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Migration of neurons starts in the prenatal period and continues into infancy. This
developmental process is crucial for forming a proper neuronal network, and the
disturbance of this process results in dysfunction of the brain such as epilepsy. Prenatal
exposure to environmental stress, including alcohol, drugs, and inflammation, disrupts
neuronal migration and causes neuronal migration disorders (NMDs). In this review,
we summarize recent findings on this topic and specifically focusing on two different
modes of migration, radial, and tangential migration during cortical development. The
shared mechanisms underlying the NMDs are discussed by comparing the molecular
changes in impaired neuronal migration under exposure to different types of prenatal
environmental stress.

Keywords: prenatal environmental stress, neuronal migration, neuronal migration disorders, fetal brain
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INTRODUCTION

In utero environment critically affects the brain development, thereby modifying neurobehavior
of the offspring after birth (Rees and Harding, 2004). Substances that are ingested by a pregnant
woman can cross the placenta and adversely affect fetal development. Some are unavoidable
medications due to the mother’s medical condition, such as epilepsy or depression, but others are
consumed by an expectant mother unbeknown to the risks and effects. In some cases, an excessive
amount may be taken by a pregnant woman due to the addiction.

During brain development, newly generated neurons undergo morphological changes followed
by migrating from the germinal layer through the intricate network of extracellular matrix to
establish connections with other cells in a highly ordered fashion (Rakic, 1972, 1995; Metin et al.,
2008). Two major modes of migration in the cerebral cortex are known (Copp and Harding,
1999; Guerrini and Parrini, 2010). The first is radial migration. Excitatory neurons generated in
the proliferative zones of the dorsal telencephalic primordium radially migrate toward the pial
surface of the cerebral cortex along the radial axis. These neurons use the cellular processes that
are elongated from the radial glial cells, which are ascending neural progenitor cells (NPCs),
as the scaffold of their migration (Rakic, 1972; Ayala et al., 2007; Figure 1). Once arriving at
the superficial layer, the neurons detach from the radial glial processes to settle down in the
cortical plate. Another mode of neuronal migration, known as tangential migration, is employed by
inhibitory interneurons. Those neurons migrate tangentially from the ganglionic eminences (GE)
to the cerebral cortex (Marín and Rubenstein, 2001; Ayala et al., 2007; Figure 1).
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Any disturbances of these two modes of migration cause
neuronal migration disorders (NMDs), and the consequent
malformations are detectable by brain imaging in NMD patients
(Roberts, 2018). Profound cases of NMDs include lissencephaly,
heterotopia, and focal dysplasia (Guerrini and Parrini, 2010;
Roberts, 2018). Precise control of the migration and positioning
of both excitatory and inhibitory neurons are particularly
important for the formation of synaptic excitation and inhibition
(E/I) balanced circuit in the brain. Therefore the E/I imbalance is
the main cause of epilepsy in NMD patients (Copp and Harding,
1999). Other neurodevelopmental and psychiatric disorders,
including autism spectrum disorders (ASD), and schizophrenia
are also associated with NMDs (Canitano and Pallagrosi, 2017).

In addition to the genetic causes, harmful prenatal
environment also leads to neuronal migration defects (Metin
et al., 2008). When developmental neurotoxicology first emerged,
various paradigms of exposure were deployed in many species
to recapitulate human pathophysiology, including defects of
neuronal migration. Decades later, many recent studies have
utilized genetic tools and cutting edge molecular techniques
in those preclinical animal models to decipher the underlying
mechanisms of neuronal migration defects under the stress
exposure. In this review, we summarize such recent findings in
animal research and discuss the mechanisms shared by various
types of environmental stress as the targets of interventions.

ALCOHOL

Prenatal alcohol exposure (PAE) is the cause of fetal alcohol
spectrum disorders (FASD) (Jones and Smith, 1973; Burd et al.,
2007; Riley et al., 2011; Wilhoit et al., 2017). Alcohol consumed
by a pregnant woman can easily cross the placenta, and increases
fetal blood alcohol concentrations to the levels equivalent to
those in maternal side within 2 h of ingestion (Burd et al.,
2012). Affected individuals of FASD display a spectrum of defects,
including facial malformations and neurobehavior impairments
(Subramoney et al., 2018).

Depending on the timing of exposure to alcohol and the
mother’s drinking pattern, alcohol may have different effects on
a child (Foltran et al., 2011). A comprehensive transcriptome
study of mice that were exposed to two acute doses (5 g/kg
in total) of alcohol at various periods of brain development
demonstrated that ethanol exposure at different developmental
periods impacts differential biological processes (Kleiber et al.,
2013). Notably, the genes that are associated with cell migration
and differentiation were altered only in the brains exposed to
alcohol on E14 and E16 which is equivalent to second trimester
in humans (Kleiber et al., 2013).

Neuronal migration defects have been reported by many
groups in animal models of PAE. In a binge-drinking model in
which the mice were exposed to 5% w/w alcohol at E13.5–E16.5,
defects of radial migration particularly affecting the populations
of excitatory neurons were found in the somatosensory cortex
(Delatour et al., 2018; Table 1). These animals also showed
a decrease of dendritic complexity in excitatory neurons and
reduced tactile sensitivity (Delatour et al., 2018). In another study

using the same binge drinking paradigm (5% w/w E13.5–E16.5
exposure), the increase of interneurons derived from medial
ganglionic eminence (MGE) in the medial prefrontal cortex
(mPFC) was observed by using Nkx2.1Cre-Ai14 transgenic mice.
This increase of interneurons in the mPFC is due to the
increase of proliferation of the progenitor cells in MGE as well
as earlier entrance of those neurons into the mPFC (Skorput
et al., 2015). Associated E/I imbalance that favors synaptic
inhibition was also reported (Skorput et al., 2015; Table 1).
Chronic liquid administration of ethanol at lower dosage (1
or 2% w/v) from early to mid-gestational stages (E0.5–E14.5)
increased the number of inhibitory interneurons in the neocortex
(Cuzon et al., 2008; Table 1).

Intracellular Ca2+ serves as a second messenger of various
signaling, and dynamic oscillation of the intracellular Ca2+

is associated with neuronal migration (Komuro and Rakic,
1996). Interestingly, Kumada et al. reported the migration defect
observed in cerebellar granule cells following ethanol exposure
ex vivo were rescued by modifying the Ca2+ signaling (Table 1).
The authors demonstrated that exposure to ethanol reduces
the cGMP level, but increases the cAMP level in the tissue,
resulting in changes of Ca2+ transients in the migrating neuron.
Importantly, the neuronal migration defects were reversed by
stimulating the brain with Ca2+ and cGMP or inhibiting cAMP
signaling both in vitro and in vivo (Kumada et al., 2006). Rescuing
neuronal migration through changing Ca2+ and cyclic nucleotide
signaling is mediated by activating the downstream targets that
are essential for neuronal migration, such as protein kinase C
(PKC), Ca2+/calmodulin-dependent protein kinase II (CaMKII),
protein phosphatase 1 (PP1), Rho GTPase, mitogen-activated
protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K)
(Huang et al., 2004; Shmueli et al., 2006; Zhao et al., 2009;
Khodosevich and Monyer, 2011).

As mentioned earlier, alcohol exposure changes the
expressions of many genes that are associated with neuronal
migration. Transcriptome analyses of human and mouse
fetal cerebral cortices that were acutely exposed to alcohol
demonstrated altered expressions of genes that are related to
neuronal migration (Hashimoto-Torii et al., 2011; Kleiber et al.,
2013; Kawasawa et al., 2017). Of note, a study on the expressions
of splicing isoforms in the human brain revealed global exon
skipping following alcohol exposure (Kawasawa et al., 2017).
Consequently, the functions of the encoded proteins may be
different before and after alcohol exposure. However, how
the changes in expressing protein isoforms lead to migration
deficiency, and the mechanism of alcohol leading to global
changes in RNA splicing remains to be investigated.

COCAINE

In human, prenatal cocaine exposure (PCE) is associated
with changes in cortical structure, physical and neurocognitive
development in the offspring (Bellini et al., 2000; Richardson
et al., 2015). The association between cocaine exposure in second
trimester and poor motor development in the infants based
on psychomotor developmental index (PDI) was reported in
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FIGURE 1 | Modes of neuronal migration in cortical development. The schematic diagram illustrates two major modes of migration. Excitatory neurons migrate
radially from ventricular surface toward the pial surface of the neocortex using radial glial cells as their scaffolds whereas the inhibitory neurons migrate tangentially
from the ganglionic eminences to the neocortex.

a cohort study (Richardson et al., 2008). However, given that
cocaine users frequently abuse other drugs and substances, the
consequences of PCE at different stages of the trimester is not
clearly defined (Martin et al., 2016).

Although animal studies clearly show that PCE in early
developmental stages induces a more severe effects in neuronal
migration than that in late developmental stages (Lee et al.,
2011; McCarthy et al., 2011). The animals subjected to cocaine
at 20 mg/kg twice a day during early/mid gestation periods
(E13–E14 or E15–E16) showed similar levels of accumulation
of postmitotic excitatory neurons in the ventricular zone of the
cerebral cortex (Lee et al., 2011; Table 1). This indicates that
the migration deficits can be explained by indirect effects due
to changes in the proliferation and differentiation of NPCs in
the germinal zone.

Disruption of C-X-C motif chemokine ligand 12 (CXCL12)/C-
X-C chemokine receptor type 4 (CXCR4) pathway is another
potential mechanism of the neuronal migration defects that
are elicited by cocaine exposure. Reduction of CXCR4 protein
expression following exposure to cocaine was reported by Hu
et al. (2006). They exposed human fetal brain-derived NPCs to
cocaine in vitro and observed inhibition of cellular proliferation
and directional migration toward CXCL12 as well as reduction
of CXCR4 expression (Hu et al., 2006). Similarly, the positioning
of the interneurons that express CXCR4 in upper cortical layers
was disturbed in Cxcr4 knockout mice, providing additional
evidence that CXCR4 plays a role in neuronal migration (Stumm
et al., 2003). However, neither study replenishes CXCR4 to
ameliorate the neuronal migration defects. This piece of data
will strengthen the crucial role of CXCR4/CXCL12 signaling in

neuronal migration, and indicate the potential of the signaling as
a target of therapeutic intervention for NMDs.

McCarthy et al. (2011) proposed that the reduction of brain-
derived neurotropic factor (BDNF) post exposure to cocaine may
also explain impaired migration of the interneurons (Table 1).
The animals that were injected with 20 mg/kg of cocaine twice
a day show defects not only in radial migration of excitatory
neurons but also in tangential migration of inhibitory neurons
(McCarthy et al., 2011). These defects were associated with
a transient decrease in BDNF protein expression (McCarthy
et al., 2011). BDNF plays a pivotal role in neurogenesis in
the developing cerebral cortex, and its interaction with CXCR4
has been reported (Ohmiya et al., 2002; Bachis et al., 2003).
In fact, Xu and Heilshorn (2013) demonstrated that BDNF
significantly enhances the directional migration of human NPCs
toward CXCL12. Furthermore, the presence of BAMD3100,
a blocker of CXCR4, completely abolishes the migration,
suggesting that BDNF-mediated chemotaxis toward CXCL12 is
through CXCR4 activation (Xu and Heilshorn, 2013). Although
how BDNF and CXCR4 interact during neuronal migration is
still unclear, BDNF-mediated CXCL12/CXCR4 signaling may
critically contribute to the impairment of neuronal migration
under cocaine exposure.

HYPOXIA

Intrauterine hypoxia occurs when the fetus is deprived of an
adequate supply of oxygen. The inadequate oxygen level may be
caused by high altitude and pre-existing maternal cardiovascular
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TABLE 1 | Summary of different environmental exposure paradigm studies described in this review.

Type of defect Exposure paradigm Model

Type Dose and route Exposure time in
animal

Equivalent human
trimester

Species Age of assessment References

Radial migration
defect

Ethanol 5% w/w, self -administered
Liber-DeCarli liquid diet regimen

E13.5–E16.5 Second trimester Thy1-YFP Tg mice E16.5 Delatour et al., 2018

Hypoxia 7% oxygen for 8 min/h for 10 h per
day

E2–E20 First and second trimester Sprague-Dawley rats P6 Zechel et al., 2005

7% oxygen for 3 h per day E14 or E18 Second trimester Wistar rats P5 Vasilev et al., 2016

9% oxygen for 2 h per day E13.5 C57BL/6J or Balb/cBYJ
mice

E14 Herr et al., 2011

Methylmercury 0.01, 0.1 or 1 mg/kg/day, IP
injection

E11–E21 First and second trimester Sprague-Dawley rats P0, P3 and P7 Guo et al., 2013

Glucocorticoids 200 µg/kg of DEX, daily SC
injection

E14.5–E20.5 Second trimester Wistar rats E16.5–E21.5 Fukumoto et al., 2009

Tangential
migration defect

Ethanol 1 or 2 % w/v, self-administered
liquid diet regimen (Dam BAL
28.94 ± 1.97 mg/dL at E13.5)

E0.5–E14.5 First and second trimester GAD67-GFP knock-in mice E14.5 Cuzon et al., 2008

5% w/w, self-administered liquid
diet regimen (Dam BAL
80 ± 21 mg/dL at E15.5)

E13.5–E16.5 Second trimester Nkx2.1-Ai14 (tdTomato) Tg
mice

P70 Skorput et al., 2015

Glucocorticoids Stress induced GC, by restraint
stress three times a day

E12–P0 GAD67-GFP knock-in mice E13, E14, E15 and P0 Stevens et al., 2013

Radial and
tangential migration
defect

Cocaine 20 mg/kg, SC injection twice a day E8–E12, E13 or
E15

First and second trimester Swiss Webster
GAD67-GFP knock-in mice

E12, E13, and E15 McCarthy et al., 2011

Migration speed
defect

Selective
serotonin
reuptake
inhibitor (SSRI)

400 µM, 90 min exposure, cortical
slices

E17.5 and P0.5 Second trimester C57BL/6 mice E17.5 and P0.5 Riccio et al., 2011

Ethanol 10 and 50 mM, acute exposure on
cerebellar slices

P7 and P13 Third trimester CD1 mice P7 and P13 Kumada et al., 2006

Methylmercury Various of dose between 0.01 and
5.0 µg/g body weight

P6–P9 CD1 mice P10 Fahrion et al., 2012

Ectopic localization Maternal
Immune
Activation (MIA)

6000 plague-forming units (PFU) of
human influenza virus one time IP
injection or 20 mg/kg of poly(I:C)
one time IP injection

E9.5 or E12.5 First trimester Balb/c mice P11 Shi et al., 2009

Valproic acid
(VPA)

300 mg/kg, oral administration
once a day

E12–E14 Second trimester C57BL/6 mice P84 Sakai et al., 2018

Cocaine 20 mg/kg, IP injection twice a day E13–E14, E15–E16 Sprague-Dawley rats E15 and E17 Lee et al., 2011

BAL, blood alcohol level; IP, intraperitoneal; SC, subcutaneous.
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diseases, including heart failure and pulmonary hypertension.
Maternal anemia, infections, chronic inflammation, and smoking
also limit the amount of oxygen delivered to the fetus (Hutter
et al., 2010). Chronic hypoxia during brain development affects
radial and tangential migrations of excitatory and inhibitory
neurons, respectively, thereby leading to the thinner cortical plate
in newborn rats (Zechel et al., 2005; Table 1). Vasilev et al.
(2016) demonstrated a short period of hypoxia at E14 or E18
impairs radial migration. Notably, hypoxia at E14, but not at
E18, disturbed lateral dispersion of excitatory neurons in cortical
minicolumns (Table 1). This finding indicates that the occurrence
of neuronal migration defects due to prenatal hypoxia is timing-
dependent. The fetal brain in earlier gestation period may be
more susceptible to hypoxia-induced disturbance of neuronal
migration. However, the relationship between the timing and
severity of neuronal migration defect is still unclear, and thus
more investigations are required.

One of the potential mechanisms underlying the impaired
neuronal migration under prenatal hypoxia is the activation
of lysophosphatidic acid (LPA) signaling. Herr et al. (2011)
demonstrated that LPA signaling is activated by acute prenatal
hypoxia in mice (Table 1). LPA is a lysophospholipid that
activates LPA receptors and affects neurogenesis, neuronal
migration, neuritogenesis, and myelination (Ishii et al., 2004).
Notably, hypoxia-induced impaired neuronal migration was
mitigated in E13 brain slices of Lpa1 receptor knockout mice
exposed to hypoxia for 17 h. This observation suggests that
defects of neuronal migration under hypoxia is mediated by Lpa1
receptor (Herr et al., 2011).

VALPROIC ACID

Maternal use of valproic acid (VPA), an anti-epileptic drug,
during pregnancy is closely associated with increased frequency
of congenital malformation and neuropsychiatric disorders in
human (Meador et al., 2013). A cohort study comparing the
various anti-epileptic drugs that are prescribed to pregnant
women found that the risks of fetal malformation increase in
a dose-dependent manner. VPA exposure especially presents
a greater risk of major congenital malformation compared to
other antiepileptic drugs such as carbamazepine, lamotrigine,
and phenobarbital (Tomson et al., 2011). VPA at daily doses
of 1000 mg or higher is clearly associated with developmental
abnormalities, thus frequent consumption of the VPA at reduced
dose is recommended control epilepsy during pregnancy (Ornoy,
2009). Of note, the manifestation of autism is also strongly
associated with prenatal exposure to VPA. Children who are
exposed to VPA prenatally have a three-fold higher risk of
developing autism (Christensen et al., 2013). Therefore, the
mouse model of prenatal exposure to VPA has been widely used
as one of non-genetic ASD models. In fact, these animals mimic
many of ASD-like behaviors, such as social interaction deficits,
repetitive self-grooming, digging, and deficiency in sensory
processing (Roullet et al., 2010; Nicolini and Fahnestock, 2018).

The exact mechanism of how VPA treats epilepsy is not
fully understood, yet proposed mechanisms include alteration

of GABA levels, blockade of voltage-gated sodium channels
(VGSCs) and inhibition of histone deacetylases (Rosenberg,
2007). All of which may contribute to abnormal brain
development. For example, blocking or enhancing GABAA
receptor diminished or promoted the migration of MGE-derived
interneurons into the cerebral cortex, respectively (Cuzon et al.,
2006), demonstrating ambient level of GABA is important for
stimulating the migrating neurons. Similarly, the activation of
VGSCs induced Ca2+ signaling in GABA-mediated migration of
oligodendrocyte precursor cells, and the knockdown of VGSCs
by siRNA diminished intracellular Ca2+ level and reduced the
migration (Tong et al., 2009). Thus, the blockage of VGSCs in
neurons by VPA can lead to neuronal migration impairment via
similar mechanism.

In addition, prenatal exposure to VPA during the peak of
cortical neurogenesis in mice changes expressions of the genes
that are associated with the cell migration, including BDNF
and Cxcr4. This results in the mislocalization of excitatory
neurons in the cerebral cortex in these animals (Almeida
et al., 2014; Sakai et al., 2018; Table 1). It indicates that
disturbance of BDNF/CXCL12/CXCR4 signaling is another
potential mechanism underlying the deficiency of the neuronal
migration by prenatal VPA exposure.

SELECTIVE SEROTONIN REUPTAKE
INHIBITOR

Selective serotonin reuptake inhibitors (SSRIs) are commonly
used to treat depression during pregnancy. The human
imaging study demonstrated a significant increase of the gray
matter volume in amygdala and insula along with increased
connectivity in children exposed to SSRI prenatally (Lugo-
Candelas et al., 2018). The expression of the genes involved
in serotonin signaling starts during the early stage of fetal
brain development, and the disruption of serotonin signaling
pathway affects cell proliferation, differentiation, neuronal
migration and network formation in various regions of the brain
(Sodhi and Sanders-Bush, 2004).

The differential effects of SSRI depending upon the given
dosage and/or timing is obscure. A study has shown that the
children exposed to SSRIs in late pregnancy (>29 weeks) is
strongly associated with increased risk of anxious or depressed
behaviors (Lupattelli et al., 2018). Whereas another study has
shown that the length of SSRI exposure rather than the timing
crucially contributes to the outcome of the fetal development
(Oberlander et al., 2008). Similarly, another study shows that
extended SSRI exposure in prenatal period increases the risks of
lower scores in psychomotor developmental index and behavioral
rating scale in infancy (Casper et al., 2011).

Given that the polymorphisms of the genes encoding the
serotonin transporters and receptors are strongly associated
with neurodevelopmental disorders such as ASD (Anderson
et al., 2002), both reduced and increased levels of serotonin
signaling are proposed to cause devastating consequence in
brain development. Consistent with this hypothesis, excessive
activation of serotonin signaling disturbed the migration of
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pyramidal neurons in the cortex of the serotonin transporter
(Sert) knockout (KO) mouse, in which serotonin accumulated
extracellular and the activation of serotonin receptors was
extended (Riccio et al., 2011; Table 1). The authors also
demonstrated that excess activation of a subtype of serotonin
receptor 5-HT6 that is expressed in the developing excitatory
neurons disturbed the migration in the Sert KO cerebral cortex.
In line with the hypothesis above, downregulation of 5-HT6
receptor also resulted in mislocalization of pyramidal neurons in
the mouse cortex (Jacobshagen et al., 2014). Given that serotonin
signaling also interacts with BDNF signaling, the migration may
be disrupted by, at least in part, the similar mechanism observed
in the cases of prenatal exposure to cocaine and VPA as described
above (Sodhi and Sanders-Bush, 2004).

METHYLMERCURY

Exposure to a high level of heavy metal, such as methylmercury,
is associated with neuropsychological problems. Methylmercury
ingested by a pregnant woman is absorbed in the gastrointestinal
tract and forms a placenta-crossing complex with L-cysteine
(Broussard et al., 2002). Children exposed to methylmercury in
the prenatal period show deficits in finger tapping speed, reaction
time on a continuous performance task, and cued naming (Debes
et al., 2006). A classic example of neurotoxicity due to prenatal
methylmercury exposure is patients of Minamata disease. The
brain development of these patients is severely compromised,
resulting in ataxia, dysarthria, and tremor (Harada, 1978).

Similar to the cases of fetal exposure to alcohol described
in previous section, mice that were exposed to methylmercury
from postnatal day 6 to 9, the peak of neuronal migration
in the cerebellum, showed a decrease in the frequency of
spontaneous Ca2+ dynamics as well as impaired migration of
cerebellar granular cells (CGCs) (Fahrion et al., 2012; Table 1).
Notably, the migration defects were ameliorated by caffeine
supplementation, which induces Ca2+ release by binding to
ryanodine receptors in the brain and stimulating internal Ca2+

release and Ca2+ influx (Usachev et al., 1993; Fahrion et al.,
2012). Additionally, a proteomic study of mouse embryo exposed
to methylmercury reported a decrease in the phosphorylated
form of cofilin in CGCs (Vendrell et al., 2010). LIM-kinase 1
(LMK-1)-mediated phosphorylation inactivates cofilin, by which
prevents disassembly of actin filaments. Therefore, the change of
phosphorylation ratio of cofilin would disrupt the actin dynamics
in the filopodia of migrating CGCs (Yang et al., 1998; Fujimura
et al., 2009; Fujimura and Usuki, 2012).

Chronic exposure to methylmercury, even at a very low dose
of 0.1 mg/kg/day, affects neuronal migration in the developing rat
cerebral cortex. Methylmercury suppresses protein expressions
of Rac family small GTPase 1 (RAC1), Cell division cycle 42
(CDC42), and Ras homolog gene family, member A (RHOA),
all of which are key players of radial migration in the developing
brain (Govek et al., 2011; Guo et al., 2013; Table 1). Altogether,
similar to alcohol, methylmercury changes the Ca2+ signaling
and the expressions of genes or proteins that are closely linked
to the control of cortical neuronal migration.

Another potential mechanism of methylmercury affecting the
neuronal migration may be the serotonin signaling. Placental
serotonin, which is synthesized from maternal tryptophan
precursor, is required for neuronal migration during the
forebrain development (Bonnin et al., 2011). Methylmercury
not only inhibits cellular proliferation and migration, but also
alters the expressions of oxidative stress-related genes such
as superoxide dismutase 1 (SOD1) in human placenta-derived
trophoblasts (Tucker and Nowak, 2018). The vulnerability
of the trophoblasts to methylmercury suggests the potential
effects on placental development (Hsiao and Patterson, 2012).
Therefore, the maldevelopment of the placenta under exposure
to methylmercury leads not only to the loss of protection for the
fetus but also to disrupted production of the neurotransmitters
required for proper neuronal migration.

GLUCOCORTICOIDS

Glucocorticoids (GCs) are a class of corticosteroids that are
prescribed to pregnant women to promote lung maturation in
fetuses when they are at risk of preterm delivery (Marciniak
et al., 2011). Synthetic GC binds to the endogenous GC
receptors in the fetal lung and promotes the maturation by
increasing a production of the surfactant-associated proteins and
phospholipids, both of which are crucial for stable lung function
(Bolt et al., 2001).

The benefits of GC treatment for fetal lung maturation may
come with a cost as studies show that the excess prenatal
steroid exposure is associated with a wide spectrum of deficits
in brain development, such as loss of hippocampal neurons,
delayed myelination, and increased risk of neurodevelopmental
disability (Velísek, 2005). Structural abnormalities including
reduced cortical thickness in frontal cortex and rostral anterior
cingulate cortex (rACC) were also evident in children who had
been exposed to GC prenatally (Modi et al., 2001; Davis et al.,
2013). Different dosages and timing of GC exposure may have
differential effects on the developing brain. Treatment prior to
mid-gestation may be well tolerated by the fetus without adverse
effects due to the relatively high expression of a GC degrading
enzyme, 11β-hydroxysteroid dehydrogenase (11β-HSD2), in the
placenta and the fetal brain before mid-gestation (Diaz et al.,
1998). In addition, the expressions of GC receptor transcripts
start to arise in the pons, medulla, anterior hypothalamus,
and spinal cord at mid-gestational stage of pregnancy (E12.5).
Then gradually spread to the rest of brain regions such as
neocortex in rats (Diaz et al., 1998) which may increase the fetal
susceptibility to GC.

Animal studies demonstrate that neuronal migration defect
by GC exposure is mediated by alterations in the expression
of key neuronal migration genes. The administration of GC
retarded the radial migration of excitatory neurons in fetal
cerebral cortex. These neurons also showed increase in Cald1
expression. Consistent with this, overexpression of Cald1 led to
impaired neuronal migration in vitro (Fukumoto et al., 2009;
Table 1). Cald1 encodes Caldesmon that negatively regulates the
function of myosin II, an essential protein for the actin dynamics
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in the leading process of neuron. The upregulation of Cald1
inhibits interactions between actin and myosin II in the radially
migrating neurons, thereby disrupting the migration (Sobue and
Fukumoto, 2010; Morita et al., 2012).

Interneurons in offspring of dams that underwent daily
physical stress (restraint stress) exposure starting from E12
until birth show delayed migration without changes in the
survival or proliferation (Table 1; Stevens et al., 2013). The
expressions of transcription factors dlx2 and nkx2.1 in the
fetal brains are significantly decreased as early as 24 h
after the first stress exposure (Stevens et al., 2013). These
transcription factors are important in determining cell fate
and migration of interneuron (Nóbrega-Pereira et al., 2008).
Overall, excess GC affects neuronal migration altering the
expressions of the genes that directly and indirectly modulate the
neuronal migration.

MATERNAL IMMUNE ACTIVATION

Maternal immune activation (MIA) is caused by an infection
during pregnancy, and it is linked to increased risk of ASD and
schizophrenia (Patterson, 2009). Maternal infection to human
influenza virus during pregnancy resulted in ectopic cluster

formation of Purkinje cells (PC) in the white matter of cerebellar
lobules VI and VII in mouse, while the number of PC decreased
in lobule VII (Shi et al., 2009; Table 1). A similar reduction in the
number of PC in lobule VII was observed in mice born to mothers
inoculated with an immunostimulant, poly(I:C) (Shi et al., 2009).
These reports suggest that MIA disrupts the migration of the
PC during cerebellar development. Given a subclass of small
cytokines functions as migrational cues for newly generated
neurons, the excess production of maternal cytokines is likely to
trigger misguidance of neurons in the fetal brain under MIA (Du
et al., 2014). MIA also altered the expressions of genes that are
involved in the regulation of cell proliferation, migration, and
axon guidance in the fetal brain (Oskvig et al., 2012; Lombardo
et al., 2018). However, the contributions of each of such genes to
the neuronal migration remain elusive.

MOLECULAR MECHANISMS SHARED
BY DIFFERENT TYPES OF
ENVIRONMENTAL STRESS

As described in previous sections, different types of prenatal
environmental stress have common effects on the neuronal
migration at the molecular level (Summarized in Figure 2).

FIGURE 2 | Schematic representation of mechanisms underlying neuronal migration defects elicited by exposure to environmental stress. The prenatal
environmental stressors such as cocaine, VPA, SSRI, ethanol, methylmercury similarly, disturb interactions and functions of the molecules that are involved in the
control of neuronal migration.
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An example described above is the BDNF/CXCL12/CXCR4
signaling. Many of the chemicals and stress listed in this
review alter the expressions of genes involved in this pathway.
Interestingly, both excessive and insufficient expressions
and activations of the genes in this signaling disturb the
neuronal migration. Similarly, as described above, both
up- and down-regulation of serotonin signaling disturb
neuronal migration.

How does CXCR4/CXCL12 signaling control the neuronal
migration? The clues may be found in the genetic disorder,
22q11.2 deletion syndrome (22q11.2DS). The mouse model
of 22q11.2DS shows neuronal migration defects due to
decrease of Cxcr4 (Meechan et al., 2012). This phenotype
is rescued by overexpression of the Dgcr8 (Toritsuka et al.,
2013). DGCR8 forms a complex with Drosha to process
primary microRNA (pri-miRNA) and facilitates microRNA
(miRNA) maturation (Gregory et al., 2004; Han et al.,
2004). This finding suggests that the disturbance of the
CXCL12/CXCR4 pathway may change miRNA-mediated
regulation of the transcriptions that control neuronal migration
(Sathyan et al., 2007).

The environmental stress may alter the expressions of
genes in the CXCL12/CXCR4 pathway via a different route.
Heat shock transcription factor 1 – hypoxia inducible
factor-1 alpha (HSF1-HIF1α) pathway is a stress response
signaling that is activated by various types of environmental
stress in fetal brain (Hashimoto-Torii et al., 2014; Ishii
et al., 2017; Torii et al., 2017), while HIF1α also directly
transcribes CXCR4 (Schioppa et al., 2003; Gabai et al., 2012).
Thus the HIF1α may transcribe CXCR4 in response to
environmental stress (Ishikawa et al., 2009). On the other
hand, overexpression of heat shock protein 70 (hsp70) that is
transcriptionally regulated by HSF1 reduces Cxcr4 expression
(Sakurai et al., 2015).

Another common molecular trait shared by different types of
environmental stress is the changes in expressions of genes that
regulate the dynamics of the cytoskeleton. These changes happen
partially through the activation of stress response signaling and
the Ca2+ signaling (Kumada et al., 2006; Fahrion et al., 2012;
Lombardo et al., 2018).

PERSPECTIVES

Although animal models convey the mechanisms responding
to environmental stress, what happens in the large human
brain remains speculative. As rodents and humans do not
share the identical mechanism of neuronal migration during the
development of brain, studying brain development in a model
that closely mimics human brain development is imperative
(Semple et al., 2013). Therefore, the human pluripotent stem cell-
derived three-dimensional organoid culture system, in which the
cortical lamination and thick germinal zone are reproduced, may
be a versatile tool to understand the molecular basis of neuronal
migration defects in the human brain (Mason and Price, 2016;
Wang, 2018). However, current protocols of the brain organoid
system often require culture conditions that increase the levels
of reactive oxidative stress (ROS). Thereby an optimal protocol
that allows testing the effects of environmental stress in organoids
without high ROS level is still needed. An especially intriguing
question to be answered by using the organoid system will be
whether the pathways commonly disrupted during neuronal
migration by different types of environmental stressors are
similarly, or differently regulated in human brain organoid in
comparison to animal models.
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