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Abstract 

Humans' creativity led to machines that outperform 
human capabilities in terms of workload, 
effectiveness, precision, endurance, strength, and 
repetitiveness. It has always been a vision and a 
way to transcend the existence and to give more 
sense to life, which is precious. The common 
denominator of all these creations was that they 
were meant to replace, enhance or go beyond the 
mechanical capabilities of the human body. The 
story takes another bifurcation when Alan Turing 
introduced the concept of a machine that could 
think, in 1950. Artificial intelligence, presented as a 
term in 1956, describes the use of computers to 
imitate intelligence and critical thinking 
comparable to humans. However, the revolution 
began in 1943, when artificial neural networks was 
an attempt to exploit the architecture of the human 
brain to perform tasks that conventional algorithms 
had little success with. Artificial intelligence is 
becoming a research focus and a tool of strategic 
value. The same observations apply in the field of 
healthcare, too. In this manuscript, we try to 
address key questions regarding artificial 
intelligence in medicine, such as what artificial 
intelligence is and how it works, what is its value in 
terms of application in medicine, and what are the 
prospects? 

Special feature     

It has always been an area of challenge for humans 
to create machines to outperform human 
capabilities in terms of workload, effectiveness, 
precision, endurance, strength, and repetitiveness. 
It is a way to transcend the existence and to give 
more sense to life, which is precious. The common 
denominator of all these creations was that they 
were meant to replace, enhance or go beyond the 
mechanical capabilities of the human body. This 
path of evolution is smooth and predictable. This 
story takes a different shift or another bifurcation 
to be more precise when Alan Turing introduced 
the concept of a machine that could achieve 
human-level performance in thinking in 1950 [1]. 

However, the revolution began with the 
computational model for neural networks (NNs) 
with Warren McCulloch and Walter Pitts, and this 
time the evolution is unpredictable [2]. In 
mathematical terms, the network forms a directed, 
weight graph. This point of view was reinforced by 
Norbert Wiener, who introduced the feedback [3]. 
Artificial neural network (ANN) started at first level 
as an attempt to exploit the architecture of the 
human brain to perform tasks that conventional 
algorithms had little success with. Artificial neural 
network architecture is based on nodes arranged in 
layers and connected via their input(s) and 
output(s), in a way attempting to imitate brain 
neurons activity (Figure 1). Artificial intelligence (AI) 
as a term describes the use of computers to imitate 
intelligence and critical thinking comparable to 
humans, and it was first mentioned by John 
McCarthy during a conference held in 1956 [4]. 

How it works: but how it works? Let us take a brain 
neuron; if the incoming synaptic stimuli (inputs) are 
of sufficient intensity, then the neuron will fire 
(output). Figure 2 shows a model of a single 
artificial neuron with three inputs and one output. 
Inputs and outputs are ''0'' or ''1''. In order to keep 
things simple, the following example will not use a 
firing threshold. We want to train the neuron 
according to the following pattern:  

Case: [input a - input b - input c] ➝[output] 

Case A: [0 - 0 - 0]➝[0] 

Case B: [0 - 0 - 1] ➝[1] 

Case C: [1 - 1 - 0] ➝[0] 

Case D: [1 - 0 - 0] ➝[0]  

The first step is to weight each case input by 
multiplying it with a random positive or negative 
number. Then we add all the weighted inputs of 
each case. Next thing, we normalize this sum of 
each case by using a sigmoid function in order to 
get a result between 0 and 1, as an output of the 
neuron for each case. Now we calculate the error 
between the normalized sum and the actual 
training output of each case; we use this error to 
adjust the weights to be used for the next round of 
calculations. Adjusting the weights takes under 
consideration the input, the calculated output, and 
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the magnitude of the error, in a way that the 
adjustment to be proportional to the magnitude of 
the error (sigmoid curve gradient works for this). By 
repeating this cycle thousands of times, the neuron 
finally makes almost no adjustments to the weights 
of the inputs, meaning that it has been trained to 
recognize the pattern. Now one may introduce a 
new set of three inputs, and the already trained 
algorithm will be able to provide an output that 
corresponds to the already recognized pattern. 
Thus, one could summarize that artificial thinking is 
a pattern recognition by weighting, comparing, and 
adjusting many many times before a pattern 
replication output is created. 

A sophisticated AI algorithm needs to be exposed 
to data feeds, which are structured and labelled in 
a way the algorithm can recognize (i.e. numbers, 
pixels, colours). Ng and Dean, Stanford and Google, 
respectively, leaders on computer science, created 
an ANN that learned to recognize higher-level 
concepts, such as human face, human body, or 
animals [5]. Unsupervised pre-training, increased 
computing power from multiple graphics process 
units (GPUs), and distributed computing allowed 
the use of larger (increased number of nodes) and 
deeper (increased number of layers) networks, 
particularly in image and visual recognition tasks, 
which became known as deep learning (DL) [6-8]. 
And now at high-level research, we use deep neural 
networks (DNNs) with tensor processing units 
(TPUs) [9]. Nowadays, the most representative area 
of thinking machines evolution has been the world 
of strategy board games. Board games, such as 
chess, shogi or go, are considered an expression of 
human intellect at the highest level; however, 
DNNs as AlphaGo, AlphaGo Master, AlphaGo Zero 
mastered all those sharp games [10-13]. The 3D 
models of proteins that AlphaFold generates are far 
more accurate than any that have come before 
marking significant progress on one of the core 
challenges in biology [14, 15]. 

Artificial intelligence applications in healthcare: 
machine learning (ML) algorithms based on NNs 
have already been used in the field of healthcare, 
mainly in medical diagnosis and prognosis, disease 

treatment, drug development, gene editing, and 
personalized medicine. 

Disease diagnosis and prognosis: medical imaging 
plays a key role as an input. Plain film X-rays have 
been widely used as inputs in ML algorithms to 
teach them to diagnose lung conditions, such as 
pneumonia, emphysema, and tuberculosis or to 
detect bone age, maturity, and fractures [16-20]. 
Neural networks, fed with chest computed 
tomography (CT) scans from smokers can identify 
and stage chronic obstructive pulmonary disease as 
well as predict mortality [21]. In the field of 
ophthalmology, AI-based algorithms have been 
utilized for fundus screening in diabetic patients, 
age-related macular degeneration, and congenital 
cataract diagnosis [22-27]. Cancer diagnosis is 
another field that ML and NNs have been tested 
and proved to be superior or non-inferior to 
humans, including malignancy detection in 
pathology images, in screening mammography, in 
CT or magnetic resonance imaging (MRI) or 
positron emission tomography (PET) scans, and skin 
clinical images [28-40]. Also, ML algorithms fed 
with endoscopic images and videos reached 
human-like performance in gastrointestinal 
neoplasms detection, such as of oesophagal cancer, 
gastric cancer, and large bowel polyps [41-43]. 
Furthermore, cardiologists are investigating the ML 
NNs algorithms in the diagnosis, severity 
classification, and prognosis of cardiovascular 
diseases, by processing data obtained from 
electronic health records (EHR), 
electrocardiography, echocardiography, coronary 
artery calcium scoring, coronary CT angiography, 
and MRI [44-47]. For example, AI models can 
predict survival outcomes given a specific 
diagnosis, such as pulmonary hypertension by 3D 
cardiac MRI processing [48]. Many studies are also 
existing in the field of neuroscience. Deep neural 
networks (DNNs) can predict the future diagnosis of 
autism in high-risk children by processing brain 
magnetic resonance imaging (MRI), assess the 
progression of dementia by processing a single 
amyloid PET scan, detect intracranial haemorrhage 
on CTs, as well as to diagnose schizophrenia and 
predict the risk of suicide by the processing of 
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functional MRIs (fMRIs) and EHR [49-54]. Finally, 
timely diagnosis of infectious diseases in terms of 
pathogen identification and antibiotic susceptibility 
testing is feasible through ML processing of 
bacterial Raman spectra or bacterial and viral 
mRNA [55,56]. 

Disease treatment: in the field of psychiatry, 
researchers used functional magnetic resonance 
imaging or functional (fMRI) and proton magnetic 

resonance spectroscopy (1H-MRS) as inputs to a 
linguistic AI platform; as a result, they were able to 
manage lithium dosage in bipolar patients [57]. In 
another study, AI virtual interviewer could capture 
more post-traumatic stress symptoms from 
veterans than the human interviewers [58]. 
Moreover, in the field of surgery, as surgical robots 
are already here, artificial intelligence short guide 
ribonucleic acid implementation in operations is 
already happening in experimental and dental 
settings [59,60]. 

Drug development: the development of a new drug 
is a costly and time-consuming process, which 
includes identification of targets for intervention, 
hypothesis for a new compound, and clinical trials 
of level I, II, and III [61]. The recognition of a 
possible target and the hypotheses generation for 
a new compound relies on pattern recognition. 
Chemists are skilled to recognize such patterns, 
relate them to retrosynthetic analysis, and predict 
the properties, absorption, distribution, 
metabolism, excretion, and toxicity (ADMET). Deep 
learning architecture algorithms are up-and-
coming tools in the field of drug development 
because they imitate chemists' pattern recognition 
skills. Moreover, it seems possible to advance the 
whole process to a next level by being able to de 
novo design of drugs, considering all the available 
domain, ligand-based, and associations data during 
the development of a model [62,63]. The most 
successful paradigm of such an effort is the 
discovery of a new type of antibiotic, halicin, that 
has a different structure from known antibiotics 
and a broad-spectrum antibacterial activity 
including resistant strains such as pan-resistant 
Acinetobacter baumannii. The same DL algorithm 

was able to identify eight compounds with 
antibacterial activity and different structure 
comparing with the already known antibiotics [64]. 
Even if the main focus of DL-aided drug innovation 
is on small molecules, some approaches  
utilize DL to design proteins and develop 
antibodies [14,15,65]. 

Biomarkers: the principles, approaches, and tools 
used in drug development are applied to the 
identification of biomarkers, which are molecules 
that when found in body fluids or tissues are 
pathognomonic, i.e. they provide absolute 
certainty for disease diagnosis. Biomarkers are 
useful in imaging, early diagnosis, prognosis, 
disease progression evaluation, risk assessment for 
developing a specific disease, and predicting 
patients' response to a drug. Pembrolizumab for 
malignancies carrying a specific genetic biomarker 
is an example of how AI-aided biomarker 
identification could lead to the development of 
targeted biotherapies [66]. There are more other AI 
biomarker studies like Tasaki et al. regarding drug 
responses for patients with rheumatoid arthritis, or 
like Khera et al. on genome-wide polygenic scores 
as a risk assessment to develop coronary artery 
disease, type 2 diabetes, atrial fibrillation, 
inflammatory bowel disease, or breast 
cancer [67,68]. 

Gene editing: gene editing biotechnology of 
clustered regularly interspaced short palindromic 
repeats (CRISPR) and its associated protein 9 (Cas9) 
uses short ribonucleic acids (RNAs) as guides 
(sgRNA) to target a specific deoxyribonucleic acid 
(DNA) location in order to cut and edit it. These 
guides, however, may fit DNA locations other than 
the desired target resulting in the so-called off-
target effect. Thus, the selection of the sgRNA 
molecules to be used is of significant importance. 
Machine learning algorithms have proved to be 
promising in the identification of such molecules 
caring the lowest possible off-target propensity for 
specific DNA targets [69,70]. 

Personalized medicine: patients´ symptoms, signs, 
and test results have to be evaluated by a physician 
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or a multidisciplinary team of experts before a 
treatment plan is suggested. International Business 
Machines Corporation (IBM) AI platform “Watson” 
was initially made known by winning a television 
quiz show competition. In a study by Wrzeszczynski 
et al., Watson managed, in 10 minutes, to deliver a 
treatment plan for a glioblastoma case comparable 
to the plan that experts made in 160 hours [71]. In 
another study, Watson was able to suggest cancer 
therapeutic options that oncologists had 
overlooked [72]. It seems that if AI systems are 
provided with large enough amount of data, then 
they may outperform human physicians in 
diagnoses or treatment plans. The challenge 
becomes more intense when big data, such as 
omics, microbiome sequencing, EHR, social media, 
and digital images and videos are implemented to 
the patients' care. Big data are heterogeneous and 
continuously adding up. As a result, it is difficult for 
humans to manually analyze them in an effective 
and meaningful manner in t he field of healthcare. 
In contrast, AI has the potential to undertake and 
deliver this task. Interesting approaches are the 
web-based AI platforms or AI smartphone 
applications which answer patients´ questions, 
provide them with advice on whether their 
condition requires medical attention, and monitor 
adherence to medications [73,74]. 

Conclusion     

Artificial intelligence research is expanding, and 
there are increasing AI applications in medicine, 
too. It is a quickly evolving new era given that DL 
algorithms seem to perform better than statistics 
or humans, especially when it comes to big data. 
Artificial intelligence is a valuable tool, firstly and 
most importantly, for people and their healthcare. 
As such, physicians and healthcare systems will 
embrace, adapt, and evolve accordingly. It is 
becoming more and more apparent that AI will 
eventually create the pre- and post- AI era in 
medicine, too. 
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Figure 1: deep neural network architecture 
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Figure 2: single artificial neuron with three inputs and one output 
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