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Glucocorticoids (GCs) are steroid hormones that respond to stress and the circadian
rhythm. Pharmacological GCs are widely used to treat autoimmune and chronic
inflammatory diseases despite their adverse effects on bone after long-term therapy.
GCs regulate bone homeostasis in a cell-type specific manner, affecting osteoblasts,
osteoclasts, and osteocytes. Endogenous physiological and exogenous/excessive GCs
act via nuclear receptors, mainly via the GC receptor (GR). Endogenous GCs have
anabolic effects on bone mass regulation, while excessive or exogenous GCs can cause
detrimental effects on bone. GC-induced osteoporosis (GIO) is a common adverse effect
after GC therapy, which increases the risk of fractures. Exogenous GC treatment impairs
osteoblastogenesis, survival of the osteoblasts/osteocytes and prolongs the longevity of
osteoclasts. Under normal physiological conditions, endogenous GCs are regulated by
the circadian rhythm and circadian genes display oscillatory rhythmicity in bone cells.
However, exogenous GCs treatment disturbs the circadian rhythm. Recent evidence
suggests that the disturbed circadian rhythm by continuous exogenous GCs treatment
can in itself hamper bone integrity. GC signaling is also important for fracture healing and
rheumatoid arthritis, where crosstalk among several cell types including macrophages
and stromal cells is indispensable. This review summarizes the complexity of GC actions
via GR in bone cells at cellular and molecular levels, including the effect on circadian
rhythmicity, and outlines new therapeutic possibilities for the treatment of their
adverse effects.
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INTRODUCTION

Glucocorticoids (GCs) are steroid hormones that respond to stress and the circadian rhythm.
Endogenous GCs are released by the adrenal glands upon activation of the hypothalamic-pituitary-
adrenal (HPA) axis. Excessive or insufficient levels of endogenous GCs, Cushing's syndrome or
Addison's disease, respectively, result in low bone mass and increased fracture risk (1–5). Due to
their anti-inflammatory potential, exogenous GCs like dexamethasone, prednisolone, and many
others are synthesized for pharmacological applications. Since the late 1940s they are widely used to
treat autoimmune and chronic inflammatory diseases, recently they have been also utilized for
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Covid-19 treatment (6–8). However, long-term GC therapy can
cause severe adverse effects in bone such as osteoporosis, and 30-
50% of those patients experience fractures (9, 10).

Once GCs enter their target cell, they become activated by the
11b-hydroxysteroid dehydrogenase type 1 (11b-HSD1) or
deactivated by 11b-HSD2 (11, 12). After that initial step,
the activated GCs bind to the glucocorticoid receptor (GR), a
member of the nuclear receptor superfamily. GR is ubiquitously
expressed and acts as a monomer, homodimer or even a tetramer
(7, 13). The ligand-bound GR translocates into the nucleus and
induces transactivation or transrepression of target genes in
several ways (7): 1) direct binding of GR homodimers or
oligomers to DNA associated GC-response elements (GRE), 2)
direct binding of GR monomers to GRE, 3) tethering as a GR
monomer to other DNA-bound inflammatory transcription
factors such as NF-kB, AP-1, IRF-3 or Stat3.

Despite this common mechanism of GCs via GR, endogenous
and exogenous GCs act distinctively in bone and are dependent
on pathophysiological environments. Thus, it is necessary to
understand the role of GCs in bone cells and their mechanism of
action in several bone diseases. This review summarizes the
status of current studies on cellular and molecular, endogenous
and exogenous GC actions via the GR in bone cells. Additionally,
it describes the effect of circadian rhythmicity in GC actions, and
outlines new therapeutic possibilities for the treatment of their
adverse effects.
ENDOGENOUS GC ACTION IN BONE
HOMEOSTASIS

Endogenous GCs directly regulate bone homeostasis via the GR
in a cell-type specific manner.

Several animal models have proved that GC signaling in
osteoblast-lineage cells is critical to maintain bone mass. The
effect of inactivated GC signaling in mature osteoblasts and
osteocytes was investigated by overexpression of 11b-HSD2,
the responsible enzyme for GC inactivation. A 2.3 kb or 3.6 kb
fragment of Col1a1 promoter-driven overexpression of 11b-
HSD2 (Col2.3-HSD2 or Col3.6-HSD2) reduced cortical and
trabecular bone mass in mice, which suggests the importance
of GC signaling in osteoblast-lineage cells to regulate bone mass
(14–16). Interestingly, another mouse model blocking GC action
in osteoblast-lineage cells by osteocalcin promoter-driven
overexpression of 11b-HSD2 (OG2-11b-HSD2) did not show
any alteration in the bone under normal physiological conditions
(17). These discrepancies among different mouse models could
be explained by determining the specific stages of osteoblast-
lineage cells or investigating cell-type specific conditional knock-
out mouse models. Notably, GR deficiency in mice using cre
overexpression under the control of early committed osteoblast
progenitor markers (Runx2 or Osx1) resulted in decreased bone
mass (18, 19). Taken together, endogenous GC signaling in
osteoblast-lineage cells is essential in bone mass regulation.
However, osteocyte-specific endogenous GC action
remains inexplicit.
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Osteoclasts, another key cell type for bone mass regulation, are
not affected by endogenous GC signaling. Osteoclastogenesis and
bone formation were normal in mice with the GR deleted in
osteoclast progenitor cells (GRLysMCre) (18). Osteoclast-specific
overexpression of 11b-HSD2 using the tartrate-resistant acid
phosphatase (TRAP) promoter (TRAP-HSD2) did not alter bone
mass in mice (20). Collectively, endogenous GC signaling does not
affect osteoclastogenesis under normal physiological conditions.

However, GCs have a profound effect on bone loss that is
induced by a model of microgravity- the hindlimb unloading
(HU), a model that was developed for simulating the
environment of astronauts during space voyages. In this HU
model, rodents showed an elevated endogenous corticosterone
level (21), which led to a decreased bone mass due to decreased
osteoblastogenesis, and increased apoptosis of osteoblasts and
osteocytes (22). However, blocking of GC signaling in mature
osteoblasts and osteocytes using Col2.3-HSD2 transgenic mice
did not alter cortical bone mass in the HU model (22).
Osteoclastogenesis and bone resorption were enhanced during
HU due to enhanced receptor activator of nuclear factor-kB
ligand (RANKL) production in osteocytes (22). This outlines the
importance of endogenous GC signaling in mature osteoblasts
and osteocytes, in response to mechanical loading.
EXCESSIVE EXOGENOUS GC ACTION
IN BONE AND GC-INDUCED
OSTEOPOROSIS

Long-term GC therapy is the most common cause of secondary
osteoporosis, which leads to an increased risk of fractures (23, 24). In
patients, exogenousGCswithdoseshigher than2.5mg formore than
3 months are shown to weaken bone quality (25). There is also clear
evidence that exogenous GCs inhibit osteogenesis (6, 10).
Bone marrow stromal cells (BMSCs) isolated from patients
with corticosteroid-induced osteonecrosis showed impaired
osteogenesis (26). Similarly, BMSCs isolated from a rat GIO model
displayed decreased proliferation and osteogenic differentiation
(27). Application of exogenous GCs in vivo suppressed
proliferation and differentiation of osteoblasts and induced
apoptosis of osteoblasts and osteocytes, resulting in a low bone
mass (17, 18). This side effect could partially be rescued by
leukemia inhibitory factor (LIF) treatment that activated Stat3,
Mapk/Erk, and Akt signaling in GC-treated cells (28). Despite
long-term exposure to high dose GCs, osteoblast lineage-specific
GR deficient mice (GRRunx2cre) displayed normal bone formation
and unaltered osteoblast and osteocyte numbers (18). This is
corroborated by studies with GC inactivation in mature osteoblasts
and osteocytes, using mice overexpressed 11b-HSD2 under the
osteocalcin gene 2 (OG2) promoter (OG2-11b-HSD2). In these
mice, GC-mediated increased apoptosis of osteoblasts and
osteocytes is abrogated as well (17). These studies show that
exogenous GC treatment leading to GC excess impairs
osteoblastogenesis, the survival of osteoblasts, and osteocytes.

GCs affect the cross-talk among bone cells. Exposure to high
doses of GCs results in an increased amount of RANKL secreted by
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osteoblasts and osteocytes. In turn, this increases the RANKL to
osteoprotegerin (OPG) ratio and enhances bone resorption by
osteoclasts (29–31).

Excessive GCs can also directly affect osteoclastogenesis (20, 32).
During the initial phase of the therapy, GCs increase bone
resorption by promoting osteoclast proliferation, osteoclast
differentiation, and prolonging their life span (20, 33–35).
However, the effect of long-term GC exposure on osteoclasts is
still not entirely resolved. A few studies reported that long-term GC
excess rather reduces osteoclast activity due to disrupted
cytoskeleton of the osteoclasts (35, 36). However, several other
studies addressed osteoclast apoptosis after long-term GC exposure
(32, 34, 35, 37). Some studies showed that GCs reduce osteoclast
apoptosis (34, 35), while others reported that GCs do not affect
osteoclast apoptosis at all (32, 37). Collectively, pharmacological
GCs affect osteoclastogenesis and bone resorption either directly, or
via increased RANKL secretion from osteoblasts/osteocytes.
GCs IN SKELETAL STEM CELLS

Skeletal stem cells are essential for bone development, growth,
and maintenance (38). During the last decade, skeletal stem cell
markers have been identified in humans and rodents (38–41). To
date, however, the role of GCs in these cells has not yet been
extensively explored. Earlier, a study demonstrated that GR
deletion in mesenchymal tissues using Dermo1-Cre induces
postnatal lethality due to defects in the lung and intestines
(42). GR silencing on human BMSCs showed an inhibited
osteogenic differentiation in vitro (43). These studies imply
that GC signaling via the GR plays a key role in mesenchymal
stem cells (MSCs) differentiation towards osteoblasts.

It is also known that GIO is clinically described by decreased
bone mass along with increased marrow adiposity (24), indicating
that GR regulates the balance between osteoblastogenesis and
adipogenesis of MSCs (44). High GC doses (1 µM
Dexamethasone) increased adipogenesis of human BMSCs
regulated by c-Jun signaling (43). Other studies suggested that
GCs induce adipogenic regulators. Adipogenesis was promoted in
cortisol (1 µM) treated mouse bone marrow-derived stromal cell
line ST-2, by increasing expression of Peroxisome proliferator-
activated receptor-gamma2 (PPAR-g2) and CCAAT/enhancer-
binding protein (C/EBP) transcription factors that are the
adipocyte master regulator (45). Similarly, C/EBPalpha
expression was increased in bone of dexamethasone-treated
mice (50 mg/kg daily for 5 weeks) as well as in primary BMSCs
isolated from those mice (46). Dexamethasone treatment in rat
BMSCs also increased PPAR-g expression in a dose-dependent
manner, whereas a PPAR-g knockdown promoted osteogenesis
(47). This GC-induced PPAR-g expression increases Secreted
frizzled-related protein 5 (SFRP5) expression which inhibits the
Wnt/b-catenin pathway and thus suppresses osteogenesis (47).

Taken together, endogenous GCs promote osteoblastogenesis
of MSCs, whereas exogenous or excessive GCs regulate the
balance between osteoblastogenesis and adipogenesis of MSCs.
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Further studies are necessary to investigate the role of GCs in the
fate decision of skeletal stem cells in vivo.
CIRCADIAN RHYTHMICITY AND GCs

Endogenous GCs are released under the control of circadian
rhythms, that are modulated by the central circadian clock in the
suprachiasmatic nucleus (SCN) of the hypothalamus (48). The
daily rhythmicity of plasma GC levels modulates physiological
processes in many peripheral tissues including bone (48, 49).

Indeed, diurnal rhythm appears in some bone metabolic
markers such as the bone resorption marker C-terminal cross-
linked telopeptide of type I collagen (CTX), osteocyte function
marker fibroblast growth factor 23 (FGF23), and turnover
marker serum osteocalcin (50–53). Other bone markers such
as sclerostin, procollagen type 1 N-terminal propeptide (P1NP),
OPG, or soluble RANKL serum levels did not display
rhythmicity (50, 52). However, the 24-hour serum profiles of
men displayed that bone formation marker P1NP was
significantly reduced after a long-term (3 weeks) disruption of
the circadian rhythm despite no alteration of CTX level (54). In
mice, disrupted circadian rhythm by weekly alternating light-
dark cycles (10 or 15 weeks) led to a reduced level of both P1NP
and CTX, implicating a decreased bone turnover due to
disrupted circadian rhythm (55). This is likely due to the
altered expression level of circadian locomotor output cycles
kaput (Clock) genes that regulate the circadian rhythm in bone
cells (55). Unexpectedly, unlike with the P1NP level, osteoblast
surface increased in these mice (55). Together with decreased
osteoclast surface, trabecular bone mass was increased in these
mice despite altered Clock gene expression in the bone due to
disrupted circadian rhythm (55). Nevertheless, this study
indicated the importance of circadian rhythm in bone health.
Investigations considering different ages and duration of
circadian rhythm disruption would provide further insights
into the effects of circadian rhythm in bone.

Furthermore, genetic deletion of Clock genes in mice leads to
altered bone phenotypes (56–61). Under normal physiological
conditions, brain and muscle aryl hydrocarbon receptor nuclear
translocator-like protein 1 (Bmal1) and period 1 (Per1) genes are
expressed with oscillatory rhythmicity in bone (58, 61). Bmal1
knock-out mice and mice with Bmal1 deletion in Osx+ osteoblast
precursors and their progeny showed a decreased bone mass
with increased bone resorption, suggesting that Bmal1 regulates
bone homeostasis by controlling osteoblast-mediated bone
resorption (58). An osteoclast-specific Bmal1 knock-out mouse
showed an increased bone mass due to reduced osteoclast
differentiation, indicating Bmal1 also regulates osteoclast-
mediated bone resorption (57). The Clock gene that forms
heterodimers with Bmal1 or Bmal2 regulates bone formation
via protein disulfide isomerase family A member 3 (Pdia3),
shown by reduced bone formation and increased apoptosis of
osteoblasts in Clock knock-out mice (56). On the other hand,
physical stress-induced GC signaling induces only the Per1 gene
in mouse liver, heart, lung, and stomach by binding the GR to the
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GRE in the Per1 promoter (62). However, it is not yet known if
the GR directly binds to Bmal1, Clock, and Per1 promoters to
modulate their actions in bone cells.

Conversely, a single injection of synthetic corticosteroids can
reset the circadian time in the periphery such as the liver, kidney,
and heart by modulating circadian gene expression (63–65).
Short-term dexamethasone treatment (2 hours) synchronizes
circadian gene expression in osteoblast and osteoclasts in vitro
(66, 67). Upon GC treatment, this circadian rhythm was also
observed in cultured osteoblasts of Per1::luciferase transgenic
mice (58). A single injection of dexamethasone could restore the
circadian rhythm of osteoclast-related genes such as cathepsin K
(Ctsk) in adrenalectomized mice (66). Per2 knock-out mice could
not restore the GC-induced bone loss despite a bisphosphonate
(Zoledronic acid) treatment, although Per2 knock-out
osteoblasts showed an increased proliferation capacity (68).

However, constant GC exposure by inserting slow-release
corticosterone pellets led to a shutdown of the endogenous HPA
axis due to negative feedback, and thus to a flattening of GC-
mediated circadian rhythm mediated gene expression (69). This
resulted in bone loss not only by the excessive effects of GCs but also
due to disrupted circadian gene expression, increased circulating
bone resorption marker, and decreased bone formation (69).

Taken together, daily endogenous GC rhythm is important
for bone homeostasis. A single treatment with exogenous GCs
can regulate circadian gene expression, whereas disrupted
circadian rhythm by continuous GC exposure contributes in
addition to direct GC effects on osteoporosis.
INFLUENCE OF GCs ON BONE
FRACTURE HEALING

It is well known that patients undergoing long-term GC
medication are at a significantly increased risk for bone
fractures (23, 70). Even though steroid use has not been found
to be a major risk factor for non-union fracture healing in clinical
studies (71), preclinical studies indicate that GCs also influence
the complex fracture healing process (6, 72). This applies not
only to GC therapy but also to endogenous GCs which control
many physiological processes and, as stress hormones, are
released upon a bone fracture. It can be anticipated that
endogenous as well and exogenous or excessive GCs influence
all stages of bone fracture healing, which necessitates a finely
tuned interaction between multiple cell types, including immune,
bone, and stromal cells which are all crucially regulated by GCs
(6, 72). A fracture leads to the disruption of bone, blood vessels,
soft tissues, and the release of danger-associated molecular
patterns (DAMPS). These quickly trigger an innate immune
response to contain the damage, and clear the wound site from
tissue debris and pathogens (73–75). The initial response
involves the activation of the complement system, the release
of inflammatory chemokines and cytokines from local immune,
endothelial and mesenchymal cells, as well as the recruitment
and activation of further immune cells, mainly neutrophils,
monocytes, and macrophages. Later, lymphocytes are also
Frontiers in Endocrinology | www.frontiersin.org 4
recruited to the fracture site and initiate an adaptive immune
response. The inflammatory phase is regarded to promote the
recruitment, proliferation, and differentiation of mesenchymal
and endothelial precursor cells, which are essential for
subsequent healing processes. This process comprises of the
formation of a soft callus with fibrous and cartilaginous tissue,
which is then continuously transformed into the bone by
endochondral ossification. Finally, the hard callus is remodeled
until the original bone structure is restored (73–75).

So far, only a few studies have addressed the role of endogenous
GCs during fracture healing by using mouse models with impaired
GC signaling (76–79). Fracture healing was significantly impaired
when the endogenous GC action was globally eliminated by using
mice with an inducible GR knock-out (GRgtROSACreERT2) (78). In
these mice, the early systemic and local immune responses upon
fracture were significantly increased. During callus formation,
cartilage-to-bone transformation was disturbed, confirmed by
persisting cartilage and reduced bony bridging of the fragments
in GRgtROSACreERT2 mice. This study suggests a crucial role of
endogenous GCs in all stages of fracture healing. Several studies
showed the role of GC signaling in distinct cell types during bone
regeneration. When GC signaling was disrupted in osteoblasts
using Col2.3-11ß-HSD2 mice (76), intramembranous bone
formation was not affected, whereas GR deletion in
chondroblasts using GRCol2CreERT2 mice resulted in impaired
endochondral bone healing, by increasing the cartilaginous
fraction of the fracture callus (77). To investigate whether GR
dimerization (which is regarded to be essential for the anti-
inflammatory effects of GCs) is important for fracture healing,
Hachemi et al used mice with a defective GR dimerization ability
(GRdim) (79). Impaired GR dimerization had no significant effect
on the healing process in a model of isolated femur fracture (79).
However, in a model of compromised fracture healing, induced by
hyperinflammation in a combined model of fracture and thoracic
trauma, impaired GR dimerization in GRdim mice reduced
inflammation and abolished the deleterious effects of
posttraumatic hyperinflammation on fracture healing (79). In
summary, these studies demonstrate that endogenous GCs
promote fracture healing by controlling the immune response
and by stimulating cartilage-to-bone transition.

In contrast to endogenous GCs, exogenously applied GCs can
provoke negative effects on the fracture healing process as
demonstrated in pre-clinical investigations in different species,
including rabbits (80, 81), rats (82), and mice (83, 84).
Consistently, these studies report impaired cartilage-to-bone
transformation, reduced quality and structure of the newly
formed bone, and poor biomechanical properties of the fracture
callus. However, these studies are mostly descriptive and the
molecular and cellular reasons for the delayed bone healing
under long-term GC therapy are still not fully understood.
GCs ACTION IN RHEUMATOID ARTHRITIS

Although GCs are used to ameliorate the symptoms of rheumatoid
arthritis (RA) since the 1950s, there are still surprises concerning the
January 2022 | Volume 12 | Article 815386
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mode of action of GCs, their activating enzymes 11b-HSD1 and the
GR requirement in distinct cell types. In RA and osteoarthritis, GCs
are still in frequent use, in combination with other treatment
regimens (85). Preclinical animal models for the GC modulating
enzyme 11b-HSD1/2 and the GR in distinct cell types revealed
distinct requirements of GC function in different cells depending
on the model. First of all, the attenuation of complete GR
dimerization by a knock-in of a point mutation into the second
zincfingerdemonstrates that an intact functionof theGRallowsgene
regulation beyond the suppression of cytokines in different RA
models (86, 87). Accordingly, global inhibition of the GC activating
11b-HSD1 abrogated the therapeutic response towards
corticosterone by reduction of inflammatory symptoms inmice (88).

However, the definition of critical cell types for mediating GC
action present in RA varied in distinct animal models. In antigen-
induced arthritis, GR in T cells (presumably in Th17 cells) was
critical to confer anti-inflammatory effects, since mice lacking the
GR in T cells were completely resistant to the dexamethasone-
mediated reduction of joint swelling (86). In serum transfer-
induced arthritis, however, there was the surprising discovery
that global GR deletion in hematopoietic cells by hematopoietic
stem cell transfer into irradiated wild-type mice did not abrogate
the therapeutic effects of dexamethasone (87). Vice versa GR
global knock-out mice and mice with attenuated GR
dimerization failed to respond to dexamethasone, even when
their hematopoietic system was reconstituted by GR wild-type
cells (87). These mice could not induce anti-inflammatory
macrophages in the joint which are critical to resolve
inflammation in RA (87). Elimination of the GR in fibroblasts
(Col1a2CreERT2) attenuated the therapeutic response, strongly
suggesting that GCs affect the fibroblast like-synovial cell (FLS) –
macrophage crosstalk via the GR (87). Intriguingly, Hardy and
colleagues showed that GC production in myeloid cells might be
necessary for re-activating GC function (88). Thus, cellular cross-
talk targeted by systemic and locally produced GCs seems to
underly the therapeutic actions of GCs, which need to be further
elucidated. Given that FLS exists in pro-inflammatory and anti-
inflammatory subsets (89, 90) and interstitial/lining macrophages
are existing with different fates in arthritis (91), this raises the
complexity and fine-tuning of GR cross-talk.
CONCLUSIONS AND PERSPECTIVES

GCs are frequently used drugs in clinics despite their detrimental
effects on bone after long-term use. They act in cell-type specific
manner, and via cellular crosstalk mechanisms, which are still
partially unknown. Currently, some drugs are applied to treat GIO
by either inhibiting osteoclast activity (Bisphosphonates and
Denosumab) or stimulating osteoblast activity (Teriparatide)
(92). However, the utilization of drugs to treat unwanted effects
caused by other drugs is not ideal for patients. Thus, it is of utmost
importance to develop new therapies with a cell-type specific
delivery of GCs, and/or targeting downstream molecules to avoid
or minimize the detrimental effects. Further understanding of the
controversial effects of endogenous and exogenous/excessive GCs
Frontiers in Endocrinology | www.frontiersin.org 5
on the bone that are both anabolic and catabolic will help to
develop therapeutic concepts (Figures 1A, B). Daily GC rhythm
should be considered during GC therapy. Chronotherapy when
administering GCs could help to increase therapeutic efficacy, and
reduce detrimental effects, although further investigations are
required considering that the drug half-life and bioavailability
can be inflexible (93). In addition, preclinical models considering
factors such as physical stress, aging, and diseases can be
introduced to investigate diverse clinical settings. Advanced
technologies such as single-cell RNA sequencing and lineage-
A

B

FIGURE 1 | Paradoxical effects of GCs in bone. (A) Endogenous GCs
regulated by circadian rhythm (and expressing daily GC rhythm accordingly)
have anabolic effects on osteoblastogenesis (black arrows). When
endogenous GC level is increased upon stress (e.g. mechanical unloading),
however, bone mass is decreased due to inhibited osteoblastogenesis,
increased apoptosis of osteoblasts and osteocytes, and enhanced
osteoclastogenesis due to the increased RANKL secreted by apoptotic
osteocytes (red arrows). (B) Long-term exogenous GC therapy inhibits
osteoblastogenesis and survival of osteoblasts (red arrows). Increased
RANKL secretion by osteoblasts and osteocytes let enhance bone resorption
by osteoclasts (red arrows). Direct action of exogenous GCs on osteoclasts
has showed with increased osteoclastogenesis, increased proliferation and
longevity of osteoclasts during the initial phase of GC therapy (dotted red
arrow). However, direct effects of long-term GC therapy on osteoclasts still
remain elusive. Exogenous GCs also regulate the balance between
osteoblastogenesis and adipogenesis of MSCs that is one of feature of GIO
(black arrows). On the other hand, continuous exogenous GC therapy can
flatten the endogenous GCs rhythm (blue arrow), resulting in disrupted
circadian gene expression and levels of circulating bone turnover markers.
Together, Long-term GC therapy leads to bone loss by its direct action on
bone cells, and/or via disrupting GC rhythm. GC, Glucocorticoid; RANKL,
Receptor activator of nuclear factor-kB ligand; MSC, Mesenchymal stem cell;
GIO, GC-induced osteoporosis. This illustration was created with
BioRender.com.
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tracing animal models will allow us to map the alteration of
specific cell types present in bone in response to GCs. It will be also
helpful to determine dynamic spatial profile and crosstalk among
bone cells in clinically relevant models such as fracture healing and
RA. Further studies are needed to understand how GC rhythm
affects such disease models. These actions in combination will
ultimately broaden our scope to approach innovative therapies.
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