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Why Study Nasal Microbiota?
Bacterial species that commonly reside on surfaces of the human nasal passages (Fig 1) interact
with the host along a continuum from beneficial to harmful, i.e., from mutualist to commensal
to pathogen. Likewise, the host responds along a continuum from tolerance to damage [1]. In
fact, a small number of bacterial species that are prevalent and often abundant members of the
nasal microbiota are important human pathogens, e.g., Staphylococcus aureus and Streptococ-
cus pneumoniae. In the United States alone, S. pneumoniae contributes to ~20,000 deaths [2]
and methicillin-resistant strains of S. aureus (MRSA) contribute to ~10,000 deaths annually
[3]. Despite this significant mortality, most S. aureus and S. pneumoniae interactions with
humans are harmless and do not result in disease, i.e., are commensal. However, benign coloni-
zation can be the starting point for disease, host–host transmission, and selection for new
microbial traits. This duality of behavior from commensal to pathogen has led to the term
pathobiont [4]. The factors that shift the behavior of pathobionts from a commensal to a path-
ogenic state remain to be identified. However, the interplay of pathobionts with other members
of the microbiota might be one such factor. The combination of cultivation and 16S rRNA
gene-based approaches has revealed new insights into this possibility and has sparked renewed
interest in determining the molecular mechanisms of commensal–pathobiont interactions in
the nasal microbiota. One goal of these efforts is to identify potentially beneficial bacteria
(mutualists) that might either exclude pathobionts through colonization resistance or shift the
behavior of colonizing pathobionts towards commensalism.

The feasibility of this goal is supported by two studies in adult Danish twins. Data from a
large study of 617 twin pairs indicate that host genetics play a limited role in determining S.
aureus nostril colonization and suggest a larger role for environmental factors, which could
include the microbiota [6]. In a follow-up study of 46 monozygotic and 43 dizygotic twin pairs,
the bacterial composition of the nasal microbiota is also predominantly an environmentally
derived phenotype with host genetics playing a minor role in composition, but a larger role in
determining bacterial density on nasal surfaces [7]. These studies, along with evidence that
nasal microbiota composition changes over time, including seasonal variation [8–13], support
the hypothesis that nasal microbiota composition could be altered for therapeutic benefit
[7,14]. This hypothesis is bolstered by reports of negative correlations in colonization between
key pathobionts (e.g., S. pneumoniae and S. aureus) and select benign commensals and of alter-
ations in microbiota composition in disease states, e.g., middle ear infections (otitis media)
[7,15–26]. Such studies further highlight the need to understand the role and function of the
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bacterial species that commonly reside in the human nasal passages and commensal–patho-
biont interactions.

As recently reviewed for gut microbiota [27] and illustrated in Fig 2, beneficial nasal bacteria
might impact pathobionts by inhibiting colonization and proliferation (colonization resis-
tance) via (A) direct or (B) indirect mechanisms or by (C) shifting pathogen behavior towards
commensalism and away from pathogenesis (Fig 2). Here we review some recent advances in
determining the molecular mechanisms of commensal–pathobiont interactions among bacte-
rial members of the microbiota of the nasal passages.

What Is Known about the Composition of the Bacterial Microbiota
of the Nasal Passages?
The human nasal passages and nasopharynx (Fig 1) host a distinctive bacterial community that
is increasingly well characterized via culture-independent 16S rRNA gene surveys of different
age groups in health and disease (e.g., as reviewed in [28]). In prepubertal children, members
of the phyla Firmicutes, Proteobacteria, Actinobacteria, and Bacteroidetes commonly colonize
the nostrils and nasopharynx with the latter two exhibiting lower relative abundance on aver-
age than the other two [8,9,12,13,17,18,20,23,29,30]. Of the Actinobacteria, Corynebacterium is
typically the dominant genus detected [8,12,23,29]. A clear shift in the nostril microbiota
occurs during puberty [29] and persists in the majority of healthy adults under age 65 years; it
becomes dominated by Actinobacteria, in particular the genera Corynebacterium and Propioni-
bacterium, and Firmicutes, in particular the genus Staphylococcus [7,11,16,19,21,24,25,29,31–
35]. In spite of transitions in the type of epithelial surface from skin to respiratory epithelium
(Fig 1), a high similarity exists in the bacterial microbiota along the length of the nasal passages
[19,33]; however, the nasal cavity is reported to host a more diverse bacterial community [19].
Among the common members of the nasal microbiota in both children and adults are known
pathobionts.

What Are the Common Nasal Pathobionts?
The primary middle ear and respiratory bacterial pathogens, S. pneumoniae, Haemophilus
influenzae, and Moraxella catarrhalis, commonly colonize the nasal passages of healthy chil-
dren, with S. aureus usually present less often. In contrast, S. aureus colonization of the nasal
passages is much more common in adults, whereas S. pneumoniae and H. influenzae are less
common. We favor the term pathobiont for these species because pathobionts are by defini-
tion commensal members of the host’s microbiota, whereas opportunistic pathogens may be
commensal, environmental, or zoonotic in origin. In addition, these nasal pathobionts can
cause infection in healthy hosts, e.g., healthy children and adolescents, whereas opportunistic
pathogens generally only infect hosts who are compromised in some manner, e.g., decreased
immune function or a significant breakdown in barrier function, such as with traumatic
open wounds. (Although of great interest, the research on pathobiont–pathobiont

Fig 1. The human nasal passages. As reviewed in [5], the nostrils (anterior nares) are the entrance into the (A)
human nasal passages (sagittal section) and open onto the skin-covered surface of the nasal vestibule, an acidic
environment that contains sweat and sebaceous glands. (B) Cross section of the nostril skin. Moving posterior (A),
the limen nasi marks the transition from the posterior region of the nasal vestibules to a mucosal surface, which
contains mucin-secreting goblet cells and where the pH begins to steadily increase, reaching neutrality before the
nasal cavity ends in the nasopharynx, the top of the back of the throat. Respiratory epithelial cells, including cilia that
beat towards the esophagus, line the posterior segment of the nasal cavity and the nasopharynx. (C) Cross section of
the mucosal surface.

doi:10.1371/journal.ppat.1005633.g001
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interactions in the upper respiratory tract is beyond the scope of this review.) Recent upper
respiratory tract cross-sectional studies that combine culture-based detection of pathobionts
with high-throughput-sequencing characterization of microbiota in adults and children
reveal inverse correlations between levels of S. aureus or S. pneumoniae and specific com-
mensal bacteria (e.g., [7,12,16,17,19,20,23–26,35]). These correlations provide the impetus
for experiments to test for direct antagonism between these specific commensals and patho-
bionts and, when these hypotheses are verified, to uncover the molecular mechanisms
involved, as reviewed below.

Fig 2. Commensal–pathobiont interactions that are beneficial to the host.Commensal bacteria can
impact pathobionts in a manner beneficial to the host via (A) direct inhibition, e.g., production of
antimicrobials; (B) indirect inhibition, e.g., competition for nutrients, modification of the habitat via
acidification of environmental pH, alteration of host compounds or secretion of toxic metabolite(s), promotion
of host epithelial barrier function, or stimulation of the host immune system; or by (C) behavior modification,
e.g., shifting pathogens towards commensalism.

doi:10.1371/journal.ppat.1005633.g002
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What Is Currently Known about Commensal–Pathobiont
Interactions in Nasal Microbiota?
Culture-dependent and -independent surveys indicate that non-diphtheriae Corynebacterium
spp. commonly colonize the pediatric and adult nasal passages [8,11,12,16,19–26,29–34,36,37].
Yet, the function of Corynebacterium spp. in these habitats is understudied and remains poorly
understood. This is likely because most commensal Corynebacterium spp. do not cause disease.
Culture-dependent studies indicate that C. accolens, C. tuberculostearicum, C. amycolatum, C.
aurimucosum, C. propinquum, and C. pseudodiphtheriticum commonly colonize the adult nose
[33,37]. Data on which species colonize the pediatric nose are sparse, but a recent 16S rRNA
gene survey of pediatric nasopharyngeal samples detected operational taxonomic units (OTUs)
resembling C. accolens and C. pseudodiphtheriticum/C. propinquum [20]. The observed inverse
correlation between relative abundances of Corynebacterium spp. and S. pneumoniae in the
noses of children under seven years old leads to the hypothesis that antagonism exists between
these two groups of bacteria and that Corynebacterium spp. might be protective against pneu-
mococcal colonization [23,26]. We observed that in vitro C. accolens, a lipid-requiring species,
releases antipneumococcal free fatty acids from representative human skin surface triacylgly-
cerols; we also identified a primary C. accolens triacylglycerol lipase [26]. This might represent
a mechanism by which C. accolens antagonizes S. pneumoniae growth in vivo, thus contribut-
ing to colonization resistance against S. pneumoniae.

An inverse correlation between the genus Corynebacterium and S. aureus is reported in
some studies of adult nasal microbiota [15,16,19,22,25], a few of which have examined this at
the species level for Corynebacterium [16,19]. For example, in a cohort of 40 healthy adults, S.
aureus negatively correlated with higher relative abundance of C. accolens and positively corre-
lated with C. pseudodiphtheriticum [16]. In contrast, in a cohort of twelve adults, six with per-
sistent S. aureus nasal colonization, C. accolens positively correlated with S. aureus colonization
and in vitro S. aureus enhanced C. accolens growth [19]. In the same study, C. pseudodiphtheri-
ticum negatively correlated with S. aureus and inhibited S. aureus growth during in vitro cocul-
tivation [19]. The variation of results between different studies speaks to the potential
complexity of S. aureus–Corynebacterium interactions, including the possibility of strain-level
variations, and highlights the need for research to determine the molecular mechanisms
involved, which are unlikely to be limited to inhibition.

In considering whether commensal Corynebacterium spp. might have a future role in man-
aging nasal microbiota composition, there are precedents for testing commensal Corynebacte-
rium spp. as probiotics for eradication of S. aureus nasal colonization, albeit in small cohorts
[15,38]. For example, Uehara and colleagues report that repeatedly implanting an unidentified
Corynebacterium sp. (Co304) eradicated S. aureus colonization in 12 of 17 healthy adult carri-
ers [15].

Additional examples of commensal–pathobiont interactions have been described for cuta-
neous Propionibacterium spp., which include P. acnes, P. avidum, and P. granulosum. These
are common members of the nostril microbiota in late adolescence and adulthood
[7,16,19,21,29–34] and are also detected on nasal mucosal surfaces [19,33,36]. Humans appear
to be unusual among mammals in hosting Propionibacterium on the skin, and this might relate
to the abundance of triacylglycerols in human sebum and skin-surface lipids [39]. P. acnes is
the dominant bacterial inhabitant of the pilosebaceous glands (pores) of skin (Fig 1) [40] and is
present on the skin of most adults, at least in developed countries [29,31,34]. (A note of cau-
tion: the more recent next-generation sequencing (NGS) studies that rely on the V4 region of
the 16S rRNA gene fail to detect the same levels of Propionibacterium as prior 454 studies [41],
likely because the commonly used 806R primer poorly detects Propionibacterium.) Given the
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ubiquity of Propionibacterium on adult human skin surfaces, including the nasal vestibules,
several studies have examined potential interactions between cutaneous Propionibacterium
spp. and S. aureus. For example, coproporphyrin III (CIII), a diffusible small molecule excreted
by nostril- and skin-associated Propionibacterium spp., induces S. aureus aggregation and bio-
film formation; this activity is dependent on dose, growth phase, and pH [42]. In other work,
Huang and colleagues published several studies that describe effects of P. acnes on S. aureus vir-
ulence and/or growth in skin wounds [43,44]. Lo et al. showed that P. acnes-secreted Christie–
Atkins–Munch-Petersen (CAMP) factor enhances the hemolytic and cytolytic activity of S.
aureus-secreted beta-hemolysin (sphingomyelinase C) [44]. In a mouse skin infection model,
when compared to monoinfection, coinfection of P. acnes with S. aureus enhanced S. aureus
virulence in vivo in a manner dependent on active CAMP factor and beta-hemolysin [44]. Shu
et al. demonstrated that, when P. acnes and 13C-labeled glycerol are injected into a mouse ear,
P. acnes ferments glycerol, a carbon source available on human skin, to short-chain fatty acids,
e.g., propionic acid. These products of P. acnes glycerol fermentation inhibited growth of
USA300 CA-MRSA both in vitro and in vivo in a mouse model of skin wounds [43], although
it was unclear how much of this was due to low pH alone. It is likely that these interactions
observed on skin surfaces outside of the nasal passages will be applicable to commensal–patho-
biont interactions on the skin surfaces of the nasal vestibule.

In addition to the Corynebacterium–pathobiont and Propionibacterium–pathobiont interac-
tions described above, interactions between Staphylococcus epidermidis, a commensal, and S.
aureus have also been investigated. This is driven largely by the hypothesis that, due to their close
phylogenetic relationship, these species might compete for a similar niche within the nasal habitat.
Because much of this research has been recently reviewed (e.g., [45,46]), it is not covered here.

What Are Future Research Directions in This Area?
The research discussed here lays the foundation for future testing of harmless nasal bacterial spe-
cies, e.g., C. accolens, as potential probiotics. These studies also set the stage for identifying com-
mensal-produced small molecules with the potential for use in managing nasal microbiota
composition to promote health. For example, recently developed algorithms that can identify
biosynthetic gene clusters whose products synthesize small molecules that might be involved in
interspecies interactions within human microbiota promise rapid expansion in this area of
research [47,48]. In addition, we expect that microbiota composition studies will continue to lead
to the recognition of potentially important, yet previously neglected, commensals, e.g.,Dolosigra-
nulum pigrum, which is overrepresented in children without S. pneumoniae nasal colonization
and which in older adults appears to be an informative predictor for the lack of S. aureus coloni-
zation [7,17,26]. This review highlights an exciting early stage in the exploration of the molecular
mechanisms of interspecies interactions that sculpt nasal microbiota composition and influence
pathobiont colonization. Much of this work will also relate directly to the composition of skin
microbiota. Because pathobiont colonization is a prerequisite for infection and transmission, a
rational approach to prevent infections is to limit or decrease pathobiont abundance and to shift
pathobiont behavior towards commensalism using either commensal-derived compounds or
commensals as probiotics. We look forward to an increase in research on commensal–pathobiont
interactions within the human microbiome and an ever-increasing understanding of the func-
tional significance of our commensal and mutualist bacterial partners.
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