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Abstract: In this report, we employed the solid-phase synthetic approach to prepare variously sub-
stituted dihydropteridinones, tetrahydropyrrolopteridinones, and pyrimidodiazepinones, using a
versatile building block-4,6-dichloro-5-nitropyrimidine. All these compounds are pharmacologically
significant scaffolds of the great importance of medicinal chemists. The fast and efficient synthetic
methodology is highly desirable for defining their structure-activity relationship (SAR) and optimiz-
ing pharmacokinetic properties. Our research efforts utilize simple synthetic methods to generate
a library of analogues for future SAR studies. The efficiency of our approach was exemplified in
various pteridinones as well as pyrimidodiazepinones.
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1. Introduction

Pteridinones and pyrimidodiazepinones represent an important group of heterocyclic
compounds that have attracted enormous attention within medicinal research, especially
in the last decade [1–15]. Many of them have been intensively studied as Polo-like ki-
nases inhibitors (serine/threonine kinases playing a crucial role during mitosis, and their
deregulation can be observed in many types of tumors) [2–5,7,8,10–12,15]. Of these com-
pounds, dihydropteridinone BI-2536 [3,12,13,15] or pyrimidodiazepinone TAK-960 [16]
(Figure 1) reached advanced clinical trials and have been taken into considerable attention
due to their anticancer effects in any kind of tumors. Another example is 2-butoxy-7,8-
dihydropteridin-6(5H)-one analogue GS9620 (Vesatolimod, Figure 1) discovered as Toll-like
receptor agonists being currently under clinical evaluation for the treatment of HBV and
HIV positive patients [17,18]. Interestingly, pyrrolopteridinone ATPA18 (Figure 1) was
identified as a nontoxic, cell-permeable, and reversible inhibitor of the RNA interference
pathway [14].

The literature described methodologies leading to the synthesis of 7,8-dihydropteridin-
6(5H)-ones based on various synthetic approaches comprising either traditional solution-
phase synthesis or solid-phase synthesis (Figure 2) [1,2,8,19–23]. The most convenient
solution-phase synthesis of dihydropteridinone heterocycle consists of the cyclization of ap-
propriately substituted pyrimidine with modified amino ester. The successful solid-phase
synthesis of dihydropteridinones lies in preparing a suitable resin-bound intermediate that
is cyclized and subsequently cleaved from the resin. In 2000, Baxter et al. published the
first solid-phase synthesis of dihydropteridinones using Wang resin (Figure 3) [19]. This
work was followed by Metzger et al., who used ArgoGel resin instead [21].

In contrast to dihydropteridinones, the number of synthetic strategies leading to fused
pyrrolopteridinone or pyrimidodiazepinone is rather limited.

The abovementioned examples of biologically active compounds (Figure 1) demon-
strate the extensive application of dihydropteridinone-based compounds in the field of
medicinal chemistry. Dihydropteridinone offers a diverse range of modifications that may
significantly contribute to comprehensive SAR studies. Given this fact, it is highly desirable
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to find an advantageous synthetic methodology to implement structural diversity from
the readily available building blocks through minimum synthetic operations. For this
reason, we selected the fast and straightforward solid-phase synthesis strategy leading to
the generation of pteridinone and pyrimidodiazepinone libraries for future SAR studies
utilizing one versatile building block (Figure 3).
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2. Results and Discussion

Utilizing the versatile building block 4,6-dichloro-5-nitropyrimidine, we synthesized
structurally three different types of compounds 1–3 from pyrimidine precursor 4 (Figure 3).
To determine the scope and limitations of our synthetic pathway leading to cyclized
products, we tested a combination of different amino acids R and primary and secondary
amines of varying sizes. The synthesis was enabled by immobilization of amino acids via
esters on a Wang resin in all cases.

2.1. Synthesis of Dihydropteridinones

Synthetic strategy leading to target dihydropteridinones 1 is depicted in Scheme 1.
The solid-phase synthesis of intermediate 7 was performed according to our previous
reports [24–26]. Briefly, the Wang resin was acylated with Fmoc protected Phe, Val, or Met.
This reaction was followed by cleavage of the Fmoc-protecting group and nucleophilic
reaction with 4,6-dichloro-5-nitropyrimidine giving intermediates 6. As we described
earlier, these intermediates are not stable and were immediately reacted with an appropriate
amine, affording resin-bound nitro derivatives 7.
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Scheme 1. Reagents and conditions: (i) Fmoc-amino acid, N-hydroxybenzotriazole (HOBt), DMAP, DIC, DMF/DCM (1:1,
v/v), rt, 16 h; (ii) 50% piperidine/DMF, rt, 15 min; (iii) 4,6-dichloro-5-nitropyrimidine, DIEA, dry DMF, rt, 2 h; (iv) amine,
DIEA, DMF, rt, 16 h; (v) Na2S2O4, K2CO3, ethylviologen diiodide, DCM/H2O (1:1, v/v), rt, 16 h; (vi) 50% TFA/DCM, rt, 1 h;
and (vii) Zn, AcOH, rt, 1 h.

Further, the nitro group of 7 was reduced using sodium dithionite under phase-
transfer catalysis conditions in a DCM–water solution. Finally, TFA-mediated cleavage
from the polymer supports triggered cyclization of the dihydropteridinone heterocycles 1.
All products 1 were obtained in excellent crude purities (estimated from UV−vis spectra at
210–400 nm). However, overall yields were meagre, especially for methionine amino acid
(below 20%). Subsequently, we found out that cyclization leading to dihydropteridinones
1 occurred spontaneously during the nitro group reduction and inadvertently cleaved
desired products were wash out with washing solvents.

For this reason, we changed the strategy and cleaved intermediate 7 from the resin
before the nitro group reduction. After simple evaporation of the cleavage cocktail, crude
intermediates 9 were subjected to reducing nitro groups using Zn in acetic acid simulta-
neously, followed by immediate acid-catalyzed cyclization. Products 1 were obtained in
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excellent crude purities in most cases and overall yields 41–92% after column chromatogra-
phy (Table 1).

Table 1. Overview of synthesized dihydropteridinones 1.
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amines, and subsequent cleavage from the resin. Zinc-mediated reduction of the nitro 
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ness to cyclization is a bit lower compared to the higher mentioned dihydropteridinones 
1. When a shorter reaction time was used, amino derivatives 13 were also observed. 

 
Scheme 2. Reagents and conditions: (i) Fmoc-Pro-OH, N-hydroxybenzotriazole (HOBt), DMAP, DIC, DMF/DCM (1:1, v/v), 
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Table 2. Overview of synthesized tetrahydropyrrolopteridinones 2. 

 

Product R2 
Crude Purity a 

[%] 
Final Purity b 

[%] 
Overall Yield c 

[%] 

2a 
 

68 98 75 

2b 
 

63 99 47 

2c 
 

65 98 87 

2d 
 

95 98 81 

2e 
 

79 97 80 

73 97 65

a Overall purity of crude products estimated from LC-MS traces at 210–400 nm; b Determined from the HPLC-UV
traces after purification (210−400 nm); and c Isolated yield after purification.

2.2. Synthesis of Tetrahydropyrrolopteridinones

Similarly, as dihydropteridinones 1, a series of tetrahydropyrrolopteridinones 2 was
prepared, as shown in Scheme 2. Briefly, nitro derivatives 12 were prepared from Wang
resin acylated with Fmoc protected proline followed by deprotection, nucleophilic substi-
tution with 4,6-dichloro-5-nitropyrimidine, further nucleophilic substitution with various
amines, and subsequent cleavage from the resin. Zinc-mediated reduction of the nitro
group in acetic acid for 3 h yielded desired pyrrolopteridinones 2 (Table 2). The willingness
to cyclization is a bit lower compared to the higher mentioned dihydropteridinones 1.
When a shorter reaction time was used, amino derivatives 13 were also observed.
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Scheme 2. Reagents and conditions: (i) Fmoc-Pro-OH, N-hydroxybenzotriazole (HOBt), DMAP, DIC, DMF/DCM (1:1, v/v),
rt, 16 h; (ii) 50% piperidine/DMF, rt, 15 min; (iii) 4,6-dichloro-5-nitropyrimidine, DIEA, dry DMF, rt, 2 h; (iv) amine, DIEA,
DMF, rt, 16 h; (v) 50% TFA/DCM, rt, 1 h; and (vi) Zn, AcOH, rt, 3 h.

Table 2. Overview of synthesized tetrahydropyrrolopteridinones 2.
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Crude Purity a 
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2.3. Synthesis of Pyrimidodiazepinones

Finally, we tested the scope and limitations of reported cyclization during the prepa-
ration of pyrimidodiazepinones 3 (Scheme 3). The required β-alanine intermediates 16
were synthesized in a similar way to previous dihydropteridinones. However, β-alanine
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substituent emerged unwilling to cyclize giving desired pyrimidodiazepinones 3. When
the reduction with expected simultaneous cyclization was performed at room temperature
for 3 h, as in the previous case of pyrrolopteridinones 3, only noncyclized amino derivatives
17 were observed. For this reason, a prolonged time of 16 h was applied; however, only
traces of product 3a were apparent after this reaction time, as shown in Table 3.
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Subsequently, we found out that heating to higher reaction temperature accelerated
the conversion. When the reaction was carried out at 50 ◦C, cyclized products 3 were
apparent beside noncyclized amines 17 (according to LC-MS traces at 205−400 nm). Finally,
we found out that the cyclization could be achieved at 80 ◦C using at least 3 h reaction time.
It is worth noticing that the willingness to cyclize depends on the type of modification R2

(Table 3). Products 3 were obtained in crude purities 49–69% and overall yields 38–55%
after column chromatography (Table 4).

Table 4. Overview of synthesized pyrimidodiazepinones 3.
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3. Materials and Methods

Solvents and chemicals were purchased from Sigma-Aldrich (St. Louis, MO, USA)
or Fluorochem (Hadfield, UK). The polystyrene resins were purchased from Aapptec
(Brossard, Canada). The synthesis was performed on Domino Blocks in disposable
polypropylene reaction vessels obtained from Torviq (Niles, MI, USA). Analytical thin-layer
chromatography (TLC) was performed using aluminum plates precoated with silica gel
(silica gel 60 F254).

All reactions were carried out at room temperature (21 ◦C) unless stated otherwise.
Resin slurry was washed with the appropriate solvent (10 mL per 1 g) by shaking for 1 min.
All intermediates were characterized by the LC-MS analysis. For this purpose, a sample
of the polymer-bound compound (~5 mg) was treated with 50% trifluoroacetic acid (TFA)
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in dichloromethane (DCM) for 30 min. Residual solvents were evaporated by a stream of
nitrogen and residuum extracted into 1 mL of MeOH.

The LC-MS analyses were carried out on the UHPLC-MS system (Waters, Santa
Clara, USA). This system consists of UHPLC chromatograph Acquity with photodiode
array detector and single quadrupole mass spectrometer and uses a XSelect C18 column
(2.1 × 50 mm) at 30 ◦C and flow rate of 600 µL/min. The mobile phase was (A) 10 mM
ammonium acetate in HPLC grade water and (B) HPLC grade acetonitrile. A gradient was
formed from 10% A to 80% of B in 2.5 min; kept for 1.5 min. The column was re-equilibrated
with a 10% solution of B for 1 min. The ESI source operated at a discharge current of 5 µA,
vaporizer temperature of 350 ◦C and capillary temperature of 200 ◦C.

NMR 1H/13C spectra were recorded on JEOL ECX-500SS (500 MHz, JEOL Ltd., Tokyo,
Japan) or JEOL ECA400II (400 MHz, JEOL Ltd., Tokyo, Japan) spectrometer at magnetic
field strengths of 11.75 T (with operating frequencies 500.16 MHz for 1H and 125.77 MHz
for 13C) and 9.39 T (with operating frequencies 399.78 MHz for 1H and 100.53 MHz for
13C) at ambient temperature (∼21 ◦C). Chemical shifts (δ) are reported in parts per million
(ppm), and coupling constants (J) are reported in Hertz (Hz). NMR spectra are recorded at
room temperature (21◦C) and referenced to the residual signals of DMSO-d6. All recorded
1H- and 13C-NMR spectra are available as Supplementary Materials online

HRMS analysis was performed on LC chromatograph (Dionex UltiMate 3000, Thermo
Fischer Scientific, MA, USA) with mass spectrometer Exactive Plus Orbitrap high-resolution
(Thermo Fischer Scientific, MA, USA) operating in positive scan mode in the range of
1000–1500 m/z. Electrospray was used as a source of ionization. Samples were diluted
to a final concentration of 0.1 mg/mL in a solution of water and acetonitrile (50:50, v/v).
The samples were injected into the mass spectrometer following HPLC separation on a
Phenomenex Gemini column (C18, 50 × 2 mm, 3 µm particle) using an isocratic mobile
phase of 0.01 M MeCN/ammonium acetate (80/20) at a flow rate of 0.3 mL/min.

3.1. Chemistry
3.1.1. Acylation with Amino Acids

The Wang resin (loading 1.0 mmol/g, ~1 g) was washed three times with DCM. A
solution consisting of amino acid (2 mmol), HOBt (2 mmol), DMAP (0.5 mmol), and DIC
(2 mmol) in DMF/DCM (1:1, v/v, 10 mL) was added to the resin. The resin slurry was
shaken at rt for 16 h. The resin was washed three times with DMF and three times with
DCM. Next, the Fmoc protecting group was removed by exposure to 50% piperidine in
DMF (v/v 10 mL) for 15 min, and then the resin was washed three times with DMF and
three times with DCM.

3.1.2. Reaction with 4,6-dichloro-5-nitropyrimidines and Amines (Resins 7, 11, and 15)

Resins 5, 10, and 14 (~1 g) was washed three times with dry DMF and reacted with
a solution consisting of 4,6-dichloro-5-nitropyrimidine (5 mmol) and DIEA (5 mmol) in
dry DMF (10 mL) at rt for 16 h. The resin was washed five times with DMF and three
times with DCM and reacted with a solution consisting of amine (1.25 mmol) and DIEA
(1.25 mmol) in DMF (2.5 mL) at rt for 2 h. The resin was then washed three times with
DMF and three times with DCM.

3.1.3. Reduction of the Nitro Group on Solid-phase Support (Resins 8)

Resins 7 (~250 mg) was washed three times with DCM. A solution of Na2S2O4
(2.5 mmol), K2CO3 (3.0 mmol), and ethyl viologen diiodide (0.25 mmol) in water (2.5 mL)
and DCM (2.5 mL) was added to the resin. The resin slurry was shaken at rt for 16 h.
The resin was then washed three times with each solvent: DCM/water (1:1, v/v), DMF,
and DCM.
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3.1.4. Cleavage from Resin with TFA (Compounds 9, 12, and 16)

Resins 7, 11, and 15 (~250 mg) were each treated with 2 mL of a solution consisting of
TFA/DCM (1:1, v/v) for 1 h. The cleavage cocktail was collected, and the resin was washed
three times with 50% TFA in DCM. The combined extracts were evaporated by a stream
of nitrogen.

3.1.5. Reduction with Simultaneous Cyclization and Isolation (Compounds 1–3)

The oily nitro derivatives 9, 12, and 16 were dissolved in acetic acid (3 mL), and
powdered zinc (0.5 g) was added. The reaction mixture was stirred at room temperature
for 1 h to obtain dihydropteridinones 1, at room temperature for 3 h to get tetrahydropy-
rrolopteridinones 2, and at 80 ◦C for 3–13 h to obtain pyrimidodiazepinones 3. The solution
was filtered, evaporated to dryness, and purified by column chromatography.

3.2. Analytical Data of Individual Compounds

7-Isopropyl-4-(propylamino)-7,8-dihydropteridin-6(5H)-one (1a). Pale-yellow solid. Yield:
87% (27.3 mg). 1H-NMR (400 MHz, CDCl3) δ 10.86 (s, 1H), 7.96 (s, 1H), 5.88 (br. s, 1H), 5.64
(br. s, 1H), 4.07 (d, J = 3.2 Hz, 1H), 3.51–3.38 (m, 2H), 2.39–2.24 (m, 1H), 1.73–1.59 (m, 2H),
1.08 (d, J = 7.0 Hz, 3H), 1.04–0.97 (m, 6H). 13C-NMR (101 MHz, CDCl3) δ 168.07, 151.86,
149.49, 148.11, 98.10, 61.32, 43.50, 32.56, 22.88, 18.82, 17.12, 11.70. HRMS: m/z: calcd for
C12H20N5O+: 250.1662 [M + H]+; found: 250.1663.
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31.43, 18.35, 17.83, 12.84. HRMS: m/z: calcd for C13H22N5O+: 264.1819 [M + H]+; found:
264.1821.

Molecules 2021, 26, x FOR PEER REVIEW 11 of 21 
 

 

Hz, 3H). 13C-NMR (101 MHz, DMSO-d6) δ 164.77, 151.98, 151.34, 150.91, 103.66, 60.81, 
42.74, 31.43, 18.35, 17.83, 12.84. HRMS: m/z: calcd for C13H22N5O+: 264.1819 [M + H]+; found: 
264.1821. 

 
4-(Benzylamino)-7-isopropyl-7,8-dihydropteridin-6(5H)-one (1d). Pale-yellow solid. 
Yield: 75% (25.0 mg). 1H-NMR (400 MHz, DMSO-d6) δ 9.74 (s, 1H), 7.75 (s, 1H), 7.42–7.28 
(m, 4H), 7.28–7.20 (m, 1H), 7.07 (br. s, 1H), 6.75 (t, J = 5.5 Hz, 1H), 4.66–4.47 (m, 2H), 3.79 
(dd, J = 4.1, 2.3 Hz, 1H), 2.05 (dq, J = 11.2, 6.9 Hz, 1H), 0.92 (d, J = 7.0 Hz, 3H), 0.85 (d, J = 
6.8 Hz, 3H). 13C-NMR (101 MHz, DMSO-d6) δ 165.07, 151.54, 149.08, 147.70, 139.89, 128.24, 
127.43, 126.73, 98.40, 60.36, 43.82, 32.45, 18.27, 17.47. HRMS: m/z: calcd for C16H20N5O+: 
298.1662 [M + H]+; found: 298.1662. 

 
4-(Cyclohexylamino)-7-isopropyl-7,8-dihydropteridin-6(5H)-one (1e). Pale-yellow solid. 
Yield: 66% (21.5 mg). 1H-NMR (400 MHz, DMSO-d6) δ 9.75 (s, 1H), 7.72 (s, 1H), 6.95 (d, J = 
2.1 Hz, 1H), 6.08 (d, J = 7.2 Hz, 1H), 3.88–3.77 (m, 1H), 3.75 (dd, J = 4.3, 2.3 Hz, 1H), 2.03 
(dtd, J = 13.8, 6.9, 4.5 Hz, 1H), 1.93–1.84 (m, 2H), 1.77–1.64 (m, 2H), 1.62–1.53 (m, 1H), 1.37–
1.08 (m, 5H), 0.91 (d, J = 7.0 Hz, 3H), 0.84 (d, J = 6.8 Hz, 3H). 13C-NMR (101 MHz, DMSO-
d6) δ 165.13, 151.65, 148.94, 147.32, 97.95, 60.34, 48.79, 32.87, 32.32, 25.38, 24.68, 18.29, 17.48. 
HRMS: m/z: calcd for C15H24N5O+: 290.1975 [M + H]+; found: 290.1973. 

 
4-(Cyclooctylamino)-7-isopropyl-7,8-dihydropteridin-6(5H)-one (1f). Pale-yellow solid. 
Yield: 91% (32.2 mg). 1H-NMR (400 MHz, DMSO-d6) δ 9.79 (s, 1H), 7.72 (s, 1H), 6.93 (d, J = 
2.0 Hz, 1H), 6.08 (d, J = 7.5 Hz, 1H), 4.16–4.06 (m, 1H), 3.75 (dd, J = 4.2, 2.3 Hz, 1H), 2.10–
1.97 (m, 1H), 1.85–1.72 (m, 2H), 1.72–1.62 (m, 2H), 1.62–1.41 (m, 10H), 0.91 (d, J = 7.0 Hz, 
3H), 0.83 (d, J = 6.8 Hz, 3H). 13C-NMR (101 MHz, DMSO-d6) δ 165.18, 151.67, 148.89, 147.15, 
98.06, 60.32, 49.62, 32.33, 31.37, 27.07, 25.05, 23.22, 18.29, 17.48. HRMS: m/z: calcd for 
C17H28N5O+: 318.2288 [M + H]+; found: 318.2288. 

 
7-Isopropyl-4-(piperidin-1-yl)-7,8-dihydropteridin-6(5H)-one (1g). Pale-yellow solid. 

Yield: 90% (28.0 mg). 1H-NMR (400 MHz, DMSO-d6) δ 9.53 (s, 1H), 7.85 (s, 1H), 7.54 (d, J = 
2.8 Hz, 1H), 3.63 (dd, J = 5.3, 3.0 Hz, 1H), 3.30–3.21 (m, 2H), 3.12–3.01 (m, 2H), 1.96 (dq, J = 
13.5, 6.8 Hz, 1H), 1.77–1.65 (m, 2H), 1.58–1.41 (m, 4H), 0.91 (d, J = 6.9 Hz, 3H), 0.84 (d, J = 
6.8 Hz, 3H). 13C-NMR (101 MHz, DMSO-d6) δ 164.69, 152.07, 151.88, 151.42, 103.70, 60.68, 



Molecules 2021, 26, 1603 11 of 21

4-(Benzylamino)-7-isopropyl-7,8-dihydropteridin-6(5H)-one (1d).Pale-yellow solid. Yield:
75% (25.0 mg). 1H-NMR (400 MHz, DMSO-d6) δ 9.74 (s, 1H), 7.75 (s, 1H), 7.42–7.28 (m,
4H), 7.28–7.20 (m, 1H), 7.07 (br. s, 1H), 6.75 (t, J = 5.5 Hz, 1H), 4.66–4.47 (m, 2H), 3.79 (dd,
J = 4.1, 2.3 Hz, 1H), 2.05 (dq, J = 11.2, 6.9 Hz, 1H), 0.92 (d, J = 7.0 Hz, 3H), 0.85 (d, J = 6.8 Hz,
3H). 13C-NMR (101 MHz, DMSO-d6) δ 165.07, 151.54, 149.08, 147.70, 139.89, 128.24, 127.43,
126.73, 98.40, 60.36, 43.82, 32.45, 18.27, 17.47. HRMS: m/z: calcd for C16H20N5O+: 298.1662
[M + H]+; found: 298.1662.
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4-(Cyclohexylamino)-7-isopropyl-7,8-dihydropteridin-6(5H)-one (1e). Pale-yellow solid.
Yield: 66% (21.5 mg). 1H-NMR (400 MHz, DMSO-d6) δ 9.75 (s, 1H), 7.72 (s, 1H), 6.95 (d,
J = 2.1 Hz, 1H), 6.08 (d, J = 7.2 Hz, 1H), 3.88–3.77 (m, 1H), 3.75 (dd, J = 4.3, 2.3 Hz, 1H),
2.03 (dtd, J = 13.8, 6.9, 4.5 Hz, 1H), 1.93–1.84 (m, 2H), 1.77–1.64 (m, 2H), 1.62–1.53 (m, 1H),
1.37–1.08 (m, 5H), 0.91 (d, J = 7.0 Hz, 3H), 0.84 (d, J = 6.8 Hz, 3H). 13C-NMR (101 MHz,
DMSO-d6) δ 165.13, 151.65, 148.94, 147.32, 97.95, 60.34, 48.79, 32.87, 32.32, 25.38, 24.68, 18.29,
17.48. HRMS: m/z: calcd for C15H24N5O+: 290.1975 [M + H]+; found: 290.1973.
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4-(Cyclooctylamino)-7-isopropyl-7,8-dihydropteridin-6(5H)-one (1f). Pale-yellow solid.
Yield: 91% (32.2 mg). 1H-NMR (400 MHz, DMSO-d6) δ 9.79 (s, 1H), 7.72 (s, 1H), 6.93
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148.89, 147.15, 98.06, 60.32, 49.62, 32.33, 31.37, 27.07, 25.05, 23.22, 18.29, 17.48. HRMS: m/z:
calcd for C17H28N5O+: 318.2288 [M + H]+; found: 318.2288.
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7-Isopropyl-4-(piperidin-1-yl)-7,8-dihydropteridin-6(5H)-one (1g). Pale-yellow solid. Yield:
90% (28.0 mg). 1H-NMR (400 MHz, DMSO-d6) δ 9.53 (s, 1H), 7.85 (s, 1H), 7.54 (d, J = 2.8 Hz,
1H), 3.63 (dd, J = 5.3, 3.0 Hz, 1H), 3.30–3.21 (m, 2H), 3.12–3.01 (m, 2H), 1.96 (dq, J = 13.5,
6.8 Hz, 1H), 1.77–1.65 (m, 2H), 1.58–1.41 (m, 4H), 0.91 (d, J = 6.9 Hz, 3H), 0.84 (d, J = 6.8 Hz,
3H). 13C-NMR (101 MHz, DMSO-d6) δ 164.69, 152.07, 151.88, 151.42, 103.70, 60.68, 48.03,
31.84, 24.91, 24.12, 18.39, 17.73. HRMS: m/z: calcd for C14H22N5O+: 276.1819 [M + H]+;
found: 276.1821.
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298.1662 [M + H]+; found: 298.1662. 

 
7-Benzyl-4-(hexylamino)-7,8-dihydropteridin-6(5H)-one (1j). Yellow solid. Yield: 76% 
(19.3 mg). 1H-NMR (400 MHz, DMSO-d6) δ 9.60 (s, 1H), 7.68 (s, 1H), 7.22–7.12 (m, 5H), 6.83 
(d, J = 1.5 Hz, 1H), 6.10 (t, J = 5.2 Hz, 1H), 4.28 (td, J = 5.1, 1.8 Hz, 1H), 3.24 (qd, J = 6.7, 1.2 
Hz, 2H), 3.02 (dd, J = 13.6, 5.1 Hz, 1H), 2.91 (dd, J = 13.6, 5.2 Hz, 1H), 1.49–1.40 (m, 2H), 
1.32–1.22 (m, 6H), 0.89–0.84 (m, 3H). 13C-NMR (101 MHz, DMSO-d6) δ 165.25, 151.55, 
148.46, 148.00, 136.60, 129.86, 127.78, 126.29, 98.40, 56.17, 40.30, 38.38, 31.05, 29.04, 26.09, 
22.08, 13.91. HRMS: m/z: calcd for C19H26N5O+: 340.2132 [M + H]+; found: 340.2131. 

 
7-Benzyl-4-(diethylamino)-7,8-dihydropteridin-6(5H)-one (1k). Yellow solid. Yield: 91% 
(31.6 mg). 1H-NMR (400 MHz, DMSO-d6) δ 9.29 (s, 1H), 7.79 (s, 1H), 7.37 (d, J = 2.2 Hz, 1H), 
7.20–7.11 (m, 5H), 4.22 (td, J = 5.3, 2.3 Hz, 1H), 3.18 (dq, J = 14.1, 7.0 Hz, 2H), 3.04 (dq, J = 
14.1, 7.1 Hz, 2H), 2.93 (qd, J = 13.6, 5.5 Hz, 2H), 0.91 (t, J = 7.1 Hz, 6H). 13C-NMR (101 MHz, 
DMSO-d6) δ 164.66, 151.61, 151.17, 150.97, 136.26, 129.74, 127.90, 126.45, 104.21, 56.35, 42.55, 
38.31, 12.68. HRMS: m/z: calcd for C17H22N5O+: 312.1819 [M + H]+; found: 312.1818. 
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7-Isopropyl-4-morpholino-7,8-dihydropteridin-6(5H)-one (1h). Pale-yellow solid. Yield:
92% (28.9 mg). 1H-NMR (400 MHz, DMSO-d6) δ 9.79 (s, 1H), 7.88 (s, 1H), 7.64 (d, J = 2.5 Hz,
1H), 3.85–3.76 (m, 2H), 3.69–3.57 (m, 3H), 3.30–3.22 (m, 2H, overlapped with water),
3.06–2.97 (m, 2H), 2.03–1.92 (m, 1H), 0.91 (d, J = 6.9 Hz, 3H), 0.84 (d, J = 6.8 Hz, 3H). 13C-
NMR (101 MHz, DMSO-d6) δ 164.81, 151.93, 151.39, 151.34, 104.34, 65.65, 60.63, 47.53, 31.97,
18.39, 17.72. HRMS: m/z: calcd for C13H20N5O2

+: 278.1612 [M + H]+; found: 278.1609.
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1.32–1.22 (m, 6H), 0.89–0.84 (m, 3H). 13C-NMR (101 MHz, DMSO-d6) δ 165.25, 151.55, 
148.46, 148.00, 136.60, 129.86, 127.78, 126.29, 98.40, 56.17, 40.30, 38.38, 31.05, 29.04, 26.09, 
22.08, 13.91. HRMS: m/z: calcd for C19H26N5O+: 340.2132 [M + H]+; found: 340.2131. 

 
7-Benzyl-4-(diethylamino)-7,8-dihydropteridin-6(5H)-one (1k). Yellow solid. Yield: 91% 
(31.6 mg). 1H-NMR (400 MHz, DMSO-d6) δ 9.29 (s, 1H), 7.79 (s, 1H), 7.37 (d, J = 2.2 Hz, 1H), 
7.20–7.11 (m, 5H), 4.22 (td, J = 5.3, 2.3 Hz, 1H), 3.18 (dq, J = 14.1, 7.0 Hz, 2H), 3.04 (dq, J = 
14.1, 7.1 Hz, 2H), 2.93 (qd, J = 13.6, 5.5 Hz, 2H), 0.91 (t, J = 7.1 Hz, 6H). 13C-NMR (101 MHz, 
DMSO-d6) δ 164.66, 151.61, 151.17, 150.97, 136.26, 129.74, 127.90, 126.45, 104.21, 56.35, 42.55, 
38.31, 12.68. HRMS: m/z: calcd for C17H22N5O+: 312.1819 [M + H]+; found: 312.1818. 

7-Benzyl-4-(propylamino)-7,8-dihydropteridin-6(5H)-one (1i). Yellow solid. Yield: 89%
(29.8 mg). 1H-NMR (400 MHz, DMSO-d6) δ 9.61 (s, 1H), 7.68 (s, 1H), 7.24–7.09 (m, 5H),
6.83 (d, J = 1.4 Hz, 1H), 6.14 (t, J = 5.2 Hz, 1H), 4.28 (td, J = 5.1, 1.8 Hz, 1H), 3.26–3.16
(m, 2H), 3.03 (dd, J = 13.6, 5.1 Hz, 1H), 2.92 (dd, J = 13.6, 5.2 Hz, 1H), 1.54–1.40 (m, 2H),
0.87 (t, J = 7.4 Hz, 3H). 13C-NMR (101 MHz, DMSO-d6) δ 165.25, 151.54, 148.48, 148.02,
136.60, 129.86, 127.79, 126.31, 98.41, 56.17, 42.16, 38.38, 22.31, 11.42. HRMS: m/z: calcd for
C16H20N5O+: 298.1662 [M + H]+; found: 298.1662.
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56.35, 42.55, 38.31, 12.68. HRMS: m/z: calcd for C17H22N5O+: 312.1819 [M + H]+; found:
312.1818.
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7-Benzyl-4-(benzylamino)-7,8-dihydropteridin-6(5H)-one (1l). Yellow solid. Yield: 80% 
(30.1 mg). 1H-NMR (400 MHz, DMSO-d6) δ 9.63 (s, 1H), 7.68 (s, 1H), 7.35–7.29 (m, 2H), 
7.26–7.21 (m, 3H), 7.20–7.12 (m, 5H), 6.95 (br s, 1H), 6.63 (t, J = 5.6 Hz, 1H), 4.50 (qd, J = 
15.2, 5.5 Hz, 2H), 4.31 (td, J = 4.9, 1.6 Hz, 1H), 3.04 (dd, J = 13.6, 4.9 Hz, 1H), 2.93 (dd, J = 
13.6, 5.1 Hz, 1H). 13C-NMR (101 MHz, DMSO-d6) δ 165.22, 151.48, 148.78, 147.62, 139.91, 
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82% (30.2 mg). 1H-NMR (400 MHz, DMSO-d6) δ 9.66 (s, 1H), 7.67 (s, 1H), 7.22–7.11 (m, 5H), 
6.81 (br s, 1H), 5.98 (d, J = 7.3 Hz, 1H), 4.28 (td, J = 5.0, 1.6 Hz, 1H), 3.85–3.70 (m, 1H), 3.03 
(dd, J = 13.6, 5.0 Hz, 1H), 2.91 (dd, J = 13.6, 5.2 Hz, 1H), 1.83 (br s, 2H), 1.73–1.65 (m, 2H), 
1.61–1.52 (m, 1H), 1.35–1.21 (m, 2H), 1.21–1.05 (m, 3H). 13C-NMR (101 MHz, DMSO-d6) δ 
165.30, 151.53, 148.60, 147.28, 136.62, 129.86, 127.77, 126.32, 98.24, 56.12, 48.65, 38.32, 32.79, 
25.35, 24.60. HRMS: m/z: calcd for C19H24N5O+: 338.1975 [M + H]+; found: 338.1974. 

 
7-Benzyl-4-(cyclooctylamino)-7,8-dihydropteridin-6(5H)-one (1n). Yellow solid. Yield: 
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7-Benzyl-4-(piperidin-1-yl)-7,8-dihydropteridin-6(5H)-one (1o). Yellow solid. Yield: 89% 
(36.3 mg). 1H-NMR (400 MHz, DMSO-d) δ 9.35 (s, 1H), 7.77 (s, 1H), 7.40 (d, J = 1.8 Hz, 1H), 
7.17–7.08 (m, 5H), 4.28–4.22 (m, 1H), 3.08–2.80 (m, 6H), 1.67–1.57 (m, 2H), 1.49 (dt, J = 10.6, 
5.2 Hz, 2H), 1.45–1.36 (m, 2H). 13C-NMR (101 MHz, DMSO-d6) δ 164.60, 151.88, 151.51, 
151.23, 136.11, 129.80, 127.85, 126.39, 103.62, 56.36, 48.04, 38.57, 24.87, 24.06. HRMS: m/z: 
calcd for C18H22N5O+: 324.1819 [M + H]+; found: 324.1818. 
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7-Benzyl-4-(benzylamino)-7,8-dihydropteridin-6(5H)-one (1l). Yellow solid. Yield: 80%
(30.1 mg). 1H-NMR (400 MHz, DMSO-d6) δ 9.63 (s, 1H), 7.68 (s, 1H), 7.35–7.29 (m, 2H),
7.26–7.21 (m, 3H), 7.20–7.12 (m, 5H), 6.95 (br s, 1H), 6.63 (t, J = 5.6 Hz, 1H), 4.50 (qd,
J = 15.2, 5.5 Hz, 2H), 4.31 (td, J = 4.9, 1.6 Hz, 1H), 3.04 (dd, J = 13.6, 4.9 Hz, 1H), 2.93 (dd,
J = 13.6, 5.1 Hz, 1H). 13C-NMR (101 MHz, DMSO-d6) δ 165.22, 151.48, 148.78, 147.62, 139.91,
136.50, 129.90, 128.19, 127.78, 127.25, 126.67, 126.33, 98.53, 56.18, 43.58, 38.56. HRMS: m/z:
calcd for C20H20N5O+: 346.1662 [M + H]+; found: 346.1662.
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7-Benzyl-4-(cyclohexylamino)-7,8-dihydropteridin-6(5H)-one (1m). Yellow solid. Yield:
82% (30.2 mg). 1H-NMR (400 MHz, DMSO-d6) δ 9.66 (s, 1H), 7.67 (s, 1H), 7.22–7.11 (m, 5H),
6.81 (br s, 1H), 5.98 (d, J = 7.3 Hz, 1H), 4.28 (td, J = 5.0, 1.6 Hz, 1H), 3.85–3.70 (m, 1H), 3.03
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25.35, 24.60. HRMS: m/z: calcd for C19H24N5O+: 338.1975 [M + H]+; found: 338.1974.
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27.09, 27.06, 25.02, 23.14. HRMS: m/z: calcd for C21H28N5O+: 366.2288 [M + H]+; found:
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Molecules 2021, 26, x FOR PEER REVIEW 14 of 21 
 

 

 
7-Benzyl-4-morpholino-7,8-dihydropteridin-6(5H)-one (1p). Yellow solid. Yield: 70% (22.8 
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326.1612 [M + H]+; found: 326.1611. 

 
7-(2-(Methylthio)ethyl)-4-(propylamino)-7,8-dihydropteridin-6(5H)-one (1q). Yellow 
solid. Yield: 68% (19.6 mg). 1H-NMR (500 MHz, DMSO-d6) δ 9.71 (s, 1H), 7.75 (s, 1H), 7.01 
(d, J = 1.3 Hz, 1H), 6.29 (t, J = 5.2 Hz, 1H), 4.05 (td, J = 5.6, 1.7 Hz, 1H), 3.30–3.23 (m, 2H), 
2.64–2.49 (m, 2H, overlapped with DMSO), 2.03 (s, 3H), 1.96–1.86 (m, 2H), 1.51 (dt, J = 14.5, 
7.2 Hz, 2H), 0.90 (t, J = 7.4 Hz, 3H). 13C-NMR (126 MHz, DMSO-d6) δ 165.72, 151.71, 148.71, 
148.34, 98.70, 53.85, 42.27, 32.00, 28.71, 22.35, 14.47, 11.47. HRMS: m/z: calcd for 
C12H20N5OS+: 282.1383 [M + H]+; found: 282.1382. 

 
4-(Hexylamino)-7-(2-(methylthio)ethyl)-7,8-dihydropteridin-6(5H)-one (1r). Yellow solid. 
Yield: 66% (21.4 mg). 1H-NMR (400 MHz, DMSO-d6) δ 9.71 (s, 1H), 7.75 (s, 1H), 7.00 (d, J = 
1.3 Hz, 1H), 6.26 (t, J = 5.1 Hz, 1H), 4.05 (td, J = 5.6, 1.7 Hz, 1H), 3.34–3.27 (m, 2H, over-
lapped with water), 2.64–2.49 (m, 2H, overlapped with DMSO), 2.03 (s, 3H), 1.97–1.87 (m, 
2H), 1.54–1.46 (m, 2H), 1.35–1.25 (m, 6H), 0.87 (t, J = 6.9 Hz, 3H). 13C-NMR (101 MHz, 
DMSO-d6) δ 165.71, 151.71, 148.69, 148.32, 98.68, 53.84, 40.42, 32.00, 31.05, 29.07, 28.70, 
26.13, 22.07, 14.46, 13.91. HRMS: m/z: calcd for C15H26N5OS+: 324.1853 [M + H]+; found: 
324.1852. 

 
4-(Diethylamino)-7-(2-(methylthio)ethyl)-7,8-dihydropteridin-6(5H)-one (1s). Yellow 
solid. Yield: 76% (22.8 mg). 1H-NMR (500 MHz, DMSO-d6) δ 9.47 (s, 1H), 7.86 (s, 1H), 7.45 
(d, J = 2.0 Hz, 1H), 3.96–3.91 (m, 1H), 3.42–3.34 (m, 2H), 3.33–3.23 (m, 2H), 2.62–2.52 (m, 
2H), 2.03 (s, 3H), 1.95–1.87 (m, 1H), 1.86–1.78 (m, 1H), 1.01 (t, J = 7.1 Hz, 6H). 13C-NMR 
(101MHz, DMSO-d6) δ 165.34, 152.15, 151.40, 151.25, 103.67, 53.73, 42.76, 30.79, 28.79, 14.45, 
12.85. HRMS: m/z: calcd for C13H22N5OS+: 296.1540 [M + H]+; found: 296.1539. 
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7-Benzyl-4-morpholino-7,8-dihydropteridin-6(5H)-one (1p). Yellow solid. Yield: 70%
(22.8 mg). 1H-NMR (400 MHz, DMSO-d6) δ 9.62 (s, 1H), 7.79 (s, 1H), 7.52 (d, J = 1.6 Hz, 1H),
7.16–7.06 (m, 5H), 4.31 –4.24 (m, 1H), 3.76–3.66 (m, 2H), 3.58–3.49 (m, 2H), 3.07–2.96 (m,
3H), 2.90 (dd, J = 13.5, 5.0 Hz, 1H), 2.83–2.74 (m, 2H). 13C-NMR (101 MHz, DMSO-d6) δ
164.80, 151.66, 151.18, 151.01, 136.03, 129.86, 127.87, 126.41, 104.09, 65.56, 56.34, 47.54, one
carbon overlapped with DMSO (according to HMQC). HRMS: m/z: calcd for C17H20N5O2

+:
326.1612 [M + H]+; found: 326.1611.
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Molecules 2021, 26, x FOR PEER REVIEW 14 of 21 
 

 

 
7-Benzyl-4-morpholino-7,8-dihydropteridin-6(5H)-one (1p). Yellow solid. Yield: 70% (22.8 
mg). 1H-NMR (400 MHz, DMSO-d6) δ 9.62 (s, 1H), 7.79 (s, 1H), 7.52 (d, J = 1.6 Hz, 1H), 
7.16–7.06 (m, 5H), 4.31 –4.24 (m, 1H), 3.76–3.66 (m, 2H), 3.58–3.49 (m, 2H), 3.07–2.96 (m, 
3H), 2.90 (dd, J = 13.5, 5.0 Hz, 1H), 2.83–2.74 (m, 2H). 13C-NMR (101 MHz, DMSO-d6) δ 
164.80, 151.66, 151.18, 151.01, 136.03, 129.86, 127.87, 126.41, 104.09, 65.56, 56.34, 47.54, one 
carbon overlapped with DMSO (according to HMQC). HRMS: m/z: calcd for C17H20N5O2+: 
326.1612 [M + H]+; found: 326.1611. 

 
7-(2-(Methylthio)ethyl)-4-(propylamino)-7,8-dihydropteridin-6(5H)-one (1q). Yellow 
solid. Yield: 68% (19.6 mg). 1H-NMR (500 MHz, DMSO-d6) δ 9.71 (s, 1H), 7.75 (s, 1H), 7.01 
(d, J = 1.3 Hz, 1H), 6.29 (t, J = 5.2 Hz, 1H), 4.05 (td, J = 5.6, 1.7 Hz, 1H), 3.30–3.23 (m, 2H), 
2.64–2.49 (m, 2H, overlapped with DMSO), 2.03 (s, 3H), 1.96–1.86 (m, 2H), 1.51 (dt, J = 14.5, 
7.2 Hz, 2H), 0.90 (t, J = 7.4 Hz, 3H). 13C-NMR (126 MHz, DMSO-d6) δ 165.72, 151.71, 148.71, 
148.34, 98.70, 53.85, 42.27, 32.00, 28.71, 22.35, 14.47, 11.47. HRMS: m/z: calcd for 
C12H20N5OS+: 282.1383 [M + H]+; found: 282.1382. 

 
4-(Hexylamino)-7-(2-(methylthio)ethyl)-7,8-dihydropteridin-6(5H)-one (1r). Yellow solid. 
Yield: 66% (21.4 mg). 1H-NMR (400 MHz, DMSO-d6) δ 9.71 (s, 1H), 7.75 (s, 1H), 7.00 (d, J = 
1.3 Hz, 1H), 6.26 (t, J = 5.1 Hz, 1H), 4.05 (td, J = 5.6, 1.7 Hz, 1H), 3.34–3.27 (m, 2H, over-
lapped with water), 2.64–2.49 (m, 2H, overlapped with DMSO), 2.03 (s, 3H), 1.97–1.87 (m, 
2H), 1.54–1.46 (m, 2H), 1.35–1.25 (m, 6H), 0.87 (t, J = 6.9 Hz, 3H). 13C-NMR (101 MHz, 
DMSO-d6) δ 165.71, 151.71, 148.69, 148.32, 98.68, 53.84, 40.42, 32.00, 31.05, 29.07, 28.70, 
26.13, 22.07, 14.46, 13.91. HRMS: m/z: calcd for C15H26N5OS+: 324.1853 [M + H]+; found: 
324.1852. 

 
4-(Diethylamino)-7-(2-(methylthio)ethyl)-7,8-dihydropteridin-6(5H)-one (1s). Yellow 
solid. Yield: 76% (22.8 mg). 1H-NMR (500 MHz, DMSO-d6) δ 9.47 (s, 1H), 7.86 (s, 1H), 7.45 
(d, J = 2.0 Hz, 1H), 3.96–3.91 (m, 1H), 3.42–3.34 (m, 2H), 3.33–3.23 (m, 2H), 2.62–2.52 (m, 
2H), 2.03 (s, 3H), 1.95–1.87 (m, 1H), 1.86–1.78 (m, 1H), 1.01 (t, J = 7.1 Hz, 6H). 13C-NMR 
(101MHz, DMSO-d6) δ 165.34, 152.15, 151.40, 151.25, 103.67, 53.73, 42.76, 30.79, 28.79, 14.45, 
12.85. HRMS: m/z: calcd for C13H22N5OS+: 296.1540 [M + H]+; found: 296.1539. 

4-(Hexylamino)-7-(2-(methylthio)ethyl)-7,8-dihydropteridin-6(5H)-one (1r). Yellow solid.
Yield: 66% (21.4 mg). 1H-NMR (400 MHz, DMSO-d6) δ 9.71 (s, 1H), 7.75 (s, 1H), 7.00 (d,
J = 1.3 Hz, 1H), 6.26 (t, J = 5.1 Hz, 1H), 4.05 (td, J = 5.6, 1.7 Hz, 1H), 3.34–3.27 (m, 2H,
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DMSO-d6) δ 165.71, 151.71, 148.69, 148.32, 98.68, 53.84, 40.42, 32.00, 31.05, 29.07, 28.70,
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HRMS: m/z: calcd for C13H22N5OS+: 296.1540 [M + H]+; found: 296.1539.
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4-(Benzylamino)-7-(2-(methylthio)ethyl)-7,8-dihydropteridin-6(5H)-one (1t). Yellow solid.
Yield: 41% (13.4 mg). 1H-NMR (400 MHz, DMSO-d6) δ 9.71 (s, 1H), 7.73 (s, 1H), 7.32–7.25
(m, 4H), 7.23–7.17 (m, 1H), 7.05 (s, 1H), 6.75 (t, J = 5.4 Hz, 1H), 4.59–4.46 (m, 2H), 4.07–4.00
(m, 1H), 2.60–2.49 (m, 2H, overlapped with DMSO), 1.98 (s, 3H), 1.95–1.85 (m, 2H). 13C-
NMR (101 MHz, DMSO-d6): δ 165.70, 151.70, 148.99, 148.02, 139.86, 128.27, 127.47, 126.78,
98.94, 53.87, 43.84, 32.07, 28.73, 14.50. HRMS: m/z: calcd for C16H20N5OS+: 330.1383
[M + H]+; found: 330.1382.
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for C15H24N5OS+: 322.1696 [M + H]+; found: 322.1694.
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solid. Yield: 41% (13.4 mg). 1H-NMR (400 MHz, DMSO-d6) δ 9.71 (s, 1H), 7.73 (s, 1H), 7.32–
7.25 (m, 4H), 7.23–7.17 (m, 1H), 7.05 (s, 1H), 6.75 (t, J = 5.4 Hz, 1H), 4.59–4.46 (m, 2H), 4.07–
4.00 (m, 1H), 2.60–2.49 (m, 2H, overlapped with DMSO), 1.98 (s, 3H), 1.95–1.85 (m, 2H). 
13C-NMR (101 MHz, DMSO-d6): δ 165.70, 151.70, 148.99, 148.02, 139.86, 128.27, 127.47, 
126.78, 98.94, 53.87, 43.84, 32.07, 28.73, 14.50. HRMS: m/z: calcd for C16H20N5OS+: 330.1383 
[M + H]+; found: 330.1382. 

 
4-(Cyclohexylamino)-7-(2-(methylthio)ethyl)-7,8-dihydropteridin-6(5H)-one (1u). Yellow 
solid. Yield: 79% (25.7 mg). 1H-NMR (400 MHz, DMSO-d6) δ 9.77 (s, 1H), 7.74 (s, 1H), 7.00 
(d, J = 1.4 Hz, 1H), 6.13 (d, J = 7.2 Hz, 1H), 4.05 (td, J = 5.6, 1.7 Hz, 1H), 3.91–3.78 (m, 1H), 
2.64–2.48 (m, 2H, overlapped with DMSO), 2.03 (s, 3H), 1.98–1.83 (m, 4H), 1.75–1.67 (m, 
2H), 1.62–1.54 (m, 1H), 1.36–1.09 (m, 5H). 13C-NMR (101 MHz, DMSO-d6) δ 165.72, 151.71, 
148.81, 147.57, 98.48, 53.81, 48.79, 32.85, 31.99, 28.71, 25.36, 24.64, 14.47. HRMS: m/z: calcd 
for C15H24N5OS+: 322.1696 [M + H]+; found: 322.1694. 

 
4-(Cyclooctylamino)-7-(2-(methylthio)ethyl)-7,8-dihydropteridin-6(5H)-one (1v). Yellow 
solid. Yield: 60% (20.9 mg). 1H-NMR (400 MHz, DMSO-d6) δ 9.81 (s, 1H), 7.75 (s, 1H), 6.98 
(d, J = 1.4 Hz, 1H), 6.13 (d, J = 7.5 Hz, 1H), 4.18–4.08 (m, 1H), 4.05 (td, J = 5.6, 1.6 Hz, 1H), 
2.65–2.50 (m, 2H), 2.03 (s, 3H), 1.99–1.84 (m, 2H), 1.83–1.73 (m, 2H), 1.72–1.63 (m, 2H), 
1.61–1.40 (m, 10H). 13C-NMR (101 MHz, DMSO-d6) δ 166.31, 152.29, 149.30, 147.95, 99.13, 
54.36, 50.18, 32.53, 31.85, 29.27, 27.63, 25.59, 23.74, 15.02. HRMS: m/z: calcd for C17H28N5OS+: 
350.2009 [M + H]+; found: 350.2011. 

 
7-(2-(Methylthio)ethyl)-4-(piperidin-1-yl)-7,8-dihydropteridin-6(5H)-one (1w). Yellow 
solid. Yield: 63% (19.5 mg). 1H-NMR (500 MHz, DMSO-d6) δ 9.55 (s, 1H), 7.88 (s, 1H), 7.49 
(d, J = 1.9 Hz, 1H), 3.98–3.93 (m, 1H), 3.26–3.20 (m, 2H), 3.19–3.12 (m, 2H), 2.62–2.52 (m, 
2H), 2.03 (s, 3H), 1.97–1.89 (m, 1H), 1.88–1.80 (m, 1H), 1.69–1.60 (m, 2H), 1.59–1.51 (m, 4H). 
13C-NMR (126 MHz, DMSO-d6) δ 165.21, 152.41, 151.94, 151.46, 103.96, 53.75, 48.09, 30.77, 
28.79, 24.94, 24.10, 14.45. HRMS: m/z: calcd for C14H22N5OS+: 308.1540 [M + H]+; found: 
308.1538. 

4-(Cyclooctylamino)-7-(2-(methylthio)ethyl)-7,8-dihydropteridin-6(5H)-one (1v). Yellow
solid. Yield: 60% (20.9 mg). 1H-NMR (400 MHz, DMSO-d6) δ 9.81 (s, 1H), 7.75 (s, 1H),
6.98 (d, J = 1.4 Hz, 1H), 6.13 (d, J = 7.5 Hz, 1H), 4.18–4.08 (m, 1H), 4.05 (td, J = 5.6, 1.6 Hz,
1H), 2.65–2.50 (m, 2H), 2.03 (s, 3H), 1.99–1.84 (m, 2H), 1.83–1.73 (m, 2H), 1.72–1.63 (m,
2H), 1.61–1.40 (m, 10H). 13C-NMR (101 MHz, DMSO-d6) δ 166.31, 152.29, 149.30, 147.95,
99.13, 54.36, 50.18, 32.53, 31.85, 29.27, 27.63, 25.59, 23.74, 15.02. HRMS: m/z: calcd for
C17H28N5OS+: 350.2009 [M + H]+; found: 350.2011.
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350.2009 [M + H]+; found: 350.2011. 

 
7-(2-(Methylthio)ethyl)-4-(piperidin-1-yl)-7,8-dihydropteridin-6(5H)-one (1w). Yellow 
solid. Yield: 63% (19.5 mg). 1H-NMR (500 MHz, DMSO-d6) δ 9.55 (s, 1H), 7.88 (s, 1H), 7.49 
(d, J = 1.9 Hz, 1H), 3.98–3.93 (m, 1H), 3.26–3.20 (m, 2H), 3.19–3.12 (m, 2H), 2.62–2.52 (m, 
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7-(2-(Methylthio)ethyl)-4-(piperidin-1-yl)-7,8-dihydropteridin-6(5H)-one (1w). Yellow solid.
Yield: 63% (19.5 mg). 1H-NMR (500 MHz, DMSO-d6) δ 9.55 (s, 1H), 7.88 (s, 1H), 7.49 (d,
J = 1.9 Hz, 1H), 3.98–3.93 (m, 1H), 3.26–3.20 (m, 2H), 3.19–3.12 (m, 2H), 2.62–2.52 (m, 2H),
2.03 (s, 3H), 1.97–1.89 (m, 1H), 1.88–1.80 (m, 1H), 1.69–1.60 (m, 2H), 1.59–1.51 (m, 4H).
13C-NMR (126 MHz, DMSO-d6) δ 165.21, 152.41, 151.94, 151.46, 103.96, 53.75, 48.09, 30.77,
28.79, 24.94, 24.10, 14.45. HRMS: m/z: calcd for C14H22N5OS+: 308.1540 [M + H]+; found:
308.1538.
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7-(2-(Methylthio)ethyl)-4-morpholino-7,8-dihydropteridin-6(5H)-one (1x). Yellow solid. 
Yield: 65% (20.5 mg). 1H-NMR (500 MHz, DMSO-d6) δ 9.81 (s, 1H), 7.91 (s, 1H), 7.59 (d, J = 
1.9 Hz, 1H), 4.01–3.96 (m, 1H), 3.76–3.72 (m, 2H), 3.71–3.65 (m, 2H), 3.24–3.18 (m, 2H), 
3.16–3.10 (m, 2H), 2.62–2.51 (m, 2H), 2.03 (s, 3H), 1.97–1.82 (m, 2H). 13C-NMR (126 MHz, 
DMSO-d6) δ 165.36, 151.97, 151.66, 151.41, 104.57, 65.67, 53.72, 47.58, 30.96, 28.77, 14.46. 
HRMS: m/z: calcd for C13H20N5OS+: 310.1332 [M + H]+; found: 310.1331. 

 
4-(Propylamino)-6a,7,8,9-tetrahydropyrrolo [2,1-h]pteridin-6(5H)-one (2a). Dark-yellow 
solid. Yield: 75% (21.3 mg). 1H-NMR (500 MHz, DMSO-d6) δ 9.70 (s, 1H), 7.84 (s, 1H), 6.26 
(t, J = 5.2 Hz, 1H), 3.99–3.92 (m, 1H), 3.63–3.54 (m, 1H), 3.43–3.36 (m, 1H), 3.33–3.25 (m, 
2H, overlapped with water), 2.23–2.11 (m, 1H), 1.99–1.83 (m, 3H), 1.52 (sx, J = 7.3 Hz, 2H), 
0.90 (t, J = 7.4 Hz, 3H). 13C-NMR (126 MHz, DMSO-d6) 165.24, 151.59, 148.16, 148.11, 100.69, 
58.62, 45.09, 42.30, 27.68, 22.39, 21.80, 11.44. HRMS: m/z: calcd for C12H18N5O+: 248.1506 [M 
+ H]+; found: 248.1507. 

 
4-(Hexylamino)-6a,7,8,9-tetrahydropyrrolo[2,1-h]pteridin-6(5H)-one (2b). Dark-yellow 
solid. Yield: 47% (15.3 mg). 1H-NMR (400 MHz, DMSO-d6) δ 9.66 (s, 1H), 7.80 (s, 1H), 6.19 
(t, J = 5.1 Hz, 1H), 3.95–3.88 (m, 1H), 3.58–3.49 (m, 1H), 3.39–3.32 (m, 1H), 3.31–3.24 (m, 
2H), 2.18–2.05 (m, 1H), 1.94–1.79 (m, 3H), 1.52–1.41 (m, 2H), 1.34–1.16 (m, 6H), 0.83 (t, J = 
6.9 Hz, 3H). 13C-NMR (126 MHz, DMSO-d6) δ 165.24, 151.59, 148.14, 148.09, 100.68, 58.62, 
45.08, 40.44, 31.05, 29.12, 27.68, 26.12, 22.07, 21.80, 13.90. HRMS: m/z: calcd for C15H24N5O+: 
290.1975 [M + H]+; found: 290.1974. 

 
4-(Diethylamino)-6a,7,8,9-tetrahydropyrrolo[2,1-h]pteridin-6(5H)-one (2c). Dark-yellow 
solid. Yield: 87% (25.8 mg). 1H-NMR (400 MHz, DMSO-d6) δ 9.46 (s, 1H), 7.92 (s, 1H), 3.95 
(dd, J = 8.9, 6.9 Hz, 1H), 3.60–3.44 (m, 4H), 3.24–313 (m, 2H), 2.23–2.12 (m, 1H), 2.09–1.91 
(m, 3H), 1.03 (t, J = 7.1 Hz, 6H). 13C-NMR (126 MHz, DMSO-d6) δ 165.34, 151.78, 151.66, 
151.36, 105.65, 58.80, 45.74, 43.21, 27.54, 22.99, 13.37. HRMS: m/z: calcd for C13H20N5O+: 
262.1662 [M + H]+; found: 262.1663. 
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7-(2-(Methylthio)ethyl)-4-morpholino-7,8-dihydropteridin-6(5H)-one (1x). Yellow solid.
Yield: 65% (20.5 mg). 1H-NMR (500 MHz, DMSO-d6) δ 9.81 (s, 1H), 7.91 (s, 1H), 7.59 (d, J
= 1.9 Hz, 1H), 4.01–3.96 (m, 1H), 3.76–3.72 (m, 2H), 3.71–3.65 (m, 2H), 3.24–3.18 (m, 2H),
3.16–3.10 (m, 2H), 2.62–2.51 (m, 2H), 2.03 (s, 3H), 1.97–1.82 (m, 2H). 13C-NMR (126 MHz,
DMSO-d6) δ 165.36, 151.97, 151.66, 151.41, 104.57, 65.67, 53.72, 47.58, 30.96, 28.77, 14.46.
HRMS: m/z: calcd for C13H20N5OS+: 310.1332 [M + H]+; found: 310.1331.
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4-(Hexylamino)-6a,7,8,9-tetrahydropyrrolo[2,1-h]pteridin-6(5H)-one (2b). Dark-yellow 
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(t, J = 5.1 Hz, 1H), 3.95–3.88 (m, 1H), 3.58–3.49 (m, 1H), 3.39–3.32 (m, 1H), 3.31–3.24 (m, 
2H), 2.18–2.05 (m, 1H), 1.94–1.79 (m, 3H), 1.52–1.41 (m, 2H), 1.34–1.16 (m, 6H), 0.83 (t, J = 
6.9 Hz, 3H). 13C-NMR (126 MHz, DMSO-d6) δ 165.24, 151.59, 148.14, 148.09, 100.68, 58.62, 
45.08, 40.44, 31.05, 29.12, 27.68, 26.12, 22.07, 21.80, 13.90. HRMS: m/z: calcd for C15H24N5O+: 
290.1975 [M + H]+; found: 290.1974. 

 
4-(Diethylamino)-6a,7,8,9-tetrahydropyrrolo[2,1-h]pteridin-6(5H)-one (2c). Dark-yellow 
solid. Yield: 87% (25.8 mg). 1H-NMR (400 MHz, DMSO-d6) δ 9.46 (s, 1H), 7.92 (s, 1H), 3.95 
(dd, J = 8.9, 6.9 Hz, 1H), 3.60–3.44 (m, 4H), 3.24–313 (m, 2H), 2.23–2.12 (m, 1H), 2.09–1.91 
(m, 3H), 1.03 (t, J = 7.1 Hz, 6H). 13C-NMR (126 MHz, DMSO-d6) δ 165.34, 151.78, 151.66, 
151.36, 105.65, 58.80, 45.74, 43.21, 27.54, 22.99, 13.37. HRMS: m/z: calcd for C13H20N5O+: 
262.1662 [M + H]+; found: 262.1663. 

 

4-(Propylamino)-6a,7,8,9-tetrahydropyrrolo [2,1-h]pteridin-6(5H)-one (2a). Dark-yellow
solid. Yield: 75% (21.3 mg). 1H-NMR (500 MHz, DMSO-d6) δ 9.70 (s, 1H), 7.84 (s, 1H), 6.26
(t, J = 5.2 Hz, 1H), 3.99–3.92 (m, 1H), 3.63–3.54 (m, 1H), 3.43–3.36 (m, 1H), 3.33–3.25 (m, 2H,
overlapped with water), 2.23–2.11 (m, 1H), 1.99–1.83 (m, 3H), 1.52 (sx, J = 7.3 Hz, 2H), 0.90
(t, J = 7.4 Hz, 3H). 13C-NMR (126 MHz, DMSO-d6) 165.24, 151.59, 148.16, 148.11, 100.69,
58.62, 45.09, 42.30, 27.68, 22.39, 21.80, 11.44. HRMS: m/z: calcd for C12H18N5O+: 248.1506
[M + H]+; found: 248.1507.
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Molecules 2021, 26, 1603 17 of 21

7.35–7.29 (m, 4H), 7.26–7.21 (m, 1H), 6.78 (t, J = 5.6 Hz, 1H), 4.58 (d, J = 5.6 Hz, 2H),
4.02–3.95 (m, 1H), 3.63–3.55 (m, 1H), 3.45–3.37 (m, 1H), 2.22–2.13 (m, 1H), 1.98–1.84 (m,
3H). 13C-NMR (126 MHz, DMSO-d6) δ 165.18, 151.54, 148.34, 147.74, 139.94, 128.22, 127.40,
126.71, 100.92, 58.63, 45.14, 43.84, 27.73, 21.81. HRMS: m/z: calcd for C16H18N5O+: 296.1506
[M + H]+; found: 296.1505.
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[M + H]+; found: 288.1818.
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6.10 (d, J = 7.5 Hz, 1H), 4.20–4.09 (m, 1H), 4.00–3.91 (m, 1H), 3.61–3.53 (m, 1H), 3.43–3.34 
(m, 1H), 2.21–2.10 (m, 1H), 1.98–1.85 (m, 3H), 1.85–1.73 (m, 2H), 1.71–1.62 (m, 2H), 1.62–
1.42 (m, 10H). 13C-NMR (126 MHz, DMSO-d6) δ 165.29, 151.61, 148.19, 147.18, 100.59, 58.60, 
49.68, 45.12, 31.44, 31.21, 27.70, 27.07, 25.05, 23.20, 23.16, 21.80. HRMS: m/z: calcd for 
C17H26N5O+: 316.2132 [M + H]+; found: 316.2130. 
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4-(Piperidin-1-yl)-6a,7,8,9-tetrahydropyrrolo[2,1-h]pteridin-6(5H)-one (2g). Dark-yellow 
solid. Yield: 60% (18.6 mg). 1H-NMR (400 MHz, DMSO-d6) δ 9.54 (s, 1H), 7.93 (s, 1H), 3.97 
(dd, J = 8.9, 6.9 Hz, 1H), 3.61–3.45 (m, 2H), 3.43–3.34 (m, 2H), 3.15–3.04 (m, 2H), 2.23–2.12 
(m, 1H), 2.09–1.91 (m, 3H), 1.80–1.69 (m, 2H), 1.55 (dt, J = 11.2, 5.6 Hz, 2H), 1.50–1.40 (m, 
2H). 13C-NMR (126 MHz, DMSO-d6) δ 164.66, 151.86, 151.31, 150.83, 105.35, 58.37, 48.08, 
45.19, 27.10, 24.99, 24.14, 22.35. HRMS: m/z: calcd for C14H20N5O+: 274.1662 [M + H]+; found: 
274.1661. 

 
4-Morpholino-6a,7,8,9-tetrahydropyrrolo[2,1-h]pteridin-6(5H)-one (2h). Dark-yellow 
solid. Yield: 57% (17.9 mg). 1H-NMR (400 MHz, DMSO-d6) δ 9.75 (s, 1H), 7.92 (s, 1H), 3.95 

4-(Piperidin-1-yl)-6a,7,8,9-tetrahydropyrrolo[2,1-h]pteridin-6(5H)-one (2g). Dark-yellow
solid. Yield: 60% (18.6 mg). 1H-NMR (400 MHz, DMSO-d6) δ 9.54 (s, 1H), 7.93 (s, 1H), 3.97
(dd, J = 8.9, 6.9 Hz, 1H), 3.61–3.45 (m, 2H), 3.43–3.34 (m, 2H), 3.15–3.04 (m, 2H), 2.23–2.12
(m, 1H), 2.09–1.91 (m, 3H), 1.80–1.69 (m, 2H), 1.55 (dt, J = 11.2, 5.6 Hz, 2H), 1.50–1.40 (m,
2H). 13C-NMR (126 MHz, DMSO-d6) δ 164.66, 151.86, 151.31, 150.83, 105.35, 58.37, 48.08,
45.19, 27.10, 24.99, 24.14, 22.35. HRMS: m/z: calcd for C14H20N5O+: 274.1662 [M + H]+;
found: 274.1661.
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4-(Benzylamino)-6a,7,8,9-tetrahydropyrrolo[2,1-h]pteridin-6(5H)-one (2d). Dark-yellow 
solid. Yield: 81% (26.9 mg). 1H-NMR (500 MHz, DMSO-d6) δ 9.75 (s, 1H), 7.86 (s, 1H), 7.35–
7.29 (m, 4H), 7.26–7.21 (m, 1H), 6.78 (t, J = 5.6 Hz, 1H), 4.58 (d, J = 5.6 Hz, 2H), 4.02–3.95 
(m, 1H), 3.63–3.55 (m, 1H), 3.45–3.37 (m, 1H), 2.22–2.13 (m, 1H), 1.98–1.84 (m, 3H). 13C-
NMR (126 MHz, DMSO-d6) δ 165.18, 151.54, 148.34, 147.74, 139.94, 128.22, 127.40, 126.71, 
100.92, 58.63, 45.14, 43.84, 27.73, 21.81. HRMS: m/z: calcd for C16H18N5O+: 296.1506 [M + 
H]+; found: 296.1505. 

 
4-(Cyclohexylamino)-6a,7,8,9-tetrahydropyrrolo[2,1-h]pteridin-6(5H)-one (2e). Dark-yel-
low solid. Yield: 80% (25.8 mg). 1H-NMR (400 MHz, DMSO-d6) δ 9.76 (s, 1H), 7.83 (s, 1H), 
6.10 (d, J = 7.3 Hz, 1H), 3.98–3.91 (m, 1H), 3.91–3.80 (m, 1H), 3.62–3.53 (m, 1H), 3.43–3.34 
(m, 1H), 2.21–2.10 (m, 1H), 1.98–1.82 (m, 5H), 1.77–1.66 (m, 2H), 1.62–1.53 (m, 1H), 1.38–
1.10 (m, 5H). 13C-NMR (101 MHz, DMSO-d6) δ 165.25, 151.59, 148.26, 147.36, 100.51, 58.60, 
48.84, 45.10, 32.94, 32.76, 27.70, 25.37, 24.64, 21.80. HRMS: m/z: calcd for C15H22N5O+: 
288.1819 [M + H]+; found: 288.1818. 

 
4-(Cyclooctylamino)-6a,7,8,9-tetrahydropyrrolo[2,1-h]pteridin-6(5H)-one (2f). Dark-yel-
low solid. Yield: 34% (12.0 mg). 1H-NMR (400 MHz, DMSO-d6) δ 9.81 (s, 1H), 7.84 (s, 1H), 
6.10 (d, J = 7.5 Hz, 1H), 4.20–4.09 (m, 1H), 4.00–3.91 (m, 1H), 3.61–3.53 (m, 1H), 3.43–3.34 
(m, 1H), 2.21–2.10 (m, 1H), 1.98–1.85 (m, 3H), 1.85–1.73 (m, 2H), 1.71–1.62 (m, 2H), 1.62–
1.42 (m, 10H). 13C-NMR (126 MHz, DMSO-d6) δ 165.29, 151.61, 148.19, 147.18, 100.59, 58.60, 
49.68, 45.12, 31.44, 31.21, 27.70, 27.07, 25.05, 23.20, 23.16, 21.80. HRMS: m/z: calcd for 
C17H26N5O+: 316.2132 [M + H]+; found: 316.2130. 
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4-(Piperidin-1-yl)-6a,7,8,9-tetrahydropyrrolo[2,1-h]pteridin-6(5H)-one (2g). Dark-yellow 
solid. Yield: 60% (18.6 mg). 1H-NMR (400 MHz, DMSO-d6) δ 9.54 (s, 1H), 7.93 (s, 1H), 3.97 
(dd, J = 8.9, 6.9 Hz, 1H), 3.61–3.45 (m, 2H), 3.43–3.34 (m, 2H), 3.15–3.04 (m, 2H), 2.23–2.12 
(m, 1H), 2.09–1.91 (m, 3H), 1.80–1.69 (m, 2H), 1.55 (dt, J = 11.2, 5.6 Hz, 2H), 1.50–1.40 (m, 
2H). 13C-NMR (126 MHz, DMSO-d6) δ 164.66, 151.86, 151.31, 150.83, 105.35, 58.37, 48.08, 
45.19, 27.10, 24.99, 24.14, 22.35. HRMS: m/z: calcd for C14H20N5O+: 274.1662 [M + H]+; found: 
274.1661. 

 
4-Morpholino-6a,7,8,9-tetrahydropyrrolo[2,1-h]pteridin-6(5H)-one (2h). Dark-yellow 
solid. Yield: 57% (17.9 mg). 1H-NMR (400 MHz, DMSO-d6) δ 9.75 (s, 1H), 7.92 (s, 1H), 3.95 
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4-Morpholino-6a,7,8,9-tetrahydropyrrolo[2,1-h]pteridin-6(5H)-one (2h). Dark-yellow solid.
Yield: 57% (17.9 mg). 1H-NMR (400 MHz, DMSO-d6) δ 9.75 (s, 1H), 7.92 (s, 1H), 3.95
(dd, J = 8.9, 6.9 Hz, 1H), 3.82–3.74 (m, 2H), 3.60–3.43 (m, 4H), 3.39–3.31 (m, 2H), 3.04–2.97
(m, 2H), 2.20–2.09 (m, 1H), 2.06–1.83 (m, 3H). 13C-NMR (126 MHz, DMSO-d6) δ 164.83,
151.26, 151.12, 150.82, 105.96, 65.70, 58.35, 47.56, 45.25, 27.17, 22.29. HRMS: m/z: calcd for
C13H18N5O2

+: 276.1455 [M + H]+; found: 276.1456.
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(dd, J = 8.9, 6.9 Hz, 1H), 3.82–3.74 (m, 2H), 3.60–3.43 (m, 4H), 3.39–3.31 (m, 2H), 3.04–2.97 
(m, 2H), 2.20–2.09 (m, 1H), 2.06–1.83 (m, 3H). 13C-NMR (126 MHz, DMSO-d6) δ 164.83, 
151.26, 151.12, 150.82, 105.96, 65.70, 58.35, 47.56, 45.25, 27.17, 22.29. HRMS: m/z: calcd for 
C13H18N5O2+: 276.1455 [M + H]+; found: 276.1456. 

 
4-(Propylamino)-5,7,8,9-tetrahydro-6H-pyrimido[4,5-b][1,4]diazepin-6-one (3a). White 
solid. Yield: 45% (11.7 mg). 1H-NMR (500 MHz, DMSO-d6) δ 8.41 (s, 1H), 7.75 (s, 1H), 6.67 
(t, J = 4.2 Hz, 1H), 6.36 (t, J = 5.3 Hz, 1H), 3.51 (td, J = 4.6, 2.2 Hz, 2H), 3.28–3.22 (m, 2H), 
2.49–2.47 (m, 2H), 1.58–1.47 (m, 2H), 0.89 (t, J = 7.4 Hz, 3H). 13C-NMR (126 MHz, DMSO-
d6) δ 172.69, 155.18, 153.13, 152.94, 96.95, 43.17, 42.66, 36.46, 22.26, 11.48. HRMS: m/z: calcd 
for C10H16N5O+: 222.1349 [M + H]+; found: 222.1349. 

 
4-(Hexylamino)-5,7,8,9-tetrahydro-6H-pyrimido[4,5-b][1,4]diazepin-6-one (3b). White 
solid. Yield: 42% (12.5 mg). 1H-NMR (500 MHz, DMSO-d6) δ 8.40 (s, 1H), 7.75 (s, 1H), 6.67 
(t, J = 4.2 Hz, 1H), 6.33 (t, J = 5.3 Hz, 1H), 3.50 (td, J = 4.7, 2.2 Hz, 2H), 3.27 (td, J = 7.1, 5.7 
Hz, 2H), 2.49–2.46 (m, 2H, overlapped with DMSO), 1.55–1.47 (m, 2H), 1.35–1.25 (m, 6H), 
0.86 (t, J = 6.9 Hz, 3H). 13C-NMR (126 MHz, DMSO-d6) δ 172.71, 155.16, 153.12, 152.96, 96.96, 
43.18, 40.86, 36.47, 31.12, 29.02, 26.18, 22.08, 13.92. HRMS: m/z: calcd for C13H22N5O+: 
264.1819 [M + H]+; found: 264.1816. 

 
4-(Diethylamino)-5,7,8,9-tetrahydro-6H-pyrimido[4,5-b][1,4]diazepin-6-one (3c). White 
solid. Yield: 55% (15.1 mg). 1H-NMR (500 MHz, DMSO-d6) δ 8.24 (s, 1H), 7.84 (s, 1H), 6.92 
(t, J = 3.3 Hz, 1H), 3.58–3.52 (m, 2H), 3.34–3.26 (m, 4H, overlapped with residual water), 
2.59–2.53 (m, 2H), 1.06 (t, J = 7.0 Hz, 6H). 13C-NMR (126 MHz, DMSO-d6) δ 171.73, 158.17, 
156.14, 152.79, 101.02, 43.56, 43.29, 35.09, 13.19. HRMS: m/z: calcd for C11H18N5O+: 236.1506 
[M + H]+; found: 236.1505. 

 
4-(Benzylamino)-5,7,8,9-tetrahydro-6H-pyrimido[4,5-b][1,4]diazepin-6-one (3d). White 
solid. Yield: 45% (13.8 mg). 1H-NMR (500 MHz, DMSO-d6) δ 8.49 (s, 1H), 7.75 (s, 1H), 7.36–
7.32 (m, 2H), 7.32–7.28 (m, 2H), 7.24–7.20 (m, 1H), 6.92 (t, J = 5.7 Hz, 1H), 6.76 (t, J = 4.2 Hz, 
1H), 4.52 (d, J = 5.7 Hz, 2H), 3.54–3.50 (m, 2H), 2.53–2.50 (m, 2H, overlapped with DMSO). 
13C-NMR (126 MHz, DMSO-d6) δ 172.70, 155.02, 153.34, 152.93, 140.09, 128.06, 127.44, 

4-(Propylamino)-5,7,8,9-tetrahydro-6H-pyrimido[4,5-b][1,4]diazepin-6-one (3a). White
solid. Yield: 45% (11.7 mg). 1H-NMR (500 MHz, DMSO-d6) δ 8.41 (s, 1H), 7.75 (s, 1H), 6.67
(t, J = 4.2 Hz, 1H), 6.36 (t, J = 5.3 Hz, 1H), 3.51 (td, J = 4.6, 2.2 Hz, 2H), 3.28–3.22 (m, 2H),
2.49–2.47 (m, 2H), 1.58–1.47 (m, 2H), 0.89 (t, J = 7.4 Hz, 3H). 13C-NMR (126 MHz, DMSO-d6)
δ 172.69, 155.18, 153.13, 152.94, 96.95, 43.17, 42.66, 36.46, 22.26, 11.48. HRMS: m/z: calcd for
C10H16N5O+: 222.1349 [M + H]+; found: 222.1349.
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(dd, J = 8.9, 6.9 Hz, 1H), 3.82–3.74 (m, 2H), 3.60–3.43 (m, 4H), 3.39–3.31 (m, 2H), 3.04–2.97 
(m, 2H), 2.20–2.09 (m, 1H), 2.06–1.83 (m, 3H). 13C-NMR (126 MHz, DMSO-d6) δ 164.83, 
151.26, 151.12, 150.82, 105.96, 65.70, 58.35, 47.56, 45.25, 27.17, 22.29. HRMS: m/z: calcd for 
C13H18N5O2+: 276.1455 [M + H]+; found: 276.1456. 

 
4-(Propylamino)-5,7,8,9-tetrahydro-6H-pyrimido[4,5-b][1,4]diazepin-6-one (3a). White 
solid. Yield: 45% (11.7 mg). 1H-NMR (500 MHz, DMSO-d6) δ 8.41 (s, 1H), 7.75 (s, 1H), 6.67 
(t, J = 4.2 Hz, 1H), 6.36 (t, J = 5.3 Hz, 1H), 3.51 (td, J = 4.6, 2.2 Hz, 2H), 3.28–3.22 (m, 2H), 
2.49–2.47 (m, 2H), 1.58–1.47 (m, 2H), 0.89 (t, J = 7.4 Hz, 3H). 13C-NMR (126 MHz, DMSO-
d6) δ 172.69, 155.18, 153.13, 152.94, 96.95, 43.17, 42.66, 36.46, 22.26, 11.48. HRMS: m/z: calcd 
for C10H16N5O+: 222.1349 [M + H]+; found: 222.1349. 

 
4-(Hexylamino)-5,7,8,9-tetrahydro-6H-pyrimido[4,5-b][1,4]diazepin-6-one (3b). White 
solid. Yield: 42% (12.5 mg). 1H-NMR (500 MHz, DMSO-d6) δ 8.40 (s, 1H), 7.75 (s, 1H), 6.67 
(t, J = 4.2 Hz, 1H), 6.33 (t, J = 5.3 Hz, 1H), 3.50 (td, J = 4.7, 2.2 Hz, 2H), 3.27 (td, J = 7.1, 5.7 
Hz, 2H), 2.49–2.46 (m, 2H, overlapped with DMSO), 1.55–1.47 (m, 2H), 1.35–1.25 (m, 6H), 
0.86 (t, J = 6.9 Hz, 3H). 13C-NMR (126 MHz, DMSO-d6) δ 172.71, 155.16, 153.12, 152.96, 96.96, 
43.18, 40.86, 36.47, 31.12, 29.02, 26.18, 22.08, 13.92. HRMS: m/z: calcd for C13H22N5O+: 
264.1819 [M + H]+; found: 264.1816. 

 
4-(Diethylamino)-5,7,8,9-tetrahydro-6H-pyrimido[4,5-b][1,4]diazepin-6-one (3c). White 
solid. Yield: 55% (15.1 mg). 1H-NMR (500 MHz, DMSO-d6) δ 8.24 (s, 1H), 7.84 (s, 1H), 6.92 
(t, J = 3.3 Hz, 1H), 3.58–3.52 (m, 2H), 3.34–3.26 (m, 4H, overlapped with residual water), 
2.59–2.53 (m, 2H), 1.06 (t, J = 7.0 Hz, 6H). 13C-NMR (126 MHz, DMSO-d6) δ 171.73, 158.17, 
156.14, 152.79, 101.02, 43.56, 43.29, 35.09, 13.19. HRMS: m/z: calcd for C11H18N5O+: 236.1506 
[M + H]+; found: 236.1505. 

 
4-(Benzylamino)-5,7,8,9-tetrahydro-6H-pyrimido[4,5-b][1,4]diazepin-6-one (3d). White 
solid. Yield: 45% (13.8 mg). 1H-NMR (500 MHz, DMSO-d6) δ 8.49 (s, 1H), 7.75 (s, 1H), 7.36–
7.32 (m, 2H), 7.32–7.28 (m, 2H), 7.24–7.20 (m, 1H), 6.92 (t, J = 5.7 Hz, 1H), 6.76 (t, J = 4.2 Hz, 
1H), 4.52 (d, J = 5.7 Hz, 2H), 3.54–3.50 (m, 2H), 2.53–2.50 (m, 2H, overlapped with DMSO). 
13C-NMR (126 MHz, DMSO-d6) δ 172.70, 155.02, 153.34, 152.93, 140.09, 128.06, 127.44, 

4-(Hexylamino)-5,7,8,9-tetrahydro-6H-pyrimido[4,5-b][1,4]diazepin-6-one (3b). White solid.
Yield: 42% (12.5 mg). 1H-NMR (500 MHz, DMSO-d6) δ 8.40 (s, 1H), 7.75 (s, 1H), 6.67
(t, J = 4.2 Hz, 1H), 6.33 (t, J = 5.3 Hz, 1H), 3.50 (td, J = 4.7, 2.2 Hz, 2H), 3.27 (td, J = 7.1, 5.7 Hz,
2H), 2.49–2.46 (m, 2H, overlapped with DMSO), 1.55–1.47 (m, 2H), 1.35–1.25 (m, 6H), 0.86
(t, J = 6.9 Hz, 3H). 13C-NMR (126 MHz, DMSO-d6) δ 172.71, 155.16, 153.12, 152.96, 96.96,
43.18, 40.86, 36.47, 31.12, 29.02, 26.18, 22.08, 13.92. HRMS: m/z: calcd for C13H22N5O+:
264.1819 [M + H]+; found: 264.1816.
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(dd, J = 8.9, 6.9 Hz, 1H), 3.82–3.74 (m, 2H), 3.60–3.43 (m, 4H), 3.39–3.31 (m, 2H), 3.04–2.97 
(m, 2H), 2.20–2.09 (m, 1H), 2.06–1.83 (m, 3H). 13C-NMR (126 MHz, DMSO-d6) δ 164.83, 
151.26, 151.12, 150.82, 105.96, 65.70, 58.35, 47.56, 45.25, 27.17, 22.29. HRMS: m/z: calcd for 
C13H18N5O2+: 276.1455 [M + H]+; found: 276.1456. 

 
4-(Propylamino)-5,7,8,9-tetrahydro-6H-pyrimido[4,5-b][1,4]diazepin-6-one (3a). White 
solid. Yield: 45% (11.7 mg). 1H-NMR (500 MHz, DMSO-d6) δ 8.41 (s, 1H), 7.75 (s, 1H), 6.67 
(t, J = 4.2 Hz, 1H), 6.36 (t, J = 5.3 Hz, 1H), 3.51 (td, J = 4.6, 2.2 Hz, 2H), 3.28–3.22 (m, 2H), 
2.49–2.47 (m, 2H), 1.58–1.47 (m, 2H), 0.89 (t, J = 7.4 Hz, 3H). 13C-NMR (126 MHz, DMSO-
d6) δ 172.69, 155.18, 153.13, 152.94, 96.95, 43.17, 42.66, 36.46, 22.26, 11.48. HRMS: m/z: calcd 
for C10H16N5O+: 222.1349 [M + H]+; found: 222.1349. 

 
4-(Hexylamino)-5,7,8,9-tetrahydro-6H-pyrimido[4,5-b][1,4]diazepin-6-one (3b). White 
solid. Yield: 42% (12.5 mg). 1H-NMR (500 MHz, DMSO-d6) δ 8.40 (s, 1H), 7.75 (s, 1H), 6.67 
(t, J = 4.2 Hz, 1H), 6.33 (t, J = 5.3 Hz, 1H), 3.50 (td, J = 4.7, 2.2 Hz, 2H), 3.27 (td, J = 7.1, 5.7 
Hz, 2H), 2.49–2.46 (m, 2H, overlapped with DMSO), 1.55–1.47 (m, 2H), 1.35–1.25 (m, 6H), 
0.86 (t, J = 6.9 Hz, 3H). 13C-NMR (126 MHz, DMSO-d6) δ 172.71, 155.16, 153.12, 152.96, 96.96, 
43.18, 40.86, 36.47, 31.12, 29.02, 26.18, 22.08, 13.92. HRMS: m/z: calcd for C13H22N5O+: 
264.1819 [M + H]+; found: 264.1816. 

 
4-(Diethylamino)-5,7,8,9-tetrahydro-6H-pyrimido[4,5-b][1,4]diazepin-6-one (3c). White 
solid. Yield: 55% (15.1 mg). 1H-NMR (500 MHz, DMSO-d6) δ 8.24 (s, 1H), 7.84 (s, 1H), 6.92 
(t, J = 3.3 Hz, 1H), 3.58–3.52 (m, 2H), 3.34–3.26 (m, 4H, overlapped with residual water), 
2.59–2.53 (m, 2H), 1.06 (t, J = 7.0 Hz, 6H). 13C-NMR (126 MHz, DMSO-d6) δ 171.73, 158.17, 
156.14, 152.79, 101.02, 43.56, 43.29, 35.09, 13.19. HRMS: m/z: calcd for C11H18N5O+: 236.1506 
[M + H]+; found: 236.1505. 

 
4-(Benzylamino)-5,7,8,9-tetrahydro-6H-pyrimido[4,5-b][1,4]diazepin-6-one (3d). White 
solid. Yield: 45% (13.8 mg). 1H-NMR (500 MHz, DMSO-d6) δ 8.49 (s, 1H), 7.75 (s, 1H), 7.36–
7.32 (m, 2H), 7.32–7.28 (m, 2H), 7.24–7.20 (m, 1H), 6.92 (t, J = 5.7 Hz, 1H), 6.76 (t, J = 4.2 Hz, 
1H), 4.52 (d, J = 5.7 Hz, 2H), 3.54–3.50 (m, 2H), 2.53–2.50 (m, 2H, overlapped with DMSO). 
13C-NMR (126 MHz, DMSO-d6) δ 172.70, 155.02, 153.34, 152.93, 140.09, 128.06, 127.44, 

4-(Diethylamino)-5,7,8,9-tetrahydro-6H-pyrimido[4,5-b][1,4]diazepin-6-one (3c). White
solid. Yield: 55% (15.1 mg). 1H-NMR (500 MHz, DMSO-d6) δ 8.24 (s, 1H), 7.84 (s, 1H),
6.92 (t, J = 3.3 Hz, 1H), 3.58–3.52 (m, 2H), 3.34–3.26 (m, 4H, overlapped with residual
water), 2.59–2.53 (m, 2H), 1.06 (t, J = 7.0 Hz, 6H). 13C-NMR (126 MHz, DMSO-d6) δ 171.73,
158.17, 156.14, 152.79, 101.02, 43.56, 43.29, 35.09, 13.19. HRMS: m/z: calcd for C11H18N5O+:
236.1506 [M + H]+; found: 236.1505.
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(dd, J = 8.9, 6.9 Hz, 1H), 3.82–3.74 (m, 2H), 3.60–3.43 (m, 4H), 3.39–3.31 (m, 2H), 3.04–2.97 
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4-(Benzylamino)-5,7,8,9-tetrahydro-6H-pyrimido[4,5-b][1,4]diazepin-6-one (3d). White 
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13C-NMR (126 MHz, DMSO-d6) δ 172.70, 155.02, 153.34, 152.93, 140.09, 128.06, 127.44, 
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4-(Benzylamino)-5,7,8,9-tetrahydro-6H-pyrimido[4,5-b][1,4]diazepin-6-one (3d). White
solid. Yield: 45% (13.8 mg). 1H-NMR (500 MHz, DMSO-d6) δ 8.49 (s, 1H), 7.75 (s, 1H),
7.36–7.32 (m, 2H), 7.32–7.28 (m, 2H), 7.24–7.20 (m, 1H), 6.92 (t, J = 5.7 Hz, 1H), 6.76 (t,
J = 4.2 Hz, 1H), 4.52 (d, J = 5.7 Hz, 2H), 3.54–3.50 (m, 2H), 2.53–2.50 (m, 2H, overlapped
with DMSO). 13C-NMR (126 MHz, DMSO-d6) δ 172.70, 155.02, 153.34, 152.93, 140.09, 128.06,
127.44, 126.52, 97.15, 44.16, 43.12, 36.46. HRMS: m/z: calcd for C14H16N5O+: 270.1349
[M + H]+; found: 270.1346.
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1H), 6.66 (t, J = 4.2 Hz, 1H), 6.07 (d, J = 7.5 Hz, 1H), 4.14–4.04 (m, 1H), 3.53–3.47 (m, 2H), 
2.50–2.46 (m, 2H, overlapped with DMSO), 1.82–1.73 (m, 2H), 1.72–1.42 (m, 12H). 13C-
NMR (126 MHz, DMSO-d6) δ 172.81, 153.98, 153.15, 152.89, 96.97, 50.13, 43.16, 36.63, 31.44, 
26.97, 25.05, 23.34. HRMS: m/z: calcd for C15H24N5O+: 290.1975 [M + H]+; found: 290.1974. 

 
4-(Piperidin-1-yl)-5,7,8,9-tetrahydro-6H-pyrimido[4,5-b][1,4]diazepin-6-one (3g). White 
solid. Yield: 46% (13.2 mg). 1H-NMR (500 MHz, DMSO-d6) δ 8.14 (s, 1H), 7.87 (s, 1H), 7.05 
(t, J = 3.2 Hz, 1H), 3.56–3.50 (m, 2H), 3.20–3.14 (m, 4H), 2.58–2.54 (m, 2H), 1.62–1.53 (m, 
6H). 13C-NMR (126 MHz, DMSO-d6) δ 171.75, 159.07, 155.65, 152.81, 102.31, 48.65, 42.67, 
35.64, 25.24, 24.14. HRMS: m/z: calcd for C12H18N5O+: 248.1506 [M + H]+; found: 248.1506. 

 
4-Morpholino-5,7,8,9-tetrahydro-6H-pyrimido[4,5-b][1,4]diazepin-6-one (3h). White 
solid. Yield: 51% (14.7 mg). 1H-NMR (500 MHz, DMSO-d6) δ 8.39 (s, 1H), 7.89 (s, 1H), 7.13 
(t, J = 3.2 Hz, 1H), 3.72–3.66 (m, 4H), 3.58–3.51 (m, 2H), 3.26–3.19 (m, 4H), 2.59–2.53 (m, 
2H). 13C-NMR (126 MHz, DMSO-d6) δ 171.88, 158.27, 155.88, 152.84, 102.30, 65.80, 47.87, 
42.81, 35.57. HRMS: m/z: calcd for C11H16N5O2+: 250.1299 [M + H]+; found: 250.1297. 

4-(Cyclohexylamino)-5,7,8,9-tetrahydro-6H-pyrimido[4,5-b][1,4]diazepin-6-one (3e). White
solid. Yield: 40% (11.8 mg). 1H-NMR (500 MHz, DMSO-d6) δ 8.53 (s, 1H), 7.74 (s, 1H),
6.68 (t, J = 4.2 Hz, 1H), 6.06 (d, J = 7.4 Hz, 1H), 3.82 (dtd, J = 10.6, 7.0, 3.8 Hz, 1H), 3.50 (td,
J = 4.7, 2.1 Hz, 2H), 2.50–2.47 (m, 2H, overlapped with DMSO), 1.93–1.83 (m, 2H), 1.78–1.67
(m, 2H), 1.62–1.55 (m, 1H), 1.33–1.08 (m, 5H). 13C-NMR (126 MHz, DMSO-d6) δ 172.78,
154.23, 153.21, 152.87, 96.87, 49.28, 43.13, 36.60, 32.59, 25.41, 24.82. HRMS: m/z: calcd for
C13H20N5O+: 262.1662 [M + H]+; found: 262.1663.

Molecules 2021, 26, x FOR PEER REVIEW 19 of 21 
 

 

126.52, 97.15, 44.16, 43.12, 36.46. HRMS: m/z: calcd for C14H16N5O+: 270.1349 [M + H]+; 
found: 270.1346. 

 
4-(Cyclohexylamino)-5,7,8,9-tetrahydro-6H-pyrimido[4,5-b][1,4]diazepin-6-one (3e). 
White solid. Yield: 40% (11.8 mg). 1H-NMR (500 MHz, DMSO-d6) δ 8.53 (s, 1H), 7.74 (s, 
1H), 6.68 (t, J = 4.2 Hz, 1H), 6.06 (d, J = 7.4 Hz, 1H), 3.82 (dtd, J = 10.6, 7.0, 3.8 Hz, 1H), 3.50 
(td, J = 4.7, 2.1 Hz, 2H), 2.50–2.47 (m, 2H, overlapped with DMSO), 1.93–1.83 (m, 2H), 1.78–
1.67 (m, 2H), 1.62–1.55 (m, 1H), 1.33–1.08 (m, 5H). 13C-NMR (126 MHz, DMSO-d6) δ 172.78, 
154.23, 153.21, 152.87, 96.87, 49.28, 43.13, 36.60, 32.59, 25.41, 24.82. HRMS: m/z: calcd for 
C13H20N5O+: 262.1662 [M + H]+; found: 262.1663. 

 
4-(Cyclooctylamino)-5,7,8,9-tetrahydro-6H-pyrimido[4,5-b][1,4]diazepin-6-one (3f). 
White solid. Yield: 38% (12.3 mg). 1H-NMR (500 MHz, DMSO-d6) δ 8.57 (s, 1H), 7.75 (s, 
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(t, J = 3.2 Hz, 1H), 3.56–3.50 (m, 2H), 3.20–3.14 (m, 4H), 2.58–2.54 (m, 2H), 1.62–1.53 (m, 
6H). 13C-NMR (126 MHz, DMSO-d6) δ 171.75, 159.07, 155.65, 152.81, 102.31, 48.65, 42.67, 
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2H). 13C-NMR (126 MHz, DMSO-d6) δ 171.88, 158.27, 155.88, 152.84, 102.30, 65.80, 47.87, 
42.81, 35.57. HRMS: m/z: calcd for C11H16N5O2+: 250.1299 [M + H]+; found: 250.1297. 

4-(Cyclooctylamino)-5,7,8,9-tetrahydro-6H-pyrimido[4,5-b][1,4]diazepin-6-one (3f). White
solid. Yield: 38% (12.3 mg). 1H-NMR (500 MHz, DMSO-d6) δ 8.57 (s, 1H), 7.75 (s, 1H), 6.66
(t, J = 4.2 Hz, 1H), 6.07 (d, J = 7.5 Hz, 1H), 4.14–4.04 (m, 1H), 3.53–3.47 (m, 2H), 2.50–2.46 (m,
2H, overlapped with DMSO), 1.82–1.73 (m, 2H), 1.72–1.42 (m, 12H). 13C-NMR (126 MHz,
DMSO-d6) δ 172.81, 153.98, 153.15, 152.89, 96.97, 50.13, 43.16, 36.63, 31.44, 26.97, 25.05, 23.34.
HRMS: m/z: calcd for C15H24N5O+: 290.1975 [M + H]+; found: 290.1974.
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13C-NMR (126 MHz, DMSO-d6) δ 171.75, 159.07, 155.65, 152.81, 102.31, 48.65, 42.67, 35.64,
25.24, 24.14. HRMS: m/z: calcd for C12H18N5O+: 248.1506 [M + H]+; found: 248.1506.
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4-Morpholino-5,7,8,9-tetrahydro-6H-pyrimido[4,5-b][1,4]diazepin-6-one (3h). White solid.
Yield: 51% (14.7 mg). 1H-NMR (500 MHz, DMSO-d6) δ 8.39 (s, 1H), 7.89 (s, 1H), 7.13 (t, J
= 3.2 Hz, 1H), 3.72–3.66 (m, 4H), 3.58–3.51 (m, 2H), 3.26–3.19 (m, 4H), 2.59–2.53 (m, 2H).
13C-NMR (126 MHz, DMSO-d6) δ 171.88, 158.27, 155.88, 152.84, 102.30, 65.80, 47.87, 42.81,
35.57. HRMS: m/z: calcd for C11H16N5O2

+: 250.1299 [M + H]+; found: 250.1297.
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4. Conclusions 
In conclusion, we have developed an efficient solid-phase synthetic approach leading 

to various dihydropteridinones, tetrahydropyrrolopteridinones, or pyrimidodiaze-
pinones using one versatile building block. The reduction and cyclization were performed 
after cleavage from polymer support; however, crude products were obtained after simple 
filtration of powdered zinc and evaporation of solvents. Final cyclization leading to dihy-
dropteridinones and tetrahydropyrrolopteridinones proceeded smoothly at room tem-
perature. On the other hand, the cyclization of β-alanine precursors had to be accelerated 
by heating to 80 °C. In summary, we prepared forty heterocycles utilizing one versatile 
building block modified with other distinct substituents. All derivatives were fully char-
acterized and might be used for future SAR studies. 
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dihydropteridinones and tetrahydropyrrolopteridinones proceeded smoothly at room
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