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Recent advancements in sequencing-based DNA methylation profiling methods provide an unprecedented opportunity
to map complete DNA methylomes. These include whole-genome bisulfite sequencing (WGBS, MethylC-seq, or BS-seq),
reduced-representation bisulfite sequencing (RRBS), and enrichment-based methods such as MeDIP-seq, MBD-seq, and
MRE-seq. These methods yield largely comparable results but differ significantly in extent of genomic CpG coverage,
resolution, quantitative accuracy, and cost, at least while using current algorithms to interrogate the data. None of these
existing methods provides single-CpG resolution, comprehensive genome-wide coverage, and cost feasibility for a typical
laboratory. We introduce methylCRF, a novel conditional random fields–based algorithm that integrates methylated DNA
immunoprecipitation (MeDIP-seq) and methylation-sensitive restriction enzyme (MRE-seq) sequencing data to predict
DNA methylation levels at single-CpG resolution. Our method is a combined computational and experimental strategy to
produce DNA methylomes of all 28 million CpGs in the human genome for a fraction (<10%) of the cost of whole-genome
bisulfite sequencing methods. methylCRF was benchmarked for accuracy against Infinium arrays, RRBS, WGBS se-
quencing, and locus-specific bisulfite sequencing performed on the same human embryonic stem cell line. methylCRF
transformation of MeDIP-seq/MRE-seq was equivalent to a biological replicate of WGBS in quantification, coverage, and
resolution. We used conventional bisulfite conversion, PCR, cloning, and sequencing to validate loci where our predictions
do not agree with whole-genome bisulfite data, and in 11 out of 12 cases, methylCRF predictions of methylation level agree
better with validated results than does whole-genome bisulfite sequencing. Therefore, methylCRF transformation of MeDIP-
seq/MRE-seq data provides an accurate, inexpensive, and widely accessible strategy to create full DNA methylomes.

[Supplemental material is available for this article.]

The haploid human genome contains ;28 million CpGs that exist

in methylated, hydroxymethylated, or unmethylated states. The

methylation status of cytosines in CpGs influences protein–DNA

interactions, gene expression, and chromatin structure and sta-

bility; and plays a vital role in the regulation of cellular processes

including host defense against endogenous parasitic sequences,

embryonic development, transcription, X-chromosome inactivation,

and genomic imprinting, as well as possibly playing a role in learning

and memory (Robertson 2005; Suzuki and Bird 2008; Laird 2010;

Jones 2012). Understanding the role of DNA methylation in devel-

opment and disease requires accurate assessment of the genomic

distribution of these modifications (Laird 2010). Recent advance-

ments in sequencing-based DNA methylation profiling methods

provide an unprecedented opportunity to map complete DNA

methylomes. Techniques for high-throughput detection of cyto-

sine methylation include bisulfite conversion of unmethylated

cytosines to uracil, immunoprecipitation with antibodies specific

for methylated DNA, and cleavage of CpG-containing restriction

sites by methylation-sensitive or methylation-dependent restriction

endonucleases followed by sequencing or microarray hybridization

(Bock 2012).

The most comprehensive method, bisulfite treatment

followed by sequencing (whole-genome bisulfite sequencing

[WGBS], including MethylC-seq [Lister et al. 2009] and BS-seq

[Cokus et al. 2008; Laurent et al. 2010]), measures single-cytosine

methylation levels genome-wide and directly estimates the ratio of

molecules methylated rather than enrichment levels. However,

this method requires essentially resequencing the entire genome
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multiple times for every experiment (with up to half the reads not

even covering CpG sites). To obtain a complete DNA methylome,

the total sequencing depth required for adequate coverage of each

strand is equivalent to 303 of the human genome (90 Gb), which

remains an expensive experiment. In addition to its high cost,

bisulfite-converted genomes have lower sequence complexity and

reduced GC content. Therefore, the performance of WGBS-based

methods is also influenced by potential differences in the effi-

ciency of amplification of methylated and unmethylated DNA

copies of the same locus, and the ability to accurately align bi-

sulfite-converted sequencing reads to the genome, which is more

challenging than alignment of conventional reads (Krueger et al.

2012). As noted, 10% of CpGs in the mammalian genome remain

refractory to alignment of bisulfite-converted reads (Laird 2010).

Reduced-representation bisulfite sequencing (RRBS) (Meissner

et al. 2008) addresses the cost issue by measuring single-CpG

methylation only in CpG-dense regions. For the human genome, it

requires only ;3 Gb of sequencing to achieve the same degree of

sequencing depth for most regions of interest. However, RRBS’s

ability to interrogate a locus is dependent on its MspI-cut-site

(CCGG) density and consequently measures 10%–15% of the

CpGs in the human genome (Bock et al. 2010; Harris et al. 2010).

Restriction enzyme methods (e.g., MRE-seq) (Maunakea et al.

2010), on the other hand, typically incorporate parallel digestions

with three to five restriction endonucleases. Using multiple cut

sites, MRE-seq can cover close to 30% of the genome and saturates

at ;3 Gb of sequencing (Nair et al. 2011). These methylation-

sensitive enzymes cut only restriction sites with unmethylated

CpGs, and each read indicates the status of a single CpG. While

methylated CpGs could be inferred by the absence of reads at

cutting sites, this would require assuming perfect digestion, which

is not typically done in practice.

In contrast to MRE-seq, methods using monoclonal anti-

bodies against 5-methylcytosine (MeDIP-seq) (Weber et al. 2005;

Maunakea et al. 2010) or methylated DNA-binding proteins (MBD-

seq, domains of MBD2 alone, or in combination with MBD3L)

(Serre et al. 2009), to enrich for methylated DNA independent of

DNA sequence have been estimated to saturate at 5 Gb of sequencing

(Nair et al. 2011). An important advantage of MeDIP over restric-

tion enzyme methods is a lack of bias for a specific nucleotide

sequence, other than CpGs. However, the relationship of enrich-

ment to absolute methylation levels is confounded by variables

such as CpG density (Pelizzola et al. 2008). Another inherent

limitation of MeDIP-seq in its current form is its lower resolution

(;150 bp) compared with MRE-seq or bisulfite-based methods in

that one or more of the CpGs in the immunoprecipitated DNA

fragment could be responsible for the antibody binding.

Finally, array-based platforms are widely used. Approaches

that couple bisulfite conversions with hybridization-based arrays

(e.g., Illumina’s HumanMethylation450 BeadChip arrays), while

having single-base-pair resolution, are limited to a priori–targeted

regions. For example, the Illumina BeadChip array assesses meth-

ylation at ;485,000 targeted CpGs, averaging 17 CpGs per gene

spread across CpG islands and gene loci. (For this analysis, we also

used the previous BeadChip version, which contains 27,000 CpGs.)

As sequencing costs drop, the number of complete single-

nucleotide DNA methylome maps is increasing; however, still only

a few are publicly available for human. Barring a disruptive tech-

nological advance, the need for DNA methylome maps to address

fundamental biological questions will likely continue to far out-

pace the production of new maps for years. In contrast, many more

lower-cost DNA methylomes of either lower resolution or lower

coverage have been generated across diverse biological and disease

states. For example, the NIH Roadmap Epigenomics Project’s cur-

rent release of the Human Epigenome Atlas (Bernstein et al. 2010)

contains eight WGBS data sets, 119 RRBS data sets, 49 MeDIP-seq,

and 45 MRE-seq data sets. These methods yield largely comparable

results but differ significantly in extent of genomic CpG coverage,

resolution, quantitative accuracy, and cost, at least using current

algorithms to interrogate the data (Bock et al. 2010; Harris et al.

2010). None of these existing methods provides single-CpG reso-

lution, comprehensive genome-wide coverage, and a cost that is

affordable for a typical laboratory, particularly when many samples

are assayed. To address these needs, we describe here methylCRF,

a novel conditional random fields–based algorithm that integrates

methylated DNA immunoprecipitation (MeDIP-seq) and methyl-

ation-sensitive restriction enzyme (MRE-seq) sequencing data to

predict DNA methylation levels at single-CpG resolution.

Results

Motivation for integrating MeDIP-seq and MRE-seq data

MeDIP-seq and MRE-seq provide complementary readouts of DNA

methylation (Maunakea et al. 2010). Their protocols are simple

and differ in important ways from bisulfite treatment methods

(Harris et al. 2010; Maunakea et al. 2010). By using simple heu-

ristics, the combination of these two methods gave promising re-

sults in identifying differentially methylated regions (DMRs) and

intermediate or monoallelic methylation (Harris et al. 2010). Here

we further explore the complementary nature of MeDIP-seq and

MRE-seq. All genome-wide DNA methylation profiling methods

have their own unique biases, which can lead to errors in assessing

methylation states. Observed genome-wide measurements (MeDIP-

seq, MRE-seq, WGBS, etc.) are derived from the actual methylation

states of the sample, which is unknown or ‘‘hidden’’ from the in-

vestigators. These hidden methylation states are often inferred from

the observed data, which are usually sequencing reads aligned to

the reference genome. Because MeDIP-seq and MRE-seq are in-

dependent, complementary measurements of the same methyla-

tion state, our confidence in inferring the methylation state can be

significantly increased when results from these two methods are

integrated (Zhang et al. 2013). For example, a decrease in MeDIP-

seq signal could reflect a biological event (we infer that this region

is unmethylated) or could be a methodological artifact; but if the

inferred unmethylated state is corroborated by an increase of MRE-

seq signal, then the inference of unmethylation is stronger.

Thus, integrating MeDIP-seq and MRE-seq is expected to signifi-

cantly improve our ability to predict methylation levels accurately.

While MeDIP-seq and MRE-seq data correlate to a certain

degree with WGBS measurements (Fig. 1A,B), their relationship is

not well represented by a simple linear translation. It has also

remained technically challenging to infer absolute methylation

levels from enrichment measurements alone (Down et al. 2008;

Pelizzola et al. 2008; Chavez et al. 2010; Harris et al. 2010). Im-

portantly, existing high-resolution methylomes and prior regional

analyses reveal that CpG methylation levels are highly nonrandom

throughout the genome (Lister et al. 2009). The levels vary strongly

with local CpG density, display distinct genomic feature-specific

characteristics, and show strong correlation between neighboring

CpG sites (Fig. 2A–C). These properties motivated us to use a formal

statistical model to explore these complex relationships with the goal

of making an accurate, comprehensive, high-resolution prediction

of DNA methylation levels from MeDIP-seq and MRE-seq data.
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Summary of the methylCRF algorithm

We chose a conditional random field (CRF) model to integrate

MeDIP-seq and MRE-seq data to predict genome-wide single-CpG

methylation levels. Like the hidden Markov model (HMM), which

has been extensively adopted by the computational biology field

(Durbin et al. 1998), CRFs were initially developed for natural

language processing (Lafferty et al. 2001), but their application in

biological research has been limited (Wallach 2004). However,

CRFs have several distinct advantages when modeling data with

complex interdependencies, which is a common feature of biological

data.

The primary advantage is due to the fact that CRFs model the

conditional probability of the variable of interest (CpG methyla-

tion states) given observed variables (e.g., MRE scores and MeDIP

scores), whereas HMMs model the joint

probability of all model variables (Fig. 3A).

By conditioning on the observed vari-

ables, CRFs are not confounded by cor-

relation between them. This then allows

CRFs to efficiently model more complex

relationships between CpG methylation

levels and larger numbers of potentially

correlated and distant observations. In

contrast, modeling the full joint proba-

bility either requires modeling the inter-

dependencies between the observations

(for example, between MeDIP-seq read

count and CpG density) or making the

assumption that they are conditionally

independent (Fig. 3B)—which, in this

case, they are not (Pelizzola et al. 2008).

Since very little is actually known about

possible additional confounding factors

in these assays, this construction gives

us significant freedom in choosing what

data to use in predicting methylation

levels. Considering the number of features

that may influence CpG methylation,

we believe that this is a critical benefit.

This also allows the dependency of the

methylation ratio of a CpG on any single

observation or groups of observations

anywhere in the genome to be accounted

for with the model complexity growing only by feature number

and not by distance of the dependency as would happen in an

HMM. Long-range interactions are a common problem (DeCaprio

et al. 2007; Yin and Li 2010). Of note, a CpG’s methylation ratio

can depend on observations in both directions, which would in-

troduce loops in an HMM. Additionally, by not having to consider

dependencies between observations, the addition of agglomerative

and derivative features is trivial. In our case, this was extremely

useful because we could define features incorporating large win-

dows of MeDIP-seq and MRE-seq scores at each CpG without in-

creasing the complexity of the inference and without considering

their complicated dependence on individual MeDIP-seq and MRE-

seq scores.

An additional, practical benefit of using CRFs is that the

specification of the model is created by defining functions in a way

that offers great flexibility. In a typical implementation, these

functions are then instantiated with every combination of as-

signments of values for its parameter variables. However, one could

instantiate with only one or a subset of the values that a variable

can take without requiring the addition of a full probability dis-

tribution over all of the values. In a large model, this can provide

a significant reduction in model complexity. Feature functions can

also overlap or use a subset of variables of another. While subset-

ting does not add any expressiveness to the model, it provides an

elegant and automated way to handle missing observations as well

as to take advantage of a more detailed feature for some configu-

rations of the variables while having a simpler representation for

other configurations.

Lastly, since we are only interested in predicting correct

methylation levels given our experimental data and the experimental

data are fixed at test time, we do not believe there is any sacrifice in

power by not modeling the full joint probability distribution. Also

Figure 1. Relationship between MeDIP-seq and MRE-seq and MethylC-
seq. (A) A kernelized density plot of per CpG MeDIP-seq normalized read
count values as a function of MethylC-seq methylation levels shows a
complex, approximately proportional relationship. (B) MRE-seq normal-
ized read counts as a function of MethylC-seq methylation levels shows
a complex, approximately inversely proportional relationship.

Figure 2. CpG methylation levels are nonrandom throughout the genome. (A) A kernelized density
plot of MethylC-seq methylation levels as a function of CpG density. Methylation varies in a CpG
density–dependent manner with the majority of CpGs at 0–0.75 density with 75%–100% methylation
and a smaller group at 0.75–1.25 density with almost 0% methylation. (B) CpG methylation levels as
a function of their immediately 59-CpG methylation level (up to 750 bp). (C ) Distribution of MethylC-
seq methylation levels at CpG islands, exons, and introns.

methylCRF predicts single-CpG-resolution methylome
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note that methylation ratios can be interpreted as a maximum

likelihood estimate of the probability of a particular CpG being

methylated, and, as our results indicate, this probabilistic inter-

pretation appears effective.

Our complete CRF model, methylCRF, is described in detail

in the Methods section. Features include MeDIP-seq and MRE-seq

measurements covering individual CpGs, distance between

neighboring CpGs, distribution of MRE sites, and genomic anno-

tations including CpG islands, genes, repeats, and evolutionary

conservation of DNA sequences. We also generated a variety of

derived scores representing averaged experimental measurements

in genomic windows of different sizes. We trained a separate CRF

for each genomic feature, and for the final methylation estimates,

we averaged the predictions for any CRF whose predictions over-

lapped. Training was performed using MethylC-seq (Lister et al.

2009)–measured methylation levels in randomly chosen regions

representing 20% of the genome (Supplemental Table 1). Meth-

ylation levels were predicted genome-wide, and performance was

evaluated using CpGs that were not used for training.

High concordance between methylCRF and WGBS predictions

Using methylCRF, we predicted individual methylation levels of 28

million CpGs for human H1 embryonic stem cells (ESC) with

combined MeDIP-seq and MRE-seq data. Our predictions are in

high concordance with MethylC-seq predictions on the same H1

cells, with a genome-wide correlation of 0.77 (Fig. 4A). methylCRF

recapitulates the bimodal distribution of methylation levels iden-

tified by MethylC-seq (Fig. 4A). Using a previously developed

concordance measurement (defined as the percent of CpGs with

a methylation proportion difference less than 0.1 or 0.25) (Harris

et al. 2010), methylCRF and MethylC-seq are 91% concordant

within a 0.25 difference (Fig. 4B). This high concordance is illus-

trated by a genome-browser comparison between methylCRF and

MethylC-seq of a representative genomic locus (Fig. 4C).

We next compared methylCRF and MethylC-seq on various

genomic features (Fig. 5A). methylCRF and MethylC-seq agreed at

an exceptionally high level for CpGs within CpG islands, promoters,

59 UTRs, and exons with 93%, 93%, 93%, and 96% respective

concordances. The concordance decreased in RepeatMasker-an-

notated regions and regions with no annotation (Fig. 5A), possibly

reflecting higher mapping errors in these regions, particularly for

the reduced complexity reads from bisulfite conversion.

Benchmarking against other experimental methods

Several additional DNA methylation data sets exist for the H1 ESC

line, including data obtained with RRBS and an Infinium meth-

ylation array. In addition, a WGBS data set was generated for the

H9 human embryonic stem cell line (BS-seq) (Laurent et al. 2010).

Data from this closely related ESC line provide the closest ‘‘bi-

ological replicate’’ of the MethylC-seq ESC H1 WGBS data set.

When compared with MethylC-seq, methylCRF’s perfor-

mance is almost indistinguishable in the comparison between

MethylC-seq and BS-seq on these ESC cell lines (Figs. 4B,C, 5A).

Specifically, within a 28% difference window, per-CpG methyla-

tion levels between the MethylC-seq (H1) and BS-seq (H9) are 90%

concordant, while methylCRF (H1) predictions reach the same

concordance with a window of 23%. These windows decrease to

26% for H9 and 18% for methylCRF when we limit the compari-

son to CpGs with high MethylC-seq (H1) read coverage (e.g., >10

reads) and not in repetitive regions.

RRBS has comparable concordance levels to methylCRF when

compared with MethylC-seq. The Infinium array data appear to

have slightly higher concordance, which might be a result of

having many fewer (;28,000) CpGs for comparison and/or non-

random selection of CpGs on the Infinium platform (Figs. 4C, 5A).

The high concordance among these popular methods is consistent

with previous comparisons (Bock et al. 2010; Harris et al. 2010).

However, these methods clearly interrogate very different fractions

of the DNA methylomes, as evidenced by the Genome Browser

view (Fig. 4C) and CpG coverage comparison (Fig. 5B).

Robust performance across a variety of measurements

The strength of WGBS predictions is significantly influenced by

sequencing coverage. Previous analyses suggest that the methyla-

tion level of individual CpGs can only be confidently estimated

when sequencing depth is at least 10 (Harris et al. 2010). Therefore,

typically the minimum requirement for a WGBS experiment is

to sequence the bisulfite-converted genome to a depth of 303

(Krueger et al. 2012). However, even at this sequencing depth,

a significant number of CpGs still are not covered by enough reads

(Fig. 6A). Indeed, we observe increased concordance with increasing

MethylC-seq coverage. For example, with a minimum 10-read

coverage level, the concordance within a 0.25-threshold window

between methylCRF and MethylC-seq increased to 93% (from

91%, minimum one-read coverage) (Fig. 6A).

CpG density is a major confounding factor in analyzing

methyl-cytosine enrichment-based methods (Down et al. 2008;

Pelizzola et al. 2008). For example, inferring methylation levels in

CpG-poor regions is thought to be highly inaccurate or impossible

using MeDIP-seq (Pelizzola et al. 2008). Therefore, we examined

methylCRF’s performance across regions with differing CpG den-

sity and found that the concordance between methylCRF and

MethylC-seq does not vary significantly based on CpG density

(Fig. 6B).

We also compared methylCRF with Batman (Down et al.

2008), a popular method for analyzing MeDIP-seq data. Since

Batman predicts methylation levels in windows of fixed size and

not of single CpGs, we assigned each CpG the methylation level of

Figure 3. CRF versus HMM. (A) In an HMM, the labels generate the
observations, while in a CRF, co-occurrences of the label and observations
are associated. (B) HMMs model the joint probability and must conse-
quently model the dependencies in the observations, while CRFs only
model the dependencies of the label on the data.

Stevens et al.
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its window. methylCRF consistently outperforms BATMAN in all

categories (Fig. 6D).

Since our model learns separate CRFs for each genomic fea-

ture, we asked if it is possible that the high correlations between

methylCRF and MethylC-seq could be explained by each CRF

capturing the a priori methylation distributions of genomic fea-

tures instead of using the experimental data. To examine this re-

lationship, we applied methylCRF (1) without MeDIP-seq data, (2)

without MRE-seq data, and (3) with neither MeDIP-seq nor MRE-

seq data, i.e., with only genomic features (Fig. 6C). The experi-

mental data do, indeed, make a large difference in our predictions.

Interestingly, MRE-seq alone performs slightly better than MeDIP-

seq alone. This may be due to the ability of a CRF to incorporate

a priori knowledge that most CpGs are methylated, thus making

some MeDIP-seq information redundant. However, it is important

to note that the combination of MeDIP-seq and MRE-seq improves

performance significantly.

To further demonstrate that experimental data, but not the

a priori methylation status of genomic features, drive our pre-

diction, we compared the rates of concordance for methylated and

unmethylated CpG islands. Using MethylC-seq scores for H1 ES

cells, we defined 17,189 unmethylated and 6728 methylated CpG

islands with an average methylation level of #0.2 and $0.8, re-

spectively. We compared these with the average methylCRF scores

for H1 ES cells for each of these CpG islands (Fig. 6D). Clearly,

methylCRF predicts similar sets of methylated and unmethylated

CpG islands as MethylC-seq, and it does both equally well. Fur-

Figure 4. Concordance between MethylC-seq and methylCRF. (A) Kernelized density plot comparing H1 ESC (male) MethylC-seq and methylCRF
methylation levels at each CpG with at least one MethylC-seq read. MethylCRF recapitulates the bimodal distribution of MethylC-seq. (B) The number of
CpGs as a function of the difference between MethylC-seq and methylCRF methylation levels—the two agree within 25% for 91% of the CpGs and within
10% for 70% of the CpGs. The difference between BS-seq (H9 ESC, female) and MethylC-seq (H1 ESC) on common CpGs is also plotted for comparison.
(C ) Genome Browser view of per CpG methylation levels across a representative test region on chromosome 1.

Figure 5. Comparison between MethylC-seq and methylCRF and other
methylation assays. (A) Concordance of methylCRF, BS-seq, RRBS, and
Infinium array with MethylC-seq within a 25% window broken out by
annotated genomic features. Note that BS-seq (H9) is a female sample,
while MethylC-seq (H1) is a male sample. Only CpGs in common were
compared. (B) The number of CpGs used for each comparison on a log10

scale.

methylCRF predicts single-CpG-resolution methylome
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thermore, on a per-CpG level, unmethylated CpG islands con-

cordance is 0.98, while methylated CpG islands concordance is

0.96. This analysis strongly suggests that while we take advantage

of a priori information like genomic features, the algorithm clearly

integrates experimental data, relationships within the data, and

between data and genomic features to make accurate predictions.

We performed a similar analysis on the subset of CpG islands located

in promoters—that is, a partitioning of CpG islands independent of

the model of the CpG island–specific CRF—and obtained similar

results (Supplemental Fig. S1). Similar results were also obtained

when we restricted our analysis to intergenic CpG islands (Sup-

plemental Fig. S2).

methylCRF accuracy is robust when applied to a second sample

Having demonstrated that methylCRF can accurately predict dif-

ferential DNA methylation of CpGs independent of the charac-

teristic methylation status of their genomic feature, we tested

whether our model, trained on data from H1 embryonic stem cells,

would generalize to data of other samples. This includes testing

whether methylCRF can predict differential DNA methylation at

a genomic locus between different samples. We reason that if

methylCRF is completely dependent on genomic features or is

overtrained with ESC data, we would not be able to distinguish

between data sets generated from other cell or tissue types.

We generated WGBS, Infinium HumanMethylation450

BeadChip, MeDIP-seq, and MRE-seq data profiles of a human

fetal neural stem cells (NSCs) culture (Hu-F-NSC-02, neurosphere

cultured cells, ganglionic eminence derived, fetal age of 21 wk)

(Supplemental Table 1). We generated a single-CpG-resolution

DNA methylome of this sample using methylCRF. We performed

similar concordance analysis between predictions of methylCRF

and that of WGBS, and between meth-

ylCRF and Infinium arrays. The overall

concordance is consistently high for com-

parison of methylCRF against either WGBS

or Infinium arrays (Fig. 7A). Specifically,

methylCRF and WGBS were 88% con-

cordance within a 0.25 difference win-

dow, and 65% concordance within a 0.10

difference window. Additionally, we de-

fined differentially methylated CpG is-

lands between the H1 ESCs and the fetal

NSCs using the WGBS data. Out of 26,845

CpG islands, we identified 233 that have

significantly different methylation status

between H1 ESCs and fetal NSCs, such

that their average methylation levels are

less than 0.2 in one sample but greater

than 0.8 in the other. These WGBS-defined,

cell-type-specific differences in CpG island

methylation were mirrored by similar dif-

ferences between H1 ESCs and fetal NSCs

estimated by methylCRF (Fig. 7B), suggest-

ing that methylCRF can faithfully predict

differential DNA methylation between two

samples.

Finally, we evaluated the ability of

methylCRF to predict intermediate meth-

ylation levels. We did not include imprinted

control regions (ICRs) as a genomic feature

in training. However, when we examined

the methylation status of known ICRs (obtained from https://atlas.

genetics.kcl.ac.uk and summarized in Supplemental Table 2), we

found that the majority of the ICRs exhibited intermediate meth-

ylation levels based on methylCRF prediction in both H1 ESCs and

fetal NSCs (Fig. 8A,B), and the levels were consistent with those

determined by WGBS-based methods (Fig. 8A,B). Genome Browser

views of the data were provided for two exemplar ICRs (Fig. 8C,D).

Experimental validation

For regions where methylCRF and MethylC-seq results were dis-

cordant in H1 ESCs, we experimentally validated methylation status

by performing PCR amplification of bisulfite-converted DNA, fol-

lowed by Sanger sequencing of cloned amplicon DNA. Out of 12

Figure 6. Factors affecting concordance between MethylC-seq and methylCRF. (A) Concordance
with MethylC-seq as a function of MethylC-seq read count (CpG coverage) at 10% and 25% windows
for both methylCRF and BS-seq. The right y-axis (blue bars) indicates the number of CpGs with that
coverage. (B) Concordance with MethylC-seq as a function of CpG density at 25% windows for both
methylCRF and BS-seq. (C ) Concordance of methylCRF within a 25% window broken out by annotated
genomic features when only MeDIP-seq, MRE-seq, or genomic features are used. Concordance of
BATMAN using MeDIP-seq is also plotted for comparison. (D) methylCRF accuracy on CGIs with high or
low methylation (as defined by MethylC-seq). The Lo set of CGIs are those with an average CpG
methylation #0.2, while the Hi set are those with an average methylation $0.8.

Figure 7. Applying methylCRF to fetal NSCs. (A) Concordances be-
tween methylCRF and WGBS data and between methylCRF and Infinium
array broken out by annotated genomic features. (B) CpG islands were
grouped as ‘‘indifferent’’ and ‘‘different’’ based on their methylation levels
in H1 ESC and fetal NSC (Hu-F-NSC-02) assessed by WGBS data. Actual
difference distributions were plotted between H1 ESC (WGBS, red), or H9
ESC (WGBS, blue), or H1 ESC (methylCRF, green) and fetal NSCs (WGBS).
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regions that show disagreement, bisulfite validation agreed better

with methylCRF in 11 cases and agreed better with MethylC-seq in

only one case. Two of the tested loci are shown in Figure 9, while

the remaining sites are summarized in Table 1 and Supplemental

Figure S3.

Discussion
DNA methylation is an epigenetic mark that has important regu-

latory roles in a broad range of biological processes and diseases

( Jones 2012). Understanding the role of DNA methylation in de-

velopment and disease requires knowledge of the distribution of

these modifications in the genome. The technology is now avail-

able for studying DNA methylation genome-wide, at high resolu-

tion and in a large number of samples (Bock 2012). Previous

comparisons suggest that many popular methods yield largely

comparable results, but they differ significantly in extent of ge-

nomic CpG coverage, resolution, quantitative accuracy, and cost

(Bock et al. 2010; Harris et al. 2010), at least using current algo-

rithms to interrogate the data.

We introduce a combined computational and experimental

strategy to produce single-CpG-resolution DNA methylomes of all

28 million CpGs in the human genome at a fraction of the cost of

whole-genome bisulfite sequencing methods. Our computational

model, methylCRF, is based on conditional random fields, a model

similar to the well-known hidden Markov model, initially developed

for natural language processing but less applied in biomedicine.

Using this model, we integrated data from two complementary DNA

methylation assays (MeDIP-seq and MRE-seq) to predict methyla-

tion at single-CpG resolution that were similar to the results from

WGBS on the DNA of the same cell line. However, the cost of our two

assays combined is <10% of a whole-genome bisulfite sequenc-

ing methylome. We showed that methylation levels assessed by

methylCRF from MeDIP-seq/MRE-seq data are indistinguishable

from a biological replicate of whole-genome bisulfite sequencing.

A complete genome-wide DNA methylome of a given sample

will describe methylation levels of every CpG in the genome, ;28

million in humans. The WGBS-based method is considered the

only approach capable of producing such single-CpG-resolution

DNA methylomes. It is perhaps the most celebrated method in

DNA methylomics to date and generally considered superior to

enrichment-based methods (Krueger et al. 2012). One important

reason that WGBS appears conceptually superior to enrichment-

based methods is that transformation of sequencing results to

direct estimates of methylation levels of individual CpGs is

straightforward—once data are aligned to the reference genome,

one can simply count converted and unconverted Cs to infer

methylation levels. Although WGBS does not directly measure

single-CpG methylation levels of a sample, investigators can easily

infer methylation levels based on experimental data (by sequenc-

ing alleles from multiple cells) derived from the true methylation

states, i.e., observed counts of converted and unconverted Cs. Such

intuitive heuristics makes WGBS seem straightforward.

Similarly, enrichment-based data are also derived from true

methylation states. However, current analytical methods for en-

richment-based data usually calculate enrichment scores that are

indicative of regional DNA methylation levels corrected by local

CpG distribution (Down et al. 2008; Chavez et al. 2010) but do not

predict single-CpG methylation levels. Our novel algorithm closes

this gap—we can predict single-CpG methylation levels based

on MeDIP-seq and MRE-seq data, two fundamentally different

methods. The algorithm represents a fundamental advancement

in statistical modeling over methods currently applied to enrich-

ment-based methods.

There are still significant barriers to individual laboratories

adopting WGBS as a routine assay, mainly the high production

Figure 8. Comparing methylCRF and WGBS predictions in imprinted control regions. (A) Known imprinted control regions (ICRs; https://atlas.
genetics.kcl.ac.uk) (Supplemental Table 2) were grouped based on WGBS data (H1 ESC, MethylC-seq), as ‘‘Lo’’ (average methylation #0.2), ‘‘Mid’’
(average methylation between 0.2 and 0.8), and ‘‘Hi’’ (average methylation $0.8). Boxplots represent average methylation levels of these ICRs based on
MethylC-seq and methylCRF. (B) Same as A, except for fetal NSCs. (C ) A Genome Browser view of ICR near gene MEST (mesoderm specific transcript,
chr7). (D) A Genome Browser view of ICR near gene NDN (necdin, chr15).
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cost. Our method costs only a fraction of that of WGBS, yet can

achieve comparable results. Importantly, the cost saving is scal-

able; any anticipated reduction in sequencing cost will reduce the

cost of WGBS and our method in equal proportions. We performed

saturation analysis of MeDIP and MRE and concluded that ;30M

MRE reads and 50M MeDIP reads are required to reach saturation

for measuring a human DNA methylome (Supplemental Fig. S4;

Supplemental Notes). This translates to 13–1.53 coverage of the

human genome. For WGBS, the requirement is at least 203–303

coverage. This striking 20-fold difference in required coverage will

remain unchanged across different next-generation sequencing

platforms. To generate 303 coverage for a human sample is still

expensive or even prohibitive for most laboratories. Very often

investigators need to assay multiple sam-

ples to identify biologically interesting

differences with reasonable statistical

significance.

Additionally, bisulfite-converted ge-

nomes have lower sequence complexity.

This not only causes problems in library

construction and cluster formation on

a sequencing plate, but also more pro-

foundly affects alignment of bisulfite

reads to the genome, i.e., mapping. Sev-

eral algorithms have been developed to

improve mapping of WGBS data (Xi and

Li 2009; Coarfa et al. 2010; Krueger and

Andrews 2011; Frith et al. 2012; Otto et al.

2012), but the problem remains not en-

tirely solved. The confidence of mapping

WGBS reads is generally lower than map-

ping standard, non-bisulfite-converted

reads. Since CpG methylation calls are

predicted based on aligned reads, how

accuracy of methylation calls relates to

mapping quality remains uncharacterized.

For example, while the effect of biased

(C does not match T) versus unbiased (C

matches T) alignment has been analyzed

(Krueger et al. 2012), no one, to our

knowledge, has examined the possibly

more critical, alignment biases based on

the number of Cs in a read in either type

of alignment.

In contrast, MeDIP and MRE pro-

tocols produce standard sequencing reads

for which existing statistics were designed.

Although two libraries are constructed,

the total cost (reagents and labor) is

comparable to constructing one WGBS,

according to published protocols (http://

www.roadmapepigenomics.org/protocols).

Mapping of MeDIP and MRE reads uses

standard mapping tools and is more accu-

rate than mapping of reads from WGBS.

In our experimental validation, we

examined 12 loci where MethylC-seq and

methylCRF predictions do not agree in

H1 ESC. We used bisulfite conversion, PCR,

cloning, and sequencing as our validation

method because it is considered the gold

standard for targeted DNA methylation

prediction, and we could exclude the possibility that differences

are caused by bisulfite conversion. Nevertheless, in 11 out of 12

loci, the gold-standard approach gave methylation levels that were

closer to those from methylCRF predictions than from WGBS. Our

interpretation of this result is that most errors made by WGBS might

be due to misalignment; however, a comprehensive analysis of

WGBS mapping is needed to be certain. Alternatively, these differ-

ences may reflect true biological variation. This raises the profound

question again: How much of the WGBS-predicted DNA methylome

is actually incorrect due to challenges in mapping bisulfite-con-

verted reads? We are eager to explore this question in future studies.

When compared with RRBS and Illumina arrays, our method

is obviously much more comprehensive. Our method provides

Figure 9. Experimental validation of regions where there is discordance between MethylC-seq and
methylCRF. Genome Browser view and site-specific bisulfite sequencing validation for each region (s

unmethylated CpG; • methylated CpG). The line graph shows the methylation levels estimated by
MethylC-seq, RRBS, bisulfite validation, and methylCRF. (A) chr22: 19929336–19929659; MethylC-seq
predicted on average a methylation level of 80% methylated, while methylCRF and bisulfite validation
agreed on a level of 40% methylated. (B) chr19: 35068305–35068683; MethylC-seq predicted on
average a methylation level of 60% methylated, while methylCRF and bisulfite validation agreed that
the region is more than 90% to completely methylated.
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10-fold to 20-fold more coverage than RRBS or available methyl-

ation arrays. Investigators may want to use array-based assays

when their target CpG sites are directly interrogated by the array.

However, many regions of interest, for example, repeats or cryptic

promoters, will not be assessed. There are also a number of ex-

amples in which the specific CpG site interrogated by an array does

not reflect the true methylation status of the genomic feature (e.g.,

a promoter) and may lead to false conclusions. Our method not

only provides a comprehensive method for exploratory studies,

but as the cost of WGBS drops sufficiently for exploratory analysis,

the concomitant drop in cost of methylCRF application on MeDIP-

seq and MRE-seq will provide investigators a platform to compre-

hensively address biological questions by comparing multiple

samples, conditions, or variances genome-wide.

The accuracy of methylCRF was benchmarked against WGBS,

RRBS, Infinium array, and locus-specific bisufite sequencing on H1

human ESCs. In addition, we determined that the high concor-

dance between methylCRF and WGBS is consistent across most

genomic feature sets and across all CpG density levels. The power

of the method stems from its integrative nature—methylCRF is

able to integrate a priori information about the expected methyl-

ation states of various types of genomic features, two complemen-

tary and independent experimental measurements of methylation

states, and hidden relationships among neighboring CpG sites.

Genomic sequences and features provide a default expectation of

their methylation status. Indeed, the CpG content of the genome

reflects germ-cell methylation states during the course of evolution

(Li et al. 2012) and has been used to estimate methylation levels

directly (Das et al. 2006). This is reflected by the overall concor-

dance of 0.66 when methylCRF makes predictions based

on genomic features alone, which represents an expectation of

methylation of a majority of CpGs in a normal somatic cell. The

concordance is significantly improved when either MeDIP-seq or

MRE-seq data are integrated, and the highest concordance is

obtained when the data sets are combined. Importantly, methyl-

ation predictions made by methylCRF are conditioned on both

genomic features and experimental data and are not driven by

genomic features alone. This is supported by the accurate separa-

tion of methylated CpG islands from unmethylated ones (Fig. 6D),

even when focusing on promoter regions and/or intergenic CpG

islands (Supplemental Figs. 1, 2).

The accuracy of methylCRF was further benchmarked on WGBS

and Infinium array data from a second sample. Here methylCRF

trained on H1 ESC data was applied to MeDIP-seq and MRE-seq of

a fetal-brain NSC sample. The concordances between methylCRF

and WGBS, and between methylCRF and Infinium array, were at

similarly high levels as those obtained on analyzing H1 ESC data.

Moreover, methylCRF can reliably identify differentially methyl-

Table 1. Summary of validation results

Figure
panel

Tested
coordinates (hg19) Fwd primer Rev primer

MethylC-seq
RMSE

methylCRF
RMSE

S2A chr2:
233216826–
233217069

TTTTTTTAGAATTTAAATTTGGGTGAA ATCCTACCTTAAATAAACACCTACC 0.28 0.12

S2B chr1:
146551336–
146551644

TTTTTTTTGGTTGAGGTTAGTTTAT CCCAAACTCTAAATCAAAACTTTTT 0.16 0.13

S2C chr2:
37571975–
37572244

TAGTTTGGTTAGAGGAGAAGGTGAG AACCCAAAAAAAACCAATAACATC 0.52 0.06

S2D chr10:
94820761–
94821132

TTAGGAGTTAGGAAAAAGTTTTGAG ACTAAACCAAACTAAACAACAAACC 0.44 0.11

S2E chr15:
57025677–
57025990

TGATTGGAGTTTTGAGGAGGA CCCACATAAAAACAAAACCCTAAC 0.46 0.19

S2F chr1:
200343036–
200343274

GGAGGGGAAGAATATAAGAAATAATTAGT TCTAAATCCCAATCCCTAACTACAA 0.06 0.82

S2G chr2:
228736110–
228736500

ATGTAGTTTAGGTTGTGGTTTAGGT CAATCTAAAAACCCAAAATCCC 0.31 0.05

S2H chr4:
103940626–
103940995

TTAAGAATTTTATTGAATTGAGGGG TAAACAAAAAACACACCAAACAATC 0.20 0.04

8A chr22:
19929336–
19929659

GTTTTTGGGGTAGTTAGGGTTGT CTCAACTTTCCACAAAAAATCTAAAA 0.40 0.12

S2I chrX:
48929750–
48930067

GTAGGTAGGTTAATGGAGTGGTGAG ACCAAAAAAACAACCAAAACATACT 0.77 0.03

S2J chr13:
58208240–
58208505

TTTATATTTATGTGTTTGTGAATTTTA ATACTCACCAAATAACCCAAACC 0.53 0.32

8B chr19:
35068305–
35068683

TTTTGGTTAGAAATTGGTTAATGAT CTAAAATACCACAAACCCCACTAC 0.50 0.05

Validation of 12 targets chosen within windows where there is discordance between MethylC-seq and methylCRF for H1 ESC. The root-mean-squared
error (RMSE) is shown between MethylC-seq or methylCRF and bisulfite validation using the listed primers. Boldface indicates lowest RSME.
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ated regions between the two samples. This strongly suggests that

our model trained on ESC data can be applied to data of other

samples.

In the present implementation of methylCRF, we only con-

sider CpG methylation and assume that all signals obtained from

MeDIP-seq and MRE-seq are results of CpG methylation. We also

assume WGBS-produced methylation signal and ignore compli-

cations caused by hydroxymethylation. We note that methyla-

tions of cytosines in the context of other than CpG (i.e., CHG and

CHH) are rare in somatic cells but are, indeed, present in embry-

onic stem cells, usually in low levels, and are associated with highly

methylated CpGs (Lister et al. 2009). The biological significance of

CHG and CHH methylation in mammalian cells is yet to be de-

termined. Our statistical model is general enough to incorporate

non-CpG cytosine methylation, but we focused on CpG methyl-

ation in this study. Our statistical model is also general enough to

incorporate data on hydroxymethylation when they become more

and more available.

Our study has several limitations. Because the cell line we

used to train, H1 ESC, is male, it is possible that the additional X

chromosomes in female samples may not be as accurate. This is

because males will only have one allele aligning the reference X

chromosome, whereas a female will have two, resulting in twice as

many reads. In fact, this may also affect WGBS accuracy. The

concordance within the 0.25 difference window between H1 and

H9 on chrX alone drops to 81%, whereas excluding chrX raises the

concordance 92%. The concordance of methylCRF with H9 on

chrX is 79%, whereas without chrX it is 90%. Note that this also

provides a natural experiment that suggests how methylCRF will

perform in cases of large-scale genomic aberrations such as seg-

mental or even chromosomal duplication or deletion, which is

frequently found in cancer. Both WGBS and methylCRF seem to be

proportionally less accurate when alleles and possibly segments are

added or deleted. Nevertheless, once more WBGS data become

available, we can trivially extend methylCRF to include a field for

structural variations that could be estimated by standard means.

Additionally, since MeDIP-seq and MRE-seq are sequencing based,

we can make use of existing tools to add SNP-based features and to

include input (unenriched sequences). We note that WGBS is at

a disadvantage when considering SNPs; in particular, C! T SNPs

will either be reported as an unmethylated C unless strand-specific

alignment is available or even worse will align to cause false-posi-

tive alignments in other locations.

Another potential limitation is that the H1 WGBS (MethylC-

seq) and MeDIP-seq and MRE-seq were performed on separate

passages of the H1 ESC line and assayed in separate laboratories.

This may explain why methylCRF was consistently validated by

the bisulfate cloning method over WGBS. However, if this were

true, two important inferences can be drawn. First, notable changes

in methylation can be seen even between passage numbers. Sec-

ond, these validations show methylCRF’s sensitivity in detect-

ing DMRs based on experimental data—even in very similar bi-

ological contexts. Additionally, the accuracy on fetal NSCs is

slightly lower than on H1 ESCs. This may suggest that H1 ESCs

may have differences in their global methylation than other cell

types. While this does not stop methylCRF from detecting tissue-

specific DMRs, it suggests that the accuracy may improve further

if we retrain methylCRF simultaneously on WGBS from multiple

cell types.

Finally, because of our use of genomic feature-specific pre-

dictions, methylCRF accuracy may suffer when some part of the

methylation machinery breaks down or behaves differently, for

instance, as in some cancers. We have indirectly tested this in

a sample case, however. Figure 2C shows CpG islands to have an

extremely biased distribution of low methylation. However, Figure

6D shows equivalent accuracy in CpG islands that represent a ge-

nomic feature with, in the statistical view of methylCRF, aberrant

methylation.

Despite the promise of WGBS-based methods, the number of

publicly available, complete, single-CpG-resolution DNA methyl-

omes is still small in contrast to the number of lower-resolution

and/or lower-coverage DNA methylomes generated by less-ex-

pensive methods (e.g., MeDIP-seq and MRE-seq generated by in-

dividual laboratories and by the Roadmap Epigenomics Project).

Our method can convert these data into single-base resolution,

complete DNA methylomes, and thus significantly increase the

value of such existing data sets.

In summary, our results suggest that methylCRF is an effective

statistical framework capable of integrating two fundamentally

different sequencing-based DNA methylation assays—MeDIP-seq

and MRE-seq—to predict genome-wide, single-CpG-resolution

methylome maps. The concordance of our methylCRF predictions

with WGBS falls within the range of concordance between two

WGBS experiments on similar cells. methylCRF will thus signifi-

cantly increase the value of high-coverage DNA methylomes pro-

duced using much less expensive methods and provide a general

statistical framework for integrating contributions from various

types of DNA methylation data regardless of their coverage, reso-

lution, and the nature of their readout.

Methods

methylCRF implementation
methylCRF is implemented using the theoretical framework of
conditional random fields (Lafferty et al. 2001). This general
framework expresses the conditional probability Pr(Y|X) of a se-
ries of hidden states, the random variables Y, given the observed
data X:

P YjXð Þ ¼ 1

Z

YC

c¼1

e+K
k¼1w�

k
f k c; yc�1 ; yc ;Xð Þs where

Y is the methylation level of every CpG and X is the observa-
tions (MeDIP-seq, MRE-seq, genomic context). The C CpGs are
indexed by c, and the K feature functions f are indexed by k. The
weights w1 . . . wk are learned via gradient ascent of the log like-
lihood. Z is the partition function, which provides the global
normalization and is the sum of all sequences of methylation
levels given X:

Z ¼ +
yeY

YC

c¼1

e+K
k¼1w�

k
f k c; yc�1 ; yc ;Xð Þ

Our approach to data features was initially to include any-
thing that we thought might in some way affect methylation. We
then let an L1 normalization term during training determine
which features were not important by pushing their weights to 0.
Therefore, the choice of important features was learned from the
data. We split the data into different ranges of effect. We included
MeDIP and MRE scores both at the CpG (D0 and M0) and within
windows of 20 bp, 200 bp, 2 kb, and 20 kb. We included whether
a CpG was at an MRE restriction site (ER) and the distance in base
pairs to the previous CpG (PC). From UCSC Genome Browser
tracks (Kent et al. 2002), we included a 46-way mammalian
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phastCons conservation score. We included GC% in 20-bp, 150-bp,
and 500-bp windows, and CpG density in a 150-bp window.

We defined one CRF feature for each one of these data features
combined with the methylation level of the current and previous,
59 CpG. We also added CRF features for the next two MeDIP and
MRE scores on both the 59 and 39 sides. We then defined com-
pound features. We included a feature combining D0 and PC to
possibly address the nonlinear relationship between MeDIP and
CpG density. We also included one large feature including factors
that appeared to be interacting (data not shown), including both
the current and previous CpG methylation as well as D0, M0, and
PC for the current CpG as well as the two CpGs to upstream
and downstream of the current. This feature also included MeDIP
and MRE in 20-bp and 2-kb windows, ER, and GC in 20-bp and
150-bp windows for the current CpG as well as ER for the sur-
rounding two CpGs. We additionally included four more features
consisting of subsets of these as a fallback for rare combinations of
values. A diagram of the complete model is illustrated in Supple-
mental Figure S5.

The distributions of methylation levels are genomic feature
specific (Fig. 2C), so we reasoned that the methylation level tran-
sitions between neighboring CpGs are also genomic feature spe-
cific. To address this, we trained a separate CRF for each genomic
feature: one for each of the genomic annotations in RefGene (59

UTR, gene body, exon, intron, 39 UTR, CGI), for the derived types
(distal promoter, TSS-2 kb; proximal promoter, TSS-250 bp; core
promoter, TSS 6 35 bp; 1 kb flanking each CpG Island; and 2 kb
flanking each CpG Island), one for each Repeat class (DNA, LINE,
LTR, RNA, SINE, low complexity sequence and simple repeats, and
other), and one for the remainder of the genome not covered by
any of the previous CRFs.

Training was performed using MethylC-seq (Lister et al.
2009)–measured methylation levels in randomly chosen regions
representing 20% of the genome. We used only CpGs with at least
10-read coverage. We performed separate discretization for
each CRF. Each of the CRFs was trained using crfasgd (Bottou and
Bousquet 2008) using default settings.

CRFs are typically discriminately trained by iteratively as-
cending their gradient. While the function is convex and thus
converges to a global maximum, the whole CRF must be evaluated
once for every iteration in the ascent that poses performance is-
sues. However, CRFs have been shown to handily model millions
of features (Sha and Pereira 2003). Additionally, the ascent can be
performed online providing two benefits: (1) potentially less
overfitting due to the less optimal solution and (2) speed of anal-
ysis (Bottou and Bousquet 2008). Being discriminately trained,
however, CRFs need to be handled carefully so as to ensure their
generalizability to future data.

For CpGs that are annotated with multiple features, we
combine the methylation predictions by averaging the predictions
of the corresponding CRFs and giving each CRF an equal vote. Per-
formance was evaluated using CpGs that were not used for training.

Discretization heuristic

CRFs are rooted in the Natural Language Processing (NLP) com-
munity and thus model discrete rather than continuous variables.
There has been at least one paper extending CRFs to rankings that
require developing a continuous CRF (Qin et al. 2008). Addi-
tionally, in the derivation of CRFs, there is no restriction on the
form of the random variables, and thus continuous predictors are
also an option. However, the theoretical and practical work on
modeling and training of discrete CRFs is very extensive. Addi-
tionally, the relationship between the predictors and the methyl-
ation ratios are complex. Finally, Naı̈ve Bayes is known to perform

better with discretized variables (Dougherty et al. 1995). We, there-
fore, decided to follow in this line of work by representing the
relationship between the predictors and methylation ratios as
piecewise constant. The trade-off in avoiding the choice of the
correct family of continuous distributions for the methylation ra-
tios as well as the predictors in the continuous case is that we must
determine where to cut the range of a predictor into pieces. This is
equivalent to discretization for which considerable work has been
done.

While equal-range or equal-size discretization is straightfor-
ward, they did not perform very well (data not shown). We instead
chose to use supervised discretization using the methylation ratios
to guide the discretization. While good entropy-based methods do
exist, they would require the methylation ratios to already be
discretized, posing a chicken-and-the-egg problem for which we
could not find an existing solution. This led us to develop a two-
step heuristic consisting of clustering to discretize the methylation
ratios followed by supervised discretization of each predictor. In
the first step, which we term ‘‘order-preserving clustering,’’ we
cluster the predictors and the methylation ratios together. We it-
eratively up-weight the methylation ratios and recluster until there
is an order between clusters such that all of the methylation values
in one cluster are larger than the previous (Supplemental Fig. 6).
Given this as a data model–driven discretization of the methyla-
tion ratios, we then use supervised discretization on each predictor
individually. Note that this heuristic can use any pairwise distance
metric, clustering method, or supervised discretization method.
We used k-means (Macqueen 1967) and Euclidean distance for
clustering and CAIM (Kurgan and Cios 2004) for discretization.

MeDIP-seq, MRE-seq, and WGBS data

All data were obtained from the NIH Roadmap Epigenomics
Mapping Centers’ repository for human reference epigenome atlas
(Bernstein et al. 2010). Experiments were performed under the
guidelines of the Roadmap Epigenomics Project (http://www.
roadmapepigenomics.org/protocols). Specifically, MeDIP-seq and
MRE-seq experiments were performed as described previously
(Maunakea et al. 2010). All data have been previously submitted to
NCBI and are listed in Supplemental Table 1.

The reads were aligned with bowtie (Langmead et al. 2009) to
HG19. The MRE reads were normalized to account for differences
in enzyme efficiency and scoring consisted of tabulating reads
with ends at each CpG (Maunakea et al. 2010). To allow for com-
parison between experiments, the CpG read counts for MeDIP
were scaled so that the 75th percentile of CpGs with at least one
read is 10. Since for each MeDIP read, the CpG that was bound by
the antibody cannot be determined, a fractional count was added
to each CpG for the read. The final MeDIP score is the sum of CpG
scores within the specified window.

Genomic features

RepeatMasker annotations, CpG islands, genomic super duplica-
tions, 46-way phastCons, and refGene coding loci features were all
downloaded from the UCSC Genome Browser (Kent et al. 2002). The
GC percent, CpG density, and MRE sites were calculated using HG19.

Training and prediction

For training, we randomly selected both the location and size of
genomic fragments of 75 kb to 750 kb in length comprising ;20%
of the genome. We used only CpGs with at least 10 BS reads. We
performed separate discretization for each CRF. For the k-means
step in the discretization of BS methylation values, we arbitrarily
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chose 10 clusters because this seemed a reasonable cutoff for the
granularity for the measurement of CpG methylation that we
would be interested in. We used Euclidean distance as our metric.
Further details on our discretization method are discussed above.
Each of the CRFs was trained using crfasgd (Bottou and Bousquet
2008) using default settings. The data for each CRF were split on
gaps of >750 bp between consecutive CpGs.

For prediction, the data were created as for the training data.
For the final methylCRF predictions, we combined the predicted
methylation levels of all the CRFs by averaging the predictions for
CpGs that were shared by multiple CRFs.

Genome Browser tracks are available as part of Roadmap
Epigenomics Project’s data visualization hub: http://VizHub.
wustl.edu.

Bisulfite treatment and library construction for WGBS

One to five micrograms of gDNA was sonicated to an approximate
size range of 200–400 bp. Size selection is performed on a PAGE gel
to obtain DNA fragments of 200–300 bp. DNA are quantified by
fluorescent incorporation (Qubit, Invitrogen). The library prepa-
ration includes end-repair and phosphorylation with NEBNextTM
or Illumina Sample Prep Kit reagents, and addition of an A base to
the 39 end of the DNA fragments. Methylated adaptors are ligated,
and size selection is performed to remove excess free adaptors. The
ligated DNA is quantified by Qubit, and ;100 ng of DNA is used for
bisulfite conversion. A methylated adaptor ligated to unmethyl-
ated lambda-phage DNA (NEB) is used as an internal control for
assessing the rate of bisulfite conversion. The ratio of target library
to l is 1600:1. Bisulfite conversion of the methylated adaptor-ligated
DNA fragments follows the FFPE Tissue Samples Protocol from
QIAGEN’s EpiTect Bisulfite Kit. Cleanup of the bisulfite-converted
DNA is performed, and a second round of conversion is applied.
Enrichment of adaptor-ligated DNA fragments is accomplished
by dividing the template into five aliquots followed by eight cy-
cles of PCR with adaptor primers. Post-PCR size selection of the
PCR products from the five reactions is performed on a PAGE gel.
Following 100-bp paired-end sequencing on an HiSeq2000, se-
quence reads were aligned and processed through the Bismark
pipeline.

Infinium assay

Bisulfite conversion was performed on 1 mg of genomic DNA
using the EZ DNA methylation kit (Zymo Research) as per the
manufacturer’s alternative incubation conditions protocol. The
bisulfite-converted DNA was amplified and hybridized to an
Infinium HumanMethylation450 beadchip (Illumina) following
the Infinium HD methylation assay protocol at the UCSF Geno-
mics Core Facility. Methylation levels (beta values) were deter-
mined using the Methylation Module of the Illumina GenomeStudio
software.

Bisulfite validation

Total genomic DNA underwent bisulfite conversion follow-
ing an established protocol (Grunau et al. 2001) with the fol-
lowing modifications: incubation at 95°C for 1 min and 50°C
for 59 min for a total of 16 cycles. Regions of interest were
amplified with PCR primers (Table 1) and subsequently cloned
using pCR2.1/TOPO (Invitrogen). Individual bacterial colonies
were subjected to PCR using vector-specific primers and sequenced
(Quintara Biosciences). The data were analyzed with online software
BISMA (Rohde et al. 2010). The results are summarized in Table 1
and Supplemental Figure 3.

Software availability

MethylCRF is completely open source software. The source code,
parameter sets, and genomic data sets, as well as instructions are
available at http://methylCRF.wustl.edu.
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