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Recent advancements in sequencing-based DNA methylation profiling methods provide an unprecedented opportunity
to map complete DNA methylomes. These include whole-genome bisulfite sequencing (WGBS, MethylC-seq, or BS-seq),
reduced-representation bisulfite sequencing (RRBS), and enrichment-based methods such as MeDIP-seq, MBD-seq, and
MRE-seq. These methods yield largely comparable results but differ significantly in extent of genomic CpG coverage,
resolution, quantitative accuracy, and cost, at least while using current algorithms to interrogate the data. None of these
existing methods provides single-CpG resolution, comprehensive genome-wide coverage, and cost feasibility for a typical
laboratory. We introduce methylCRF, a novel conditional random fields—based algorithm that integrates methylated DNA
immunoprecipitation (MeDIP-seq) and methylation-sensitive restriction enzyme (MRE-seq) sequencing data to predict
DNA methylation levels at single-CpG resolution. Our method is a combined computational and experimental strategy to
produce DNA methylomes of all 28 million CpGs in the human genome for a fraction (<10%) of the cost of whole-genome
bisulfite sequencing methods. methylCRF was benchmarked for accuracy against Infinium arrays, RRBS, WGBS se-
quencing, and locus-specific bisulfite sequencing performed on the same human embryonic stem cell line. methylCRF
transformation of MeDIP-seq/ MRE-seq was equivalent to a biological replicate of WGBS in quantification, coverage, and
resolution. We used conventional bisulfite conversion, PCR, cloning, and sequencing to validate loci where our predictions
do not agree with whole-genome bisulfite data, and in 1l out of 12 cases, methylCRF predictions of methylation level agree
better with validated results than does whole-genome bisulfite sequencing. Therefore, methylCRF transformation of MeDIP-
seq/MRE-seq data provides an accurate, inexpensive, and widely accessible strategy to create full DNA methylomes.

[Supplemental material is available for this article.]

The haploid human genome contains ~28 million CpGs that exist
in methylated, hydroxymethylated, or unmethylated states. The
methylation status of cytosines in CpGs influences protein-DNA
interactions, gene expression, and chromatin structure and sta-
bility; and plays a vital role in the regulation of cellular processes
including host defense against endogenous parasitic sequences,
embryonic development, transcription, X-chromosome inactivation,
and genomic imprinting, as well as possibly playing a role in learning
and memory (Robertson 2005; Suzuki and Bird 2008; Laird 2010;
Jones 2012). Understanding the role of DNA methylation in devel-
opment and disease requires accurate assessment of the genomic
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distribution of these modifications (Laird 2010). Recent advance-
ments in sequencing-based DNA methylation profiling methods
provide an unprecedented opportunity to map complete DNA
methylomes. Techniques for high-throughput detection of cyto-
sine methylation include bisulfite conversion of unmethylated
cytosines to uracil, immunoprecipitation with antibodies specific
for methylated DNA, and cleavage of CpG-containing restriction
sites by methylation-sensitive or methylation-dependent restriction
endonucleases followed by sequencing or microarray hybridization
(Bock 2012).

The most comprehensive method, bisulfite treatment
followed by sequencing (whole-genome bisulfite sequencing
[WGBS], including MethylC-seq [Lister et al. 2009] and BS-seq
[Cokus et al. 2008; Laurent et al. 2010]), measures single-cytosine
methylation levels genome-wide and directly estimates the ratio of
molecules methylated rather than enrichment levels. However,
this method requires essentially resequencing the entire genome
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multiple times for every experiment (with up to half the reads not
even covering CpG sites). To obtain a complete DNA methylome,
the total sequencing depth required for adequate coverage of each
strand is equivalent to 30X of the human genome (90 Gb), which
remains an expensive experiment. In addition to its high cost,
bisulfite-converted genomes have lower sequence complexity and
reduced GC content. Therefore, the performance of WGBS-based
methods is also influenced by potential differences in the effi-
ciency of amplification of methylated and unmethylated DNA
copies of the same locus, and the ability to accurately align bi-
sulfite-converted sequencing reads to the genome, which is more
challenging than alignment of conventional reads (Krueger et al.
2012). As noted, 10% of CpGs in the mammalian genome remain
refractory to alignment of bisulfite-converted reads (Laird 2010).

Reduced-representation bisulfite sequencing (RRBS) (Meissner
et al. 2008) addresses the cost issue by measuring single-CpG
methylation only in CpG-dense regions. For the human genome, it
requires only ~3 Gb of sequencing to achieve the same degree of
sequencing depth for most regions of interest. However, RRBS’s
ability to interrogate a locus is dependent on its Mspl-cut-site
(CCGQG) density and consequently measures 10%-15% of the
CpGs in the human genome (Bock et al. 2010; Harris et al. 2010).

Restriction enzyme methods (e.g., MRE-seq) (Maunakea et al.
2010), on the other hand, typically incorporate parallel digestions
with three to five restriction endonucleases. Using multiple cut
sites, MRE-seq can cover close to 30% of the genome and saturates
at ~3 Gb of sequencing (Nair et al. 2011). These methylation-
sensitive enzymes cut only restriction sites with unmethylated
CpGs, and each read indicates the status of a single CpG. While
methylated CpGs could be inferred by the absence of reads at
cutting sites, this would require assuming perfect digestion, which
is not typically done in practice.

In contrast to MRE-seq, methods using monoclonal anti-
bodies against 5-methylcytosine (MeDIP-seq) (Weber et al. 2005;
Maunakea et al. 2010) or methylated DNA-binding proteins (MBD-
seq, domains of MBD2 alone, or in combination with MBD3L)
(Serre et al. 2009), to enrich for methylated DNA independent of
DNA sequence have been estimated to saturate at 5 Gb of sequencing
(Nair et al. 2011). An important advantage of MeDIP over restric-
tion enzyme methods is a lack of bias for a specific nucleotide
sequence, other than CpGs. However, the relationship of enrich-
ment to absolute methylation levels is confounded by variables
such as CpG density (Pelizzola et al. 2008). Another inherent
limitation of MeDIP-seq in its current form is its lower resolution
(~150 bp) compared with MRE-seq or bisulfite-based methods in
that one or more of the CpGs in the immunoprecipitated DNA
fragment could be responsible for the antibody binding.

Finally, array-based platforms are widely used. Approaches
that couple bisulfite conversions with hybridization-based arrays
(e.g., lllumina’s HumanMethylation450 BeadChip arrays), while
having single-base-pair resolution, are limited to a priori-targeted
regions. For example, the Illumina BeadChip array assesses meth-
ylation at ~485,000 targeted CpGs, averaging 17 CpGs per gene
spread across CpG islands and gene loci. (For this analysis, we also
used the previous BeadChip version, which contains 27,000 CpGs.)

As sequencing costs drop, the number of complete single-
nucleotide DNA methylome maps is increasing; however, still only
a few are publicly available for human. Barring a disruptive tech-
nological advance, the need for DNA methylome maps to address
fundamental biological questions will likely continue to far out-
pace the production of new maps for years. In contrast, many more
lower-cost DNA methylomes of either lower resolution or lower

coverage have been generated across diverse biological and disease
states. For example, the NIH Roadmap Epigenomics Project’s cur-
rent release of the Human Epigenome Atlas (Bernstein et al. 2010)
contains eight WGBS data sets, 119 RRBS data sets, 49 MeDIP-seq,
and 45 MRE-seq data sets. These methods yield largely comparable
results but differ significantly in extent of genomic CpG coverage,
resolution, quantitative accuracy, and cost, at least using current
algorithms to interrogate the data (Bock et al. 2010; Harris et al.
2010). None of these existing methods provides single-CpG reso-
lution, comprehensive genome-wide coverage, and a cost that is
affordable for a typical laboratory, particularly when many samples
are assayed. To address these needs, we describe here methylCRE,
a novel conditional random fields-based algorithm that integrates
methylated DNA immunoprecipitation (MeDIP-seq) and methyl-
ation-sensitive restriction enzyme (MRE-seq) sequencing data to
predict DNA methylation levels at single-CpG resolution.

Results

Motivation for integrating MeDIP-seq and MRE-seq data

MeDIP-seq and MRE-seq provide complementary readouts of DNA
methylation (Maunakea et al. 2010). Their protocols are simple
and differ in important ways from bisulfite treatment methods
(Harris et al. 2010; Maunakea et al. 2010). By using simple heu-
ristics, the combination of these two methods gave promising re-
sults in identifying differentially methylated regions (DMRs) and
intermediate or monoallelic methylation (Harris et al. 2010). Here
we further explore the complementary nature of MeDIP-seq and
MRE-seq. All genome-wide DNA methylation profiling methods
have their own unique biases, which can lead to errors in assessing
methylation states. Observed genome-wide measurements (MeDIP-
seq, MRE-seq, WGBS, etc.) are derived from the actual methylation
states of the sample, which is unknown or “hidden” from the in-
vestigators. These hidden methylation states are often inferred from
the observed data, which are usually sequencing reads aligned to
the reference genome. Because MeDIP-seq and MRE-seq are in-
dependent, complementary measurements of the same methyla-
tion state, our confidence in inferring the methylation state can be
significantly increased when results from these two methods are
integrated (Zhang et al. 2013). For example, a decrease in MeDIP-
seq signal could reflect a biological event (we infer that this region
is unmethylated) or could be a methodological artifact; but if the
inferred unmethylated state is corroborated by an increase of MRE-
seq signal, then the inference of unmethylation is stronger.
Thus, integrating MeDIP-seq and MRE-seq is expected to signifi-
cantly improve our ability to predict methylation levels accurately.

While MeDIP-seq and MRE-seq data correlate to a certain
degree with WGBS measurements (Fig. 1A,B), their relationship is
not well represented by a simple linear translation. It has also
remained technically challenging to infer absolute methylation
levels from enrichment measurements alone (Down et al. 2008;
Pelizzola et al. 2008; Chavez et al. 2010; Harris et al. 2010). Im-
portantly, existing high-resolution methylomes and prior regional
analyses reveal that CpG methylation levels are highly nonrandom
throughout the genome (Lister et al. 2009). The levels vary strongly
with local CpG density, display distinct genomic feature-specific
characteristics, and show strong correlation between neighboring
CpG sites (Fig. 2A-C). These properties motivated us to use a formal
statistical model to explore these complex relationships with the goal
of making an accurate, comprehensive, high-resolution prediction
of DNA methylation levels from MeDIP-seq and MRE-seq data.
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Figure 1. Relationship between MeDIP-seq and MRE-seq and MethyIC-
seq. (A) A kernelized density plot of per CoG MeDIP-seq normalized read
count values as a function of MethylC-seq methylation levels shows a
complex, approximately proportional relationship. (B) MRE-seq normal-
ized read counts as a function of MethylC-seq methylation levels shows
a complex, approximately inversely proportional relationship.
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Summary of the methylCRF algorithm

We chose a conditional random field (CRF) model to integrate
MeDIP-seq and MRE-seq data to predict genome-wide single-CpG
methylation levels. Like the hidden Markov model (HMM), which
has been extensively adopted by the computational biology field
(Durbin et al. 1998), CRFs were initially developed for natural
language processing (Lafferty et al. 2001), but their application in
biological research has been limited (Wallach 2004). However,
CRFs have several distinct advantages when modeling data with
complex interdependencies, which is a common feature of biological
data.

The primary advantage is due to the fact that CRFs model the
conditional probability of the variable of interest (CpG methyla-
tion states) given observed variables (e.g., MRE scores and MeDIP
scores), whereas HMMs model the joint
probability of all model variables (Fig. 3A).
By conditioning on the observed vari-
ables, CRFs are not confounded by cor-
relation between them. This then allows
CRFs to efficiently model more complex
relationships between CpG methylation
levels and larger numbers of potentially
correlated and distant observations. In
contrast, modeling the full joint proba-
bility either requires modeling the inter-
dependencies between the observations
(for example, between MeDIP-seq read
count and CpG density) or making the
assumption that they are conditionally
independent (Fig. 3B)—which, in this
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for with the model complexity growing only by feature number
and not by distance of the dependency as would happen in an
HMM. Long-range interactions are a common problem (DeCaprio
et al. 2007; Yin and Li 2010). Of note, a CpG’s methylation ratio
can depend on observations in both directions, which would in-
troduce loops in an HMM. Additionally, by not having to consider
dependencies between observations, the addition of agglomerative
and derivative features is trivial. In our case, this was extremely
useful because we could define features incorporating large win-
dows of MeDIP-seq and MRE-seq scores at each CpG without in-
creasing the complexity of the inference and without considering
their complicated dependence on individual MeDIP-seq and MRE-
seq scores.

An additional, practical benefit of using CRFs is that the
specification of the model is created by defining functions in a way
that offers great flexibility. In a typical implementation, these
functions are then instantiated with every combination of as-
signments of values for its parameter variables. However, one could
instantiate with only one or a subset of the values that a variable
can take without requiring the addition of a full probability dis-
tribution over all of the values. In a large model, this can provide
a significant reduction in model complexity. Feature functions can
also overlap or use a subset of variables of another. While subset-
ting does not add any expressiveness to the model, it provides an
elegant and automated way to handle missing observations as well
as to take advantage of a more detailed feature for some configu-
rations of the variables while having a simpler representation for
other configurations.

Lastly, since we are only interested in predicting correct
methylation levels given our experimental data and the experimental
data are fixed at test time, we do not believe there is any sacrifice in
power by not modeling the full joint probability distribution. Also
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that may influence CpG methylation,
we believe that this is a critical benefit.
This also allows the dependency of the
methylation ratio of a CpG on any single
observation or groups of observations
anywhere in the genome to be accounted
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Figure 2. CpG methylation levels are nonrandom throughout the genome. (A) A kernelized density
plot of MethylC-seq methylation levels as a function of CpG density. Methylation varies in a CpG
density-dependent manner with the majority of CpGs at 0-0.75 density with 75%-100% methylation
and a smaller group at 0.75-1.25 density with almost 0% methylation. (B) CpG methylation levels as
a function of their immediately 5’-CpG methylation level (up to 750 bp). (C) Distribution of MethyIC-
seq methylation levels at CpG islands, exons, and introns.
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Figure 3. CRF versus HMM. (4) In an HMM, the labels generate the
observations, while in a CRF, co-occurrences of the label and observations
are associated. (B) HMMs model the joint probability and must conse-
quently model the dependencies in the observations, while CRFs only
model the dependencies of the label on the data.

note that methylation ratios can be interpreted as a maximum
likelihood estimate of the probability of a particular CpG being
methylated, and, as our results indicate, this probabilistic inter-
pretation appears effective.

Our complete CRF model, methylCRE, is described in detail
in the Methods section. Features include MeDIP-seq and MRE-seq
measurements covering individual CpGs, distance between
neighboring CpGs, distribution of MRE sites, and genomic anno-
tations including CpG islands, genes, repeats, and evolutionary
conservation of DNA sequences. We also generated a variety of
derived scores representing averaged experimental measurements
in genomic windows of different sizes. We trained a separate CRF
for each genomic feature, and for the final methylation estimates,
we averaged the predictions for any CRF whose predictions over-
lapped. Training was performed using MethylC-seq (Lister et al.
2009)-measured methylation levels in randomly chosen regions
representing 20% of the genome (Supplemental Table 1). Meth-
ylation levels were predicted genome-wide, and performance was
evaluated using CpGs that were not used for training.

High concordance between methylCRF and WGBS predictions

Using methylCRF, we predicted individual methylation levels of 28
million CpGs for human H1 embryonic stem cells (ESC) with
combined MeDIP-seq and MRE-seq data. Our predictions are in
high concordance with MethylC-seq predictions on the same H1
cells, with a genome-wide correlation of 0.77 (Fig. 4A). methylCRF
recapitulates the bimodal distribution of methylation levels iden-
tified by MethylC-seq (Fig. 4A). Using a previously developed
concordance measurement (defined as the percent of CpGs with
a methylation proportion difference less than 0.1 or 0.25) (Harris
et al. 2010), methylCRF and MethylC-seq are 91% concordant
within a 0.25 difference (Fig. 4B). This high concordance is illus-
trated by a genome-browser comparison between methylCRF and
MethylC-seq of a representative genomic locus (Fig. 4C).

We next compared methylCRF and MethylC-seq on various
genomic features (Fig. SA). methylCRF and MethylC-seq agreed at
an exceptionally high level for CpGs within CpG islands, promoters,
5" UTRs, and exons with 93%, 93%, 93%, and 96% respective

concordances. The concordance decreased in RepeatMasker-an-
notated regions and regions with no annotation (Fig. 5A), possibly
reflecting higher mapping errors in these regions, particularly for
the reduced complexity reads from bisulfite conversion.

Benchmarking against other experimental methods

Several additional DNA methylation data sets exist for the H1 ESC
line, including data obtained with RRBS and an Infinium meth-
ylation array. In addition, a WGBS data set was generated for the
H9 human embryonic stem cell line (BS-seq) (Laurent et al. 2010).
Data from this closely related ESC line provide the closest “bi-
ological replicate” of the MethylC-seq ESC H1 WGBS data set.

When compared with MethylC-seq, methylCRF’s perfor-
mance is almost indistinguishable in the comparison between
MethylC-seq and BS-seq on these ESC cell lines (Figs. 4B,C, S5A).
Specifically, within a 28% difference window, per-CpG methyla-
tion levels between the MethylC-seq (H1) and BS-seq (H9) are 90%
concordant, while methylCRF (H1) predictions reach the same
concordance with a window of 23%. These windows decrease to
26% for H9 and 18% for methylCRF when we limit the compari-
son to CpGs with high MethylC-seq (H1) read coverage (e.g., >10
reads) and not in repetitive regions.

RRBS has comparable concordance levels to methylCRF when
compared with MethylC-seq. The Infinium array data appear to
have slightly higher concordance, which might be a result of
having many fewer (~28,000) CpGs for comparison and/or non-
random selection of CpGs on the Infinium platform (Figs. 4C, 5A).
The high concordance among these popular methods is consistent
with previous comparisons (Bock et al. 2010; Harris et al. 2010).
However, these methods clearly interrogate very different fractions
of the DNA methylomes, as evidenced by the Genome Browser
view (Fig. 4C) and CpG coverage comparison (Fig. 5B).

Robust performance across a variety of measurements

The strength of WGBS predictions is significantly influenced by
sequencing coverage. Previous analyses suggest that the methyla-
tion level of individual CpGs can only be confidently estimated
when sequencing depth is at least 10 (Harris et al. 2010). Therefore,
typically the minimum requirement for a WGBS experiment is
to sequence the bisulfite-converted genome to a depth of 30X
(Krueger et al. 2012). However, even at this sequencing depth,
a significant number of CpGs still are not covered by enough reads
(Fig. 6A). Indeed, we observe increased concordance with increasing
MethylC-seq coverage. For example, with a minimum 10-read
coverage level, the concordance within a 0.25-threshold window
between methylCRF and MethylC-seq increased to 93% (from
91%, minimum one-read coverage) (Fig. 6A).

CpG density is a major confounding factor in analyzing
methyl-cytosine enrichment-based methods (Down et al. 2008;
Pelizzola et al. 2008). For example, inferring methylation levels in
CpG-poor regions is thought to be highly inaccurate or impossible
using MeDIP-seq (Pelizzola et al. 2008). Therefore, we examined
methylCRF’s performance across regions with differing CpG den-
sity and found that the concordance between methylCRF and
MethylC-seq does not vary significantly based on CpG density
(Fig. 6B).

We also compared methylCRF with Batman (Down et al.
2008), a popular method for analyzing MeDIP-seq data. Since
Batman predicts methylation levels in windows of fixed size and
not of single CpGs, we assigned each CpG the methylation level of
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Figure 4. Concordance between MethylC-seq and methyICRF. (A) Kernelized density plot comparing H1 ESC (male) MethylC-seq and methylCRF
methylation levels at each CpG with at least one MethylC-seq read. MethyICRF recapitulates the bimodal distribution of MethylC-seq. (B) The number of
CpGs as a function of the difference between MethylC-seq and methylCRF methylation levels—the two agree within 25% for 91% of the CpGs and within
10% for 70% of the CpGs. The difference between BS-seq (H9 ESC, female) and MethylC-seq (H1 ESC) on common CpGs is also plotted for comparison.
(C) Genome Browser view of per CpG methylation levels across a representative test region on chromosome 1.

its window. methyICRF consistently outperforms BATMAN in all
categories (Fig. 6D).

Since our model learns separate CRFs for each genomic fea-
ture, we asked if it is possible that the high correlations between
methylCRF and MethylC-seq could be explained by each CRF
capturing the a priori methylation distributions of genomic fea-
tures instead of using the experimental data. To examine this re-
lationship, we applied methylCRF (1) without MeDIP-seq data, (2)
without MRE-seq data, and (3) with neither MeDIP-seq nor MRE-
seq data, i.e., with only genomic features (Fig. 6C). The experi-
mental data do, indeed, make a large difference in our predictions.
Interestingly, MRE-seq alone performs slightly better than MeDIP-
seq alone. This may be due to the ability of a CRF to incorporate
a priori knowledge that most CpGs are methylated, thus making
some MeDIP-seq information redundant. However, it is important
to note that the combination of MeDIP-seq and MRE-seq improves
performance significantly.

To further demonstrate that experimental data, but not the
a priori methylation status of genomic features, drive our pre-
diction, we compared the rates of concordance for methylated and
unmethylated CpG islands. Using MethylC-seq scores for H1 ES

cells, we defined 17,189 unmethylated and 6728 methylated CpG
islands with an average methylation level of =0.2 and =0.8, re-
spectively. We compared these with the average methylCRF scores
for H1 ES cells for each of these CpG islands (Fig. 6D). Clearly,
methylCRF predicts similar sets of methylated and unmethylated
CpG islands as MethylC-seq, and it does both equally well. Fur-
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Figure 5. Comparison between MethylC-seq and methylCRF and other
methylation assays. (A) Concordance of methylCRF, BS-seq, RRBS, and
Infinium array with MethylC-seq within a 25% window broken out by
annotated genomic features. Note that BS-seq (H9) is a female sample,
while MethylC-seq (H1) is a male sample. Only CpGs in common were
compared. (B) The number of CpGs used for each comparison on a logqg
scale.
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and that of WGBS, and between meth-
yICRF and Infinium arrays. The overall
concordance is consistently high for com-
parison of methylCRF against either WGBS
or Infinium arrays (Fig. 7A). Specifically,
methylCRF and WGBS were 88% con-
cordance within a 0.25 difference win-
dow, and 65% concordance within a 0.10
difference window. Additionally, we de-
fined differentially methylated CpG is-
lands between the H1 ESCs and the fetal
NSCs using the WGBS data. Out of 26,845
CpG islands, we identified 233 that have
significantly different methylation status
between H1 ESCs and fetal NSCs, such
that their average methylation levels are
less than 0.2 in one sample but greater
than 0.8 in the other. These WGBS-defined,
cell-type-specific differences in CpG island
methylation were mirrored by similar dif-

Figure 6.

thermore, on a per-CpG level, unmethylated CpG islands con-
cordance is 0.98, while methylated CpG islands concordance is
0.96. This analysis strongly suggests that while we take advantage
of a priori information like genomic features, the algorithm clearly
integrates experimental data, relationships within the data, and
between data and genomic features to make accurate predictions.
We performed a similar analysis on the subset of CpG islands located
in promoters—that is, a partitioning of CpG islands independent of
the model of the CpG island-specific CRF—and obtained similar
results (Supplemental Fig. S1). Similar results were also obtained
when we restricted our analysis to intergenic CpG islands (Sup-
plemental Fig. S2).

methylCRF accuracy is robust when applied to a second sample

Having demonstrated that methylCRF can accurately predict dif-
ferential DNA methylation of CpGs independent of the charac-
teristic methylation status of their genomic feature, we tested
whether our model, trained on data from H1 embryonic stem cells,
would generalize to data of other samples. This includes testing
whether methylCRF can predict differential DNA methylation at
a genomic locus between different samples. We reason that if
methylCRF is completely dependent on genomic features or is
overtrained with ESC data, we would not be able to distinguish
between data sets generated from other cell or tissue types.

We generated WGBS, Infinium HumanMethylation450
BeadChip, MeDIP-seq, and MRE-seq data profiles of a human
fetal neural stem cells (NSCs) culture (Hu-F-NSC-02, neurosphere
cultured cells, ganglionic eminence derived, fetal age of 21 wk)
(Supplemental Table 1). We generated a single-CpG-resolution
DNA methylome of this sample using methylCRF. We performed
similar concordance analysis between predictions of methylCRF

Factors affecting concordance between MethylC-seq and methyICRF. (A) Concordance
with MethylC-seq as a function of MethylC-seq read count (CpG coverage) at 10% and 25% windows
for both methylCRF and BS-seq. The right y-axis (blue bars) indicates the number of CpGs with that
coverage. (B) Concordance with MethylC-seq as a function of CpG density at 25% windows for both
methyICRF and BS-seq. (C) Concordance of methylCRF within a 25% window broken out by annotated
genomic features when only MeDIP-seq, MRE-seq, or genomic features are used. Concordance of
BATMAN using MeDIP-seq is also plotted for comparison. (D) methylCRF accuracy on CGls with high or
low methylation (as defined by MethylC-seq). The Lo set of CGls are those with an average CpG
methylation <0.2, while the Hi set are those with an average methylation =0.8.

ferences between H1 ESCs and fetal NSCs
estimated by methylCRF (Fig. 7B), suggest-
ing that methylCRF can faithfully predict
differential DNA methylation between two
samples.

Finally, we evaluated the ability of
methylCRF to predict intermediate meth-
ylation levels. We did not include imprinted
control regions (ICRs) as a genomic feature
in training. However, when we examined
the methylation status of known ICRs (obtained from https://atlas.
genetics.kcl.ac.uk and summarized in Supplemental Table 2), we
found that the majority of the ICRs exhibited intermediate meth-
ylation levels based on methylCRF prediction in both H1 ESCs and
fetal NSCs (Fig. 8A,B), and the levels were consistent with those
determined by WGBS-based methods (Fig. 8A,B). Genome Browser
views of the data were provided for two exemplar ICRs (Fig. 8C,D).

Experimental validation

For regions where methylCRF and MethylC-seq results were dis-
cordant in H1 ESCs, we experimentally validated methylation status
by performing PCR amplification of bisulfite-converted DNA, fol-
lowed by Sanger sequencing of cloned amplicon DNA. Out of 12
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Figure 7. Applying methylCRF to fetal NSCs. (A) Concordances be-
tween methylCRF and WGBS data and between methylCRF and Infinium
array broken out by annotated genomic features. (B) CpG islands were
grouped as “indifferent” and “different” based on their methylation levels
in H1 ESC and fetal NSC (Hu-F-NSC-02) assessed by WGBS data. Actual
difference distributions were plotted between H1 ESC (WGBS, red), or H9
ESC (WGBS, blue), or H1 ESC (methyICRF, green) and fetal NSCs (WGBS).
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Figure 8. Comparing methylCRF and WGBS predictions in imprinted control regions. (A) Known imprinted control regions (ICRs; https://atlas.
genetics.kcl.ac.uk) (Supplemental Table 2) were grouped based on WGBS data (H1 ESC, MethylC-seq), as ““Lo” (average methylation =0.2), “Mid”
(average methylation between 0.2 and 0.8), and “Hi” (average methylation =0.8). Boxplots represent average methylation levels of these ICRs based on
MethylC-seq and methyICRF. (B) Same as A, except for fetal NSCs. (C) A Genome Browser view of ICR near gene MEST (mesoderm specific transcript,

chr7). (D) A Genome Browser view of ICR near gene NDN (necdin, chr15).

regions that show disagreement, bisulfite validation agreed better
with methylCRFin 11 cases and agreed better with MethylC-seq in
only one case. Two of the tested loci are shown in Figure 9, while
the remaining sites are summarized in Table 1 and Supplemental
Figure S3.

Discussion

DNA methylation is an epigenetic mark that has important regu-
latory roles in a broad range of biological processes and diseases
(Jones 2012). Understanding the role of DNA methylation in de-
velopment and disease requires knowledge of the distribution of
these modifications in the genome. The technology is now avail-
able for studying DNA methylation genome-wide, at high resolu-
tion and in a large number of samples (Bock 2012). Previous
comparisons suggest that many popular methods yield largely
comparable results, but they differ significantly in extent of ge-
nomic CpG coverage, resolution, quantitative accuracy, and cost
(Bock et al. 2010; Harris et al. 2010), at least using current algo-
rithms to interrogate the data.

We introduce a combined computational and experimental
strategy to produce single-CpG-resolution DNA methylomes of all
28 million CpGs in the human genome at a fraction of the cost of
whole-genome bisulfite sequencing methods. Our computational
model, methylCRE, is based on conditional random fields, a model
similar to the well-known hidden Markov model, initially developed
for natural language processing but less applied in biomedicine.
Using this model, we integrated data from two complementary DNA
methylation assays (MeDIP-seq and MRE-seq) to predict methyla-
tion at single-CpG resolution that were similar to the results from
WGBS on the DNA of the same cell line. However, the cost of our two
assays combined is <10% of a whole-genome bisulfite sequenc-
ing methylome. We showed that methylation levels assessed by

methylCRF from MeDIP-seq/MRE-seq data are indistinguishable
from a biological replicate of whole-genome bisulfite sequencing.

A complete genome-wide DNA methylome of a given sample
will describe methylation levels of every CpG in the genome, ~28
million in humans. The WGBS-based method is considered the
only approach capable of producing such single-CpG-resolution
DNA methylomes. It is perhaps the most celebrated method in
DNA methylomics to date and generally considered superior to
enrichment-based methods (Krueger et al. 2012). One important
reason that WGBS appears conceptually superior to enrichment-
based methods is that transformation of sequencing results to
direct estimates of methylation levels of individual CpGs is
straightforward—once data are aligned to the reference genome,
one can simply count converted and unconverted Cs to infer
methylation levels. Although WGBS does not directly measure
single-CpG methylation levels of a sample, investigators can easily
infer methylation levels based on experimental data (by sequenc-
ing alleles from multiple cells) derived from the true methylation
states, i.e., observed counts of converted and unconverted Cs. Such
intuitive heuristics makes WGBS seem straightforward.

Similarly, enrichment-based data are also derived from true
methylation states. However, current analytical methods for en-
richment-based data usually calculate enrichment scores that are
indicative of regional DNA methylation levels corrected by local
CpG distribution (Down et al. 2008; Chavez et al. 2010) but do not
predict single-CpG methylation levels. Our novel algorithm closes
this gap—we can predict single-CpG methylation levels based
on MeDIP-seq and MRE-seq data, two fundamentally different
methods. The algorithm represents a fundamental advancement
in statistical modeling over methods currently applied to enrich-
ment-based methods.

There are still significant barriers to individual laboratories
adopting WGBS as a routine assay, mainly the high production
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investigators need to assay multiple sam-
ples to identify biologically interesting

differences with reasonable statistical
significance.

Additionally, bisulfite-converted ge-
nomes have lower sequence complexity.
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This not only causes problems in library
construction and cluster formation on
a sequencing plate, but also more pro-
foundly affects alignment of bisulfite
reads to the genome, i.e., mapping. Sev-
eral algorithms have been developed to
improve mapping of WGBS data (Xi and

Li 2009; Coarfa et al. 2010; Krueger and
Andrews 2011; Frith et al. 2012; Otto et al.
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Figure 9. Experimental validation of regions where there is discordance between MethylC-seq and

methylCRF. Genome Browser view and site-specific bisulfite sequencing validation for each region (0
unmethylated CpG; ® methylated CpG). The line graph shows the methylation levels estimated by
MethylC-seq, RRBS, bisulfite validation, and methylCRF. (4) chr22: 19929336-19929659; MethylC-seq
predicted on average a methylation level of 80% methylated, while methylCRF and bisulfite validation
agreed on a level of 40% methylated. (B) chr19: 35068305-35068683; MethylC-seq predicted on
average a methylation level of 60% methylated, while methylCRF and bisulfite validation agreed that

the region is more than 90% to completely methylated.

cost. Our method costs only a fraction of that of WGBS, yet can
achieve comparable results. Importantly, the cost saving is scal-
able; any anticipated reduction in sequencing cost will reduce the
cost of WGBS and our method in equal proportions. We performed
saturation analysis of MeDIP and MRE and concluded that ~30M
MRE reads and 50M MeDIP reads are required to reach saturation
for measuring a human DNA methylome (Supplemental Fig. S4;
Supplemental Notes). This translates to 1X-1.5X coverage of the
human genome. For WGBS, the requirement is at least 20x-30X
coverage. This striking 20-fold difference in required coverage will
remain unchanged across different next-generation sequencing
platforms. To generate 30X coverage for a human sample is still
expensive or even prohibitive for most laboratories. Very often

rate than mapping of reads from WGBS.
In our experimental validation, we
examined 12 loci where MethylC-seq and
methylCRF predictions do not agree in
H1 ESC. We used bisulfite conversion, PCR,
cloning, and sequencing as our validation
method because it is considered the gold
standard for targeted DNA methylation
prediction, and we could exclude the possibility that differences
are caused by bisulfite conversion. Nevertheless, in 11 out of 12
loci, the gold-standard approach gave methylation levels that were
closer to those from methylCRF predictions than from WGBS. Our
interpretation of this result is that most errors made by WGBS might
be due to misalignment; however, a comprehensive analysis of
WGBS mapping is needed to be certain. Alternatively, these differ-
ences may reflect true biological variation. This raises the profound
question again: How much of the WGBS-predicted DNA methylome
is actually incorrect due to challenges in mapping bisulfite-con-
verted reads? We are eager to explore this question in future studies.
When compared with RRBS and Illumina arrays, our method
is obviously much more comprehensive. Our method provides
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Table 1. Summary of validation results

Tested
coordinates (hg19)

Figure

panel Fwd primer

MethylC-seq
RMSE

methyICRF

Rev primer RMSE

S2A chr2:
233216826-
233217069
S2B chrl:
146551336-
146551644
Ss2C chr2:
37571975
37572244
S2D chr10:
94820761-
94821132
S2E chr15:
57025677-
57025990
S2F chrl:
200343036-
200343274
S2G chr2:
228736110
228736500
S2H chr4:
103940626
103940995
8A chr22:
19929336-
19929659
S21 chrX:
48929750-
48930067
S2) chr13:
58208240
58208505
8B chr19:
35068305-
35068683

AGAATTTAAATTTGGGTGAA

GGTTGAGGTTAGTTTAT

TAGTTTGGTTAGAGGAGAAGGTGAG

TTAGGAGTTAGGAAAAAGTTTTGAG

TGATTGGAGTTTTGAGGAGGA

ATGTAGTTTAGGTTGTGGTTTAGGT

TTAAGAA ATTGAATTGAGGGG

GTTTTTGGGGTAGTTAGGGTTGT

GTAGGTAGGTTAATGGAGTGGTGAG

TTTATATTTATGTGTTTGTGAATTTTA

GGTTAGAAATTGGTTAATGAT

GGAGGGGAAGAATATAAGAAATAATTAGT

ATCCTACCTTAAATAAACACCTACC 0.28 0.12

CCCAAACTCTAAATCAAAACT 0.16 0.13

AACCCAAAAAAAACCAATAACATC 0.52 0.06

ACTAAACCAAACTAAACAACAAACC 0.44 0.11

CCCACATAAAAACAAAACCCTAAC 0.46 0.19

TCTAAATCCCAATCCCTAACTACAA 0.06 0.82

CAATCTAAAAACCCAAAATCCC 0.31 0.05

TAAACAAAAAACACACCAAACAATC 0.20 0.04

CTCAACTTTCCACAAAAAATCTAAAA 0.40 0.12

ACCAAAAAAACAACCAAAACATACT 0.77 0.03

ATACTCACCAAATAACCCAAACC 0.53 0.32

CTAAAATACCACAAACCCCACTAC 0.50 0.05

Validation of 12 targets chosen within windows where there is discordance between MethylC-seq and methylCRF for H1 ESC. The root-mean-squared
error (RMSE) is shown between MethylC-seq or methyICRF and bisulfite validation using the listed primers. Boldface indicates lowest RSME.

10-fold to 20-fold more coverage than RRBS or available methyl-
ation arrays. Investigators may want to use array-based assays
when their target CpG sites are directly interrogated by the array.
However, many regions of interest, for example, repeats or cryptic
promoters, will not be assessed. There are also a number of ex-
amples in which the specific CpG site interrogated by an array does
not reflect the true methylation status of the genomic feature (e.g.,
a promoter) and may lead to false conclusions. Our method not
only provides a comprehensive method for exploratory studies,
but as the cost of WGBS drops sufficiently for exploratory analysis,
the concomitant drop in cost of methylCRF application on MeDIP-
seq and MRE-seq will provide investigators a platform to compre-
hensively address biological questions by comparing multiple
samples, conditions, or variances genome-wide.

The accuracy of methylCRF was benchmarked against WGBS,
RRBS, Infinium array, and locus-specific bisufite sequencing on H1
human ESCs. In addition, we determined that the high concor-
dance between methylCRF and WGBS is consistent across most
genomic feature sets and across all CpG density levels. The power
of the method stems from its integrative nature—methylCRF is
able to integrate a priori information about the expected methyl-
ation states of various types of genomic features, two complemen-
tary and independent experimental measurements of methylation
states, and hidden relationships among neighboring CpG sites.

Genomic sequences and features provide a default expectation of
their methylation status. Indeed, the CpG content of the genome
reflects germ-cell methylation states during the course of evolution
(Li et al. 2012) and has been used to estimate methylation levels
directly (Das et al. 2006). This is reflected by the overall concor-
dance of 0.66 when methylCRF makes predictions based
on genomic features alone, which represents an expectation of
methylation of a majority of CpGs in a normal somatic cell. The
concordance is significantly improved when either MeDIP-seq or
MRE-seq data are integrated, and the highest concordance is
obtained when the data sets are combined. Importantly, methyl-
ation predictions made by methylCRF are conditioned on both
genomic features and experimental data and are not driven by
genomic features alone. This is supported by the accurate separa-
tion of methylated CpG islands from unmethylated ones (Fig. 6D),
even when focusing on promoter regions and/or intergenic CpG
islands (Supplemental Figs. 1, 2).

The accuracy of methylCRF was further benchmarked on WGBS
and Infinium array data from a second sample. Here methylCRF
trained on H1 ESC data was applied to MeDIP-seq and MRE-seq of
a fetal-brain NSC sample. The concordances between methylCRF
and WGBS, and between methylCRF and Infinium array, were at
similarly high levels as those obtained on analyzing H1 ESC data.
Moreover, methylCRF can reliably identify differentially methyl-
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ated regions between the two samples. This strongly suggests that
our model trained on ESC data can be applied to data of other
samples.

In the present implementation of methylCRF, we only con-
sider CpG methylation and assume that all signals obtained from
MeDIP-seq and MRE-seq are results of CpG methylation. We also
assume WGBS-produced methylation signal and ignore compli-
cations caused by hydroxymethylation. We note that methyla-
tions of cytosines in the context of other than CpG (i.e., CHG and
CHH) are rare in somatic cells but are, indeed, present in embry-
onic stem cells, usually in low levels, and are associated with highly
methylated CpGs (Lister et al. 2009). The biological significance of
CHG and CHH methylation in mammalian cells is yet to be de-
termined. Our statistical model is general enough to incorporate
non-CpG cytosine methylation, but we focused on CpG methyl-
ation in this study. Our statistical model is also general enough to
incorporate data on hydroxymethylation when they become more
and more available.

Our study has several limitations. Because the cell line we
used to train, H1 ESC, is male, it is possible that the additional X
chromosomes in female samples may not be as accurate. This is
because males will only have one allele aligning the reference X
chromosome, whereas a female will have two, resulting in twice as
many reads. In fact, this may also affect WGBS accuracy. The
concordance within the 0.25 difference window between H1 and
H9 on chrX alone drops to 81%, whereas excluding chrX raises the
concordance 92%. The concordance of methylCRF with H9 on
chrX is 79%, whereas without chrX it is 90%. Note that this also
provides a natural experiment that suggests how methylCRF will
perform in cases of large-scale genomic aberrations such as seg-
mental or even chromosomal duplication or deletion, which is
frequently found in cancer. Both WGBS and methylCRF seem to be
proportionally less accurate when alleles and possibly segments are
added or deleted. Nevertheless, once more WBGS data become
available, we can trivially extend methylCRF to include a field for
structural variations that could be estimated by standard means.
Additionally, since MeDIP-seq and MRE-seq are sequencing based,
we can make use of existing tools to add SNP-based features and to
include input (unenriched sequences). We note that WGBS is at
a disadvantage when considering SNPs; in particular, C — T SNPs
will either be reported as an unmethylated C unless strand-specific
alignment is available or even worse will align to cause false-posi-
tive alignments in other locations.

Another potential limitation is that the H1 WGBS (MethylC-
seq) and MeDIP-seq and MRE-seq were performed on separate
passages of the H1 ESC line and assayed in separate laboratories.
This may explain why methylCRF was consistently validated by
the bisulfate cloning method over WGBS. However, if this were
true, two important inferences can be drawn. First, notable changes
in methylation can be seen even between passage numbers. Sec-
ond, these validations show methylCRF’s sensitivity in detect-
ing DMRs based on experimental data—even in very similar bi-
ological contexts. Additionally, the accuracy on fetal NSCs is
slightly lower than on H1 ESCs. This may suggest that H1 ESCs
may have differences in their global methylation than other cell
types. While this does not stop methylCRF from detecting tissue-
specific DMRs, it suggests that the accuracy may improve further
if we retrain methylCRF simultaneously on WGBS from multiple
cell types.

Finally, because of our use of genomic feature-specific pre-
dictions, methylCRF accuracy may suffer when some part of the
methylation machinery breaks down or behaves differently, for

instance, as in some cancers. We have indirectly tested this in
a sample case, however. Figure 2C shows CpG islands to have an
extremely biased distribution of low methylation. However, Figure
6D shows equivalent accuracy in CpG islands that represent a ge-
nomic feature with, in the statistical view of methylCRF, aberrant
methylation.

Despite the promise of WGBS-based methods, the number of
publicly available, complete, single-CpG-resolution DNA methyl-
omes is still small in contrast to the number of lower-resolution
and/or lower-coverage DNA methylomes generated by less-ex-
pensive methods (e.g., MeDIP-seq and MRE-seq generated by in-
dividual laboratories and by the Roadmap Epigenomics Project).
Our method can convert these data into single-base resolution,
complete DNA methylomes, and thus significantly increase the
value of such existing data sets.

In summary, our results suggest that methylCRF is an effective
statistical framework capable of integrating two fundamentally
different sequencing-based DNA methylation assays—MeDIP-seq
and MRE-seq—to predict genome-wide, single-CpG-resolution
methylome maps. The concordance of our methylCRF predictions
with WGBS falls within the range of concordance between two
WGBS experiments on similar cells. methylCRF will thus signifi-
cantly increase the value of high-coverage DNA methylomes pro-
duced using much less expensive methods and provide a general
statistical framework for integrating contributions from various
types of DNA methylation data regardless of their coverage, reso-
lution, and the nature of their readout.

Methods

methylCRF implementation

methylCRF is implemented using the theoretical framework of
conditional random fields (Lafferty et al. 2001). This general
framework expresses the conditional probability Pr(V[X) of a se-
ries of hidden states, the random variables Y, given the observed
data X:

c K
P(Y|X) = % HeZk:N*/;fk(C-,n 1Y X)S where
c=1

Y is the methylation level of every CpG and X is the observa-
tions (MeDIP-seq, MRE-seq, genomic context). The C CpGs are
indexed by ¢, and the K feature functions fare indexed by k. The
weights wy ... wy are learned via gradient ascent of the log like-
lihood. Z is the partition function, which provides the global
normalization and is the sum of all sequences of methylation
levels given X:

C
z=Y Hezlewsz(f-ywn-x)

veY =1

Our approach to data features was initially to include any-
thing that we thought might in some way affect methylation. We
then let an L1 normalization term during training determine
which features were not important by pushing their weights to 0.
Therefore, the choice of important features was learned from the
data. We split the data into different ranges of effect. We included
MeDIP and MRE scores both at the CpG (DO and M0) and within
windows of 20 bp, 200 bp, 2 kb, and 20 kb. We included whether
a CpG was at an MRE restriction site (ER) and the distance in base
pairs to the previous CpG (PC). From UCSC Genome Browser
tracks (Kent et al. 2002), we included a 46-way mammalian

1550 Genome Research
www.genome.org



methylCRF predicts single-CpG-resolution methylome

phastCons conservation score. We included GC% in 20-bp, 150-bp,
and 500-bp windows, and CpG density in a 150-bp window.

We defined one CRF feature for each one of these data features
combined with the methylation level of the current and previous,
5" CpG. We also added CRF features for the next two MeDIP and
MRE scores on both the 5’ and 3’ sides. We then defined com-
pound features. We included a feature combining DO and PC to
possibly address the nonlinear relationship between MeDIP and
CpG density. We also included one large feature including factors
that appeared to be interacting (data not shown), including both
the current and previous CpG methylation as well as DO, MO, and
PC for the current CpG as well as the two CpGs to upstream
and downstream of the current. This feature also included MeDIP
and MRE in 20-bp and 2-kb windows, ER, and GC in 20-bp and
150-bp windows for the current CpG as well as ER for the sur-
rounding two CpGs. We additionally included four more features
consisting of subsets of these as a fallback for rare combinations of
values. A diagram of the complete model is illustrated in Supple-
mental Figure SS5.

The distributions of methylation levels are genomic feature
specific (Fig. 2C), so we reasoned that the methylation level tran-
sitions between neighboring CpGs are also genomic feature spe-
cific. To address this, we trained a separate CRF for each genomic
feature: one for each of the genomic annotations in RefGene (5’
UTR, gene body, exon, intron, 3" UTR, CGI), for the derived types
(distal promoter, TSS-2 kb; proximal promoter, TSS-250 bp; core
promoter, TSS = 35 bp; 1 kb flanking each CpG Island; and 2 kb
flanking each CpG Island), one for each Repeat class (DNA, LINE,
LTR, RNA, SINE, low complexity sequence and simple repeats, and
other), and one for the remainder of the genome not covered by
any of the previous CRFs.

Training was performed using MethylC-seq (Lister et al.
2009)-measured methylation levels in randomly chosen regions
representing 20% of the genome. We used only CpGs with at least
10-read coverage. We performed separate discretization for
each CRF. Each of the CRFs was trained using crfasgd (Bottou and
Bousquet 2008) using default settings.

CRFs are typically discriminately trained by iteratively as-
cending their gradient. While the function is convex and thus
converges to a global maximum, the whole CRF must be evaluated
once for every iteration in the ascent that poses performance is-
sues. However, CRFs have been shown to handily model millions
of features (Sha and Pereira 2003). Additionally, the ascent can be
performed online providing two benefits: (1) potentially less
overfitting due to the less optimal solution and (2) speed of anal-
ysis (Bottou and Bousquet 2008). Being discriminately trained,
however, CRFs need to be handled carefully so as to ensure their
generalizability to future data.

For CpGs that are annotated with multiple features, we
combine the methylation predictions by averaging the predictions
of the corresponding CRFs and giving each CRF an equal vote. Per-
formance was evaluated using CpGs that were not used for training.

Discretization heuristic

CRFs are rooted in the Natural Language Processing (NLP) com-
munity and thus model discrete rather than continuous variables.
There has been at least one paper extending CRFs to rankings that
require developing a continuous CRF (Qin et al. 2008). Addi-
tionally, in the derivation of CRFs, there is no restriction on the
form of the random variables, and thus continuous predictors are
also an option. However, the theoretical and practical work on
modeling and training of discrete CRFs is very extensive. Addi-
tionally, the relationship between the predictors and the methyl-
ation ratios are complex. Finally, Naive Bayes is known to perform

better with discretized variables (Dougherty et al. 1995). We, there-
fore, decided to follow in this line of work by representing the
relationship between the predictors and methylation ratios as
piecewise constant. The trade-off in avoiding the choice of the
correct family of continuous distributions for the methylation ra-
tios as well as the predictors in the continuous case is that we must
determine where to cut the range of a predictor into pieces. This is
equivalent to discretization for which considerable work has been
done.

While equal-range or equal-size discretization is straightfor-
ward, they did not perform very well (data not shown). We instead
chose to use supervised discretization using the methylation ratios
to guide the discretization. While good entropy-based methods do
exist, they would require the methylation ratios to already be
discretized, posing a chicken-and-the-egg problem for which we
could not find an existing solution. This led us to develop a two-
step heuristic consisting of clustering to discretize the methylation
ratios followed by supervised discretization of each predictor. In
the first step, which we term “order-preserving clustering,” we
cluster the predictors and the methylation ratios together. We it-
eratively up-weight the methylation ratios and recluster until there
is an order between clusters such that all of the methylation values
in one cluster are larger than the previous (Supplemental Fig. 6).
Given this as a data model-driven discretization of the methyla-
tion ratios, we then use supervised discretization on each predictor
individually. Note that this heuristic can use any pairwise distance
metric, clustering method, or supervised discretization method.
We used k-means (Macqueen 1967) and Euclidean distance for
clustering and CAIM (Kurgan and Cios 2004) for discretization.

MeDIP-seq, MRE-seq, and WGBS data

All data were obtained from the NIH Roadmap Epigenomics
Mapping Centers’ repository for human reference epigenome atlas
(Bernstein et al. 2010). Experiments were performed under the
guidelines of the Roadmap Epigenomics Project (http://www.
roadmapepigenomics.org/protocols). Specifically, MeDIP-seq and
MRE-seq experiments were performed as described previously
(Maunakea et al. 2010). All data have been previously submitted to
NCBI and are listed in Supplemental Table 1.

The reads were aligned with bowtie (Langmead et al. 2009) to
HG19. The MRE reads were normalized to account for differences
in enzyme efficiency and scoring consisted of tabulating reads
with ends at each CpG (Maunakea et al. 2010). To allow for com-
parison between experiments, the CpG read counts for MeDIP
were scaled so that the 75th percentile of CpGs with at least one
read is 10. Since for each MeDIP read, the CpG that was bound by
the antibody cannot be determined, a fractional count was added
to each CpG for the read. The final MeDIP score is the sum of CpG
scores within the specified window.

Genomic features

RepeatMasker annotations, CpG islands, genomic super duplica-
tions, 46-way phastCons, and refGene coding loci features were all
downloaded from the UCSC Genome Browser (Kent et al. 2002). The
GC percent, CpG density, and MRE sites were calculated using HG19.

Training and prediction

For training, we randomly selected both the location and size of
genomic fragments of 75 kb to 750 kb in length comprising ~20%
of the genome. We used only CpGs with at least 10 BS reads. We
performed separate discretization for each CRE For the k-means
step in the discretization of BS methylation values, we arbitrarily
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chose 10 clusters because this seemed a reasonable cutoff for the
granularity for the measurement of CpG methylation that we
would be interested in. We used Euclidean distance as our metric.
Further details on our discretization method are discussed above.
Each of the CRFs was trained using crfasgd (Bottou and Bousquet
2008) using default settings. The data for each CRF were split on
gaps of >750 bp between consecutive CpGs.

For prediction, the data were created as for the training data.
For the final methylCRF predictions, we combined the predicted
methylation levels of all the CRFs by averaging the predictions for
CpGs that were shared by multiple CRFs.

Genome Browser tracks are available as part of Roadmap
Epigenomics Project’s data visualization hub: http://VizHub.
wustl.edu.

Bisulfite treatment and library construction for WGBS

One to five micrograms of gDNA was sonicated to an approximate
size range of 200-400 bp. Size selection is performed on a PAGE gel
to obtain DNA fragments of 200-300 bp. DNA are quantified by
fluorescent incorporation (Qubit, Invitrogen). The library prepa-
ration includes end-repair and phosphorylation with NEBNextTM
or Illumina Sample Prep Kit reagents, and addition of an A base to
the 3’ end of the DNA fragments. Methylated adaptors are ligated,
and size selection is performed to remove excess free adaptors. The
ligated DNA is quantified by Qubit, and ~100 ng of DNA is used for
bisulfite conversion. A methylated adaptor ligated to unmethyl-
ated lambda-phage DNA (NEB) is used as an internal control for
assessing the rate of bisulfite conversion. The ratio of target library
to \ is 1600:1. Bisulfite conversion of the methylated adaptor-ligated
DNA fragments follows the FFPE Tissue Samples Protocol from
QIAGEN's EpiTect Bisulfite Kit. Cleanup of the bisulfite-converted
DNA is performed, and a second round of conversion is applied.
Enrichment of adaptor-ligated DNA fragments is accomplished
by dividing the template into five aliquots followed by eight cy-
cles of PCR with adaptor primers. Post-PCR size selection of the
PCR products from the five reactions is performed on a PAGE gel.
Following 100-bp paired-end sequencing on an HiSeq2000, se-
quence reads were aligned and processed through the Bismark
pipeline.

Infinium assay

Bisulfite conversion was performed on 1 pg of genomic DNA
using the EZ DNA methylation kit (Zymo Research) as per the
manufacturer’s alternative incubation conditions protocol. The
bisulfite-converted DNA was amplified and hybridized to an
Infinium HumanMethylation450 beadchip (Illumina) following
the Infinium HD methylation assay protocol at the UCSF Geno-
mics Core Facility. Methylation levels (beta values) were deter-
mined using the Methylation Module of the Illumina GenomeStudio
software.

Bisulfite validation

Total genomic DNA underwent bisulfite conversion follow-
ing an established protocol (Grunau et al. 2001) with the fol-
lowing modifications: incubation at 95°C for 1 min and 50°C
for 59 min for a total of 16 cycles. Regions of interest were
amplified with PCR primers (Table 1) and subsequently cloned
using pCR2.1/TOPO (Invitrogen). Individual bacterial colonies
were subjected to PCR using vector-specific primers and sequenced
(Quintara Biosciences). The data were analyzed with online software
BISMA (Rohde et al. 2010). The results are summarized in Table 1
and Supplemental Figure 3.

Software availability

MethylCRF is completely open source software. The source code,
parameter sets, and genomic data sets, as well as instructions are
available at http://methylCREwustl.edu.
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