impacts on OC
transport, degradation, and deposition on ocean margins, as well as
interpretations of related climate records57.

Continuous resuspension and redeposition drive periodic
oxidation-reduction cycles that accelerate the degradation of organic
matter, making the mixed zones effective “incinerators” of organic
matter58. Enhanced remineralization of sedimentaryOC can reduceOC
accumulation rates (OCAR)59; in contrast, to more quiescent sedi-
mentary environments, that typically favor OC preservation6. Total
organic carbon/specific surface area (TOC/SSA) ratios, commonly
used as an indicator of OC preservation that normalizes grain size
effects, are usually lower in mobile-mud deposits and higher in high
productivity/upwelling regions60,61.

Sediment mixing, as reflected by thicknesses of SMLs, appears to
strongly impact organic carbon (OC) preservation in the coastal ocean.
The distribution patterns of OCAR (Fig. 4a) and TOC/SSA ratios

Fig. 4 | Impacts of sediment mixed layer (SML) on organic carbon storage.
a Distribution of organic carbon accumulation rates (OCAR) in the global coastal
ocean (reproduced with permission from “Harris, P. T. & Macmillan-Lawler, M.
Global Overview of Continental Shelf Geomorphology Based on the SRTM30_PLUS
30-Arc Second Database. In: Finkl, C., Makowski, C. (eds) Seafloor Mapping along
Continental Shelves. 169-190 (2016)”, copyright of © 2016 Springer International

Publishing Switzerland); b Distribution of the total organic carbon/specific surface
area (TOC/SSA) ratios in global coastal sediments; c Sedimentmixed layer (SML) in
different shelf morphotypes; d Plot of OCAR versus SML thickness in global coastal
ocean sediments; e Plot of OCAR and TOC/SSA ratios versus SML thickness in
global coastal ocean sediments. Maps generated with python3-
mpltoolkits.basemap (version 1.2.1, https://matplotlib.org/basemap/).
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(Fig. 4b) indicate that OC preservation in different geomorphic set-
tings is highly related to SML thickness. The global coastalmargins can
be divided into four major morphotypes: narrow-shallow type (SN),
deep-glaciated type (DG), wide-flat type (WF), and shelves having
intermediate values to the other three morphotypes (IM)62. The aver-
age thicknesses of SMLs, in these four morphotypes, are 5.8, 3.6, 6.5
and 9.9 cm, respectively. Intense sediment reworking is mostly found
in IM coastal-shelf settings, with >22% of SML deeper than 10 cm and
about 2% >60 cm (Fig. 4c).Most of the largest, river-dominated coastal
margins (e.g., Amazon, Mississippi, and Ganges) are categorized as the
IM type (Fig. 4a). An inverse relationship between OCAR and SML
thickness (Fig. 4d) implies that OCAR decreases significantly when the
SML thickness is thicker than 10 cm.

For regions with OCAR >400 gC m−2 yr−1, almost all SMLs are
thinner than 10 cm. For example, themangrove-dominated Indonesian
coast has OCAR= 1722 g C m−2 yr−1 with an SML of <10 cm (Fig. 4a). In
contrast, the SML in the Amazon Shelf is thicker than 60 cmandOCAR
is <50gCm−2 yr−1. In themobile-mudbelt of the Amazon Estuary, >50%
of the OC input from the river is oxidized and decomposed, and only
13–17% of the overall OC input is stored in the seabed14. Frequent
resuspension and redeposition of mobile muds enhance OC degra-
dation by increasing exposure to powerful oxidants such as oxygen14,
as well as labile organic matter that acts as primers47. Mobile muds are
thus important sites for remineralization of OC. Similarly, high TOC/
SSA ratios are foundat siteswith thin SML (e.g., >1.5mgm−2 when SMLs
<10 cm), and lower TOC/SSA ratios in areas with thick SMLs (e.g.,
<0.4mgm−2 when SMLs >60 cm) (Fig. 4e).

In the other three coastal morphotypes, <10% of SMLs have
thicknesses >10 cm (Fig. 4c). In the DG coastal-shelf settings, >30% of
the sites have negligible SMLs. At high latitudes, deglaciation is chan-
ging coastal sedimentary dynamics, particularly in fjords63, resulting in
local changes in the density of deposits and sources of OC64. Weak
sediment reworking is associated with OC preservation in polar con-
tinental margins. For example, coastal sediments in north-east
Greenland, characterized by sediments with shallow SMLs had OCAR
at 1540 gCm−2 yr−1 (Fig. 4a)65. Therefore, identifying the thickness and
distribution of SMLs in high latitude systems needs further attention,
as these regions experience dramatic alterations in the sedimentary,
cryospheric and hydrologic cycles (https://www.ipcc.ch/report/sixth-
assessment-report-working-group-i/).

Narrow shelf (SN) coastal oceans minimize mineralization of car-
bon along the transmission path66. Interestingly, reported TOC/SSA
ratios are all >0.4mgm−2 (Fig. 4b), consistent with more rapid trans-
port and reduced OC decay in such geomorphic settings. Wider
shelves (WF) with widths up to 380 km largely occur in high latitude
regions such as the Arctic, the Siberian Shelf and Chukchi Sea (Fig. 3a)
and had very thin SMLs (<5 cm). Lower latitude WF settings (e.g., Yel-
low Sea and the inner shelf muddy area of the East China Sea60) have
thicker SMLs. Sedimentary OC in these mobile-mud regions experi-
ence frequent sediment reworking with rapid Fe redox cycling and
long-distance transport, resulting in low OC burial (Fig. 4a, b) and OC
preservation efficiency (~30%)67–69.

The estimated thicknesses of SMLs here are based on a decadal
time scale from 210Pb profiles, provide a strong connection for asses-
sing carbon storage. These correlations provide global-scale evidence
that refreshed exposure of sedimentary OC to the overlying water
column reduces OC accumulation. Specific mechanisms will vary
among sites andwill have different impacts among shelfmorphotypes.
The simulationpresented here provides a first step establishing amore
global characterization of SMLs in the current global coastal ocean.
This characterization can lead to more insights about hotspots of
organicmatter cycling in marine sediments56, which canmore broadly
support Earth System Models. Finally, as many marine macrofaunal
benthos in the coastal ocean are undergoing poleward range

expansiondue to globalwarming70, SMLswill likely undergo additional
change that will also need to be included in ongoing modeling efforts.

Methods
Data source
The Web of Science (Thomson Reuters, New York, NY), Google Scho-
lar, and Bai Du Scholar were utilized to search the literature using the
following key words or phrases: 210Pb with coastal and/or estuary; and
reworked muds and/or mixed layer. The data repository created by
Solan et al.71 provided an excellent base to show relationships between
benthic faunal community distribution and sediment characteristics,
and we also obtained additional 210Pbex profiles from references
therein.We compiled 238 studieswith 1093 sites having 210Pbex profiles
distributed globally. Data source references are presented in the
Supplementary Data 1. About 62% of the sites were located on con-
tinental shelves between 0 ~ 200m water depth, and the remaining
locations were in intertidal mud/sand flats, wetlands, and the
deep ocean.

Environmental factors, physical dynamics and biological activities
were collected for each site and presented in Supplementary Data 1,
including mean annual precipitation, water depth, total suspended
matter, tidal range, relative sea level rise rate, tropical cyclone fre-
quency, bottom stress, primary productivity, river discharge, river
sediment load and sediment accumulation rate, to explore for drivers
of the SML in the coastal zone.

Tidal ranges were extracted from a global tidal range dataset72,73

and water depths from the ocean bathymetry database (https://
www.ngdc.noaa.gov/mgg/global/global.html). Tropical cyclone
effects and hazard risks were based on the Global Cyclone Hazard
Frequency and Distribution, v1 dataset (1980–2000), and assessed
on a 2.5min’ global grid. More than 1600 storm tracks were
assembled and modeled, through the period January 1st, 1980, to
December 31st, 2000, for the Atlantic, Pacific, and Indian Oceans, at
UNEP/GRID-Geneva PreView (https://www.ldeo.columbia.edu/chrr/
). Sediment types were collected from seafloor lithology in the
GplatesPortal74. We added about 7800 points in areas with poor data
coverage and reproduced a new digital map of seafloor lithology
(Supplementary Fig. 6). We simulated SML only for sites with fine-
grained sediment (silt and clay). In coastal wetlands, sediment
accumulation rates were obtained from a recent global assessment
of saltmarshes and mangroves75. Data of mean annual precipitation
were acquired from world climate data, European Climate Assess-
ment & Dataset76. For relative sea level rise rates, data were collected
from the Permanent Service for Mean Sea Level database77. Total
suspended matter was derived from Medium Resolution Imaging
Spectrometer satellite data, processed in the framework of the
GlobColour project73. The dataset of river discharge comes from
“Dai and Trenberth Global River Flow and Continental Discharge
Dataset”78, which were interpolated according to the river discharge
and distance to obtain the river discharge influence at each data
point. The data of bottom currents are from TPXO global tide
models79. The sediment load of global large rivers is from the dataset
by Milliman and Katherine80. Satellite-observed monthly global cli-
matology sea surface chlorophyll-a concentration and primary
production with 4 km resolution were downloaded fromCopernicus
Marine Service (https://resources.marine.copernicus.eu/). Annual
average chlorophyll-a concentration and primary production were
originally calculated using these climatology data, which were then
linearly interpolated for each location. Part (165 sites) of the organic
carbon accumulation rates (OCAR) data for global tidal marshes and
mangroves was extracted from the study of Wang et al.75. The
remaining estimates of OCAR and TOC/SSA ratios were collected
from the literature and both the actual data and relevant references
are listed in the Supplementary Data 1.
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The neural network model
A supervised multilayer perceptron (MLP), the most commonly
applied type of neural networks81, was employed to assess the dis-
tribution of SML in the global coastal ocean. Briefly, a neural network is
a set of neurons that can be connected and combined in one or mul-
tiple layers. The first layer, called the input layer, consists of the source
data. There are then intermediate layers, called hidden layers. The
resulting output, in this case the thickness of the SML, is obtained in
the last layer. Two key issues inMLP design are the specification of the
number of hidden layers and the number of neurons in these layers.
Once the number of layers and number of neurons in each layer have
been selected, the network’s weights and thresholds must be set to
minimize thepredictionerrormadeby thenetwork; this task is the role
of the training algorithms.

Four essential stepswereused indesigning theneural network: (a)
collecting data, (b) preprocessing data, (c) building the network, and
(d) training and test performance of the model (Supplementary
Fig. 7)82. After data collection, correlation analysis and data normal-
ization were used to train the neural network more efficiently. For
correlation analysis, several highly correlated factors were selected,
and transformed into values between0 and 1 using data normalization.
The selecteddatawere divided into two randomly selected groups, the
training groupwhichcorresponded to 70%of thepatterns, and the test
group, which corresponded to the remaining 30% of the patterns.

Training a MLP helps to accurately estimate desired dependent
variables or outputs. To do this,multiple calculations are carried out to
modify the weights of every one of the connections between neurons.
The first step in this process is achieved with an activation function
(equation [1]), which handles all the data that enters a neuron83.

xk = ∑
j = 1

wjkyj ð1Þ

where wjk stands for the weight that represents the connection
between layers j and k, yj is the value of the input, which is introduced
in a neuron, and xk is the solution provided by the activation function.

The accuracy of the various predictions was evaluated using the
correlation coefficient (CC), the root mean-square error (RMSE), the
mean absolute error (MAE), and percent correct (PC) between the
measured values and the predicted values. Here, we used MAE and R2

score to evaluate the neural network model. There are other algo-
rithms with very different principles that may also be suitable for
predicting SMLs, such as K-nearest neighbor (KNN), Random Forest
(RF) and support vectormachine (SVM). We compared each algorithm
based on their performance and found that the MLP was the most
applicable algorithm for predicting global SML (Table S1).

Structure of the neural network
The optimal architecture of the developed artificial neural network
revealed three hidden layers of 20, 40 and 10 neurons (Supplementary
Fig. 8). The neurons in the input layer were equal to the five predictors
with the best statistical correlation results. This nonlinearity in a neural
network model presents advantages and disadvantages. For example,
it is difficult to determine the values of the parameters in a computa-
tionally intensive nonlinear optimization. Thus, a trial-and-error
approach was used to determine a network with optimum perfor-
mance. After each iteration, the network outputs were compared to
the actual target values until the performance function was
maximized.

Output values were compared with expected values based on the
training data, and the errors computed. Through iterative propagation
of errors back to the network, the connection weights were auto-
matically adjusted until the target minimum error was attained. To
achieve this, different tests were conducted, and the best learning rate
and training time (epoch) obtained were constant at a level of 3000.

When epochs reached 3000, the MAE decreased to 0.32 (after data
normalization) and remained stable, and the R2 was 0.475.

Global upscaling based on the neural network model
A global map was equally divided into 1000× 1000 grids using ArcGis
(10.2), resulting in about 50,000 sites along the coastal zone and
continental shelf to water depths of 200m. Each grid is 20 × 10 arcmin
with an area of ca. 510 km2. The operational steps in ArcGis included
attributes extraction, fishnet creation, location selection, and data
export. Finally, we entered the grid into the trained neural network
model to predict the thickness of SML with the same grid resolution.
The model prediction results are available as a downloadable file
(Supplementary Data 2).

Data availability
The data generated in this study are provided in the Supplementary
Information and SupplementaryData 1 and 2, and also deposited in the
Zenodo online repository at https://doi.org/10.5281/zenodo.6901752.

Code availability
The code used in this study are available at: https://doi.org/10.5281/
zenodo.6890194.
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