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Abstract: Ineffective esophageal motility (IEM) is characterized by low to very low amplitude 

propulsive contractions in the distal esophagus, hence primarily affecting the smooth muscle part 

of the esophagus. IEM is often found in patients with dysphagia or heartburn and is commonly 

associated with gastroesophageal reflux disease. IEM is assumed to be associated with ineffective 

bolus transport; however, this can be verified using impedance measurements or evaluation of a 

barium coated marshmallow swallow. Furthermore, water swallows may not assess accurately 

the motor capabilities of the esophagus, since contraction amplitude is strongly determined by 

the size and consistency of the bolus.The “peristaltic reserve” of the esophagus can be evaluated 

by multiple rapid swallows that, after a period of diglutative inhibition, normally give a powerful 

peristaltic contraction suggestive of the integrity of neural orchestration and smooth muscle action. 

The amplitude of contraction is determined by a balance between intrinsic excitatory cholinergic, 

inhibitory nitrergic, as well as postinhibition rebound excitatory output to the musculature. This 

is strongly influenced by vagal efferent motor neurons and this in turn is influenced by vagal 

afferent neurons that send bolus information to the solitary nucleus where programmed activation 

of the vagal motor neurons to the smooth muscle esophagus is initiated. Solitary nucleus activity 

is influenced by sensory activity from a large number of organs and various areas of the brain, 

including the hypothalamus and the cerebral cortex. This allows interaction between swallow-

ing activities and respiratory and cardiac activities and allows the influence of acute and chronic 

emotional states on swallowing behavior. Interstitial cells of Cajal are part of the sensory units of 

vagal afferents, the intramuscular arrays, and they provide pacemaker activity to the musculature 

that can generate peristalsis in the absence of innervation. This indicates that a low-amplitude 

esophageal contraction, observed as IEM, can be caused by a multitude of factors, and therefore 

many pathways can be potentially explored to restore normal esophageal peristalsis.

Keywords: swallowing, achalasia, parasympathetic innervation, solitary nucleus, nucleus tractus 

solitarius, high-resolution manometry, interstitial cells of Cajal, gastroesophageal reflux disease

Introduction
Definition
Ineffective esophageal motility (IEM) is characterized by a distal esophageal contrac-

tion amplitude of <30 mmHg on conventional manometry,1 a distal contractile integral 

(DCI) of <450 mmHg/s/cm on high-resolution manometry (HRM) (weak contraction), 

or <100 mmHg/s/cm (failed contraction) in 50% or more test swallows,2 hence affecting 

the smooth muscle esophagus. IEM is the most common abnormality observed in routine 

esophageal manometry, with an estimated prevalence of 20%–30%;3  Scheerens et al4 

reported a prevalence of 51% in patients with esophageal dysphagia. Before 2008,  

Correspondence: Ji-Hong Chen 
Department of Gastroenterology, Health 
Sciences Centre, McMaster University, 
3V48, 1280 Main Street West, Hamilton, 
ON L8S 4K1, Canada
Email jihong.chen@medportal.ca

Journal name: Clinical and Experimental Gastroenterology
Article Designation: REVIEW
Year: 2016
Volume: 9
Running head verso: Chen
Running head recto: IEM and the vagus
DOI: http://dx.doi.org/10.2147/CEG.S111820

http://www.dovepress.com/permissions.php
www.dovepress.com
www.dovepress.com
www.dovepress.com


Clinical and Experimental Gastroenterology 2016:9submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

292

Chen

swallowing test with a marshmallow can also be used to clarify 

a potential relationship between impaired bolus transit and 

symptoms associated with dysphasia. Ineffective bolus transit 

cannot be determined by manometry alone.

High-resolution manometry
HRM shows that esophageal peristalsis is not a seamless 

wave of propagation but a coordinated sequence of contrac-

tions involving distinct segments with morphological and 

functional differences.9 A normal swallow-induced peri-

stalsis includes the coordination of the following: the upper 

esophageal sphincter and its surrounding muscle activities, 

sequential contractions of the esophageal body, and the LES 

and crural diaphragm activities. HRM shows whether or 

not the propulsive contraction reaches the LES, which may 

affect bolus transit. HRM can also identify high intrabolus 

pressure, which may impair peristalsis. HRM according to 

the Chicago classification v 3.0 identifies weak and failed 

peristalsis as described earlier and considers both ineffective. 

IEM in conjunction with transient lower esophageal sphincter 

relaxation (TLESR), with or without esophageal shortening, 

hiatal hernia, hypotensive upper esophageal sphincter or hypo-

tensive LES, may suggest different underlying pathophysiolo-

gies. The nature of the contraction following multiple rapid 

swallows (MRS) will help to confirm the peristaltic reserve. 

Responses to solid food may reproduce typical symptoms. 

Testing responses to prokinetics may provide evidence for 

clinical management. Although all these parameters charac-

terize esophageal peristalsis, they may not necessarily predict 

GERD.10 If antireflux surgical intervention is contemplated, 

it was suggested that the higher the DCI ratio, the lower the 

likelihood of postsurgery dysphagia.2 Antireflux surgery may 

alleviate IEM or IEM may appear after surgery.11

Water versus viscous swallows and 
bolus size
Decisions about ineffective motility have to take into account 

that contraction amplitudes required to empty a bolus vary 

with the consistency of the bolus.8 It has been reported that 

14.3% of patients with abnormal transit of liquids showed 

normal transit of a viscous bolus.8 Hence, a challenge with 

only liquid swallows may not be enough to identify clinically 

relevant IEM. Secondary peristalsis is more often disturbed 

compared with primary peristalsis.12 With spontaneous sec-

ondary peristalsis, the contraction amplitude might depend 

to a large extent on the bolus size; measurement of force of 

contraction in response to balloon distention can  accurately 

measure sensory dysfunction.12

a threshold of 30% was used, but a threshold of 50% correlates 

better with dysphagia and heartburn.1,4,5 IEM is manifested as 

a primary motor dysfunction in 50% of patients with gastro-

esophageal reflux disease (GERD),6 and is very common in 

patients with both GERD and respiratory symptoms.5 Gross 

pathologic injury is not necessary for motor dysfunction.6

Other conditions in which IEM is encountered are Bar-

rett’s esophagus, diabetes with neuropathy, amyloidosis, 

acute ethanol ingestion, chronic alcoholism with neuropa-

thy, adenocarcinoma, eosinophilic esophagitis, endoscopic 

submucosal dissection, odynophagia, regurgitation, chronic 

cough, chest pain, and rheumatic disease.1,5

This review focuses on the mechanisms behind the 

potential “ineffectiveness” in IEM, with a focus on the con-

tributions of the vagus and interstitial cells of Cajal (ICC).

What is needed to confirm the 
“ineffective” in IEM?
Bolus transit
The first indication of IEM comes from manometry when the 

amplitude of the propagating contraction is low as indicated 

earlier. However, this motor pattern, although classified as 

“ineffective”, does not necessarily indicate that a bolus does 

not get moved through the esophagus.

Nguyen et al7 showed that the proportion of liquid boluses 

cleared was directly related to contraction amplitude and did 

not increase significantly above a threshold of 22 mmHg in 

the midesophagus and 30 mmHg in the distal esophagus. The 

relationship between contraction amplitude and bolus clear-

ance appeared to be confirmed by a study in patients with 

severe IEM, which showed that oral bethanechol improves 

contraction pressures and bolus transit in the smooth muscle 

part of the esophagus.8 This suggests that in IEM, the amount 

of acetylcholine that is released from the cholinergic nerves 

may not be enough to give full amplitude contractions, but 

if it is helped by a sustained dose of the muscarinic agonist 

bethanechol, effective contraction amplitudes can be restored 

and bolus transit improved. However, in a study of 70 patients 

with classical manometry profiles of IEM, 48% of  ineffective 

liquid and 38% of ineffective viscous swallows showed com-

plete bolus transit based on impedance measurements,8 whereas 

95% of manometric normal swallows of patients with normal 

esophageal manometry or isolated lower esophageal sphincter 

(LES) abnormalities (ie, hypertensive, hypotensive, and poorly 

relaxing LES) had normal bolus transit for liquid. Addition of 

impedance monitoring to manometry may allow discrimina-

tion between patients suffering from impaired bolus clearance 

and patients with disordered esophageal perception.3 A barium 
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Incorporation of a meal in standard 
manometry
Sweis et al13 proposed the inclusion of a standard meal in 

motility testing. They found that spontaneous reporting of 

symptoms did not occur during water swallows but 67% of 

patients reported symptoms during a meal and 75% of these 

symptoms were related to an observed motor dysfunction. 

Often, a motor dysfunction was associated with reflux or 

regurgitation following a meal. Importantly, bolus retention 

was most often associated with four or five ineffective swal-

lows in sequence rather than a single “ineffective” motor 

pattern.13 HRM during a meal can also identify behavioral 

abnormalities such as rumination.13

Multiple rapid swallows
Performing a MRS test to assess the “peristaltic reserve” 

has been advocated as an adjunct to standard high- or low-

resolution manometry.14 MRS consists of administering five 

2 mL water swallows separated by 2- to 3-second intervals; 

MRS profoundly inhibits the esophageal body and LES, 

not allowing significant peristaltic propagation but is nor-

mally followed by an esophageal contraction of increased 

amplitude. With HRM, the contraction that followed MRS 

is compared with the average DCI2 of the prior ten test swal-

lows giving a DCI ratio. A DCI ratio of >1 is present in 78% 

of healthy individuals. Whether assessing the DCI ratio is 

useful was questioned recently and it was advocated that one 

should simply use low- or high-amplitude contractions with 

<450 mmHg/s/cm as a benchmark for ineffective motility.15 

It is likely that manometry with additional MRS can better 

assess a clinically relevant motor dysfunction, better predict 

ineffective bolus transit, and can better predict success of 

treatments.15 A strong performance with MRS in patients 

with IEM suggests “peristaltic reserve” and may predict 

success of prokinetic treatment. A poor contraction with 

MRS in patients with dysphagia showing normal swallow-

induced peristalsis suggests some diminished mechanism of 

cholinergic excitation.14 Almost 70% of 109 patients with 

esophageal symptoms and normal manometry had abnor-

mal MRS, mainly consisting of an inability to increase the 

amplitude of distal esophageal body contractions after MRS. 

A total of 38% of 48 patients with IEM were able to generate 

normal contractions after MRS.14

The role of LES relaxation in IEM
Weak peristalsis is accompanied by low-amplitude contrac-

tions and most often also by short-duration LES relaxation; 

the duration of LES relaxation appears to play a role in 

disordered bolus transit and clearance in dysphagia patients 

with normal esophageal manometry and with IEM.3 Mean 

duration of LES relaxation for viscous swallows with normal 

bolus transit was longer than that of swallows with abnormal 

bolus transit probably related to the fact that the duration of 

LES relaxation is modified by the timing of the postrelaxation 

LES contraction.3 The role of LES relaxation is probably of 

less importance for bolus transit compared with esophageal 

peristalsis.8

Vagal control of esophageal 
peristalsis
The amplitude of swallow- and bolus-induced peristaltic 

contractions is determined by the balance of inhibitory and 

excitatory neural activities coming from the autonomic and 

intrinsic nervous systems (Figure 1).16

At rest, the esophagus is quiet and a stimulus is required 

to generate motility. A bolus in the oropharyngeal region 

activates the swallowing center in the brain that initiates 

sequential vagally mediated contractions in the striated 

and the smooth muscle esophagus (Figure 2). A swal-

lowed bolus triggers many sensory factors giving vagal 

input to the  solitary nucleus that evokes peristalsis via 

vagal dorsal motor neurons to the smooth muscle part. 

The nucleus ambiguous houses the pattern generator for 

the striated esophagus. The bolus to be swallowed has 

to have minimal features; otherwise, the sensory coding 

produces an uncertain evaluation by the solitary nucleus 

and an inefficient swallow may result.17,18 An occasionally 

failed swallow-induced esophageal peristalsis in all or part 

of the esophagus is common in humans, in particular, with 

dry swallows.

The bolus-evoked peristaltic activity in the smooth 

muscle esophagus consists of a wave of inhibition (degluti-

tive inhibition, including LES relaxation19) followed by a 

wave of contraction; the efferent output shows first the release 

of nitric oxide to inhibit the musculature, and thereafter a 

cholinergically mediated contraction occurs with a variable 

delay, the longest delay in the distal esophagus. The delay 

appears to be generated in part by continuing bolus-induced 

activation of intramural descending nitrergic nerves with 

long projections.18

Bolus-induced, secondary peristalsis can be initiated by 

intrinsic neural programs independent of vagal activity, but 

is influenced by vagal activity.20 Normal swallowing is likely 

a combination of vagal and intrinsic activity.18

The musculature itself, including the ICC pacemaker 

cells, can provide rhythmicity to esophageal smooth muscle; 
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inhibition of the pacemaker activity is lost in achalasia.23–25 

In the small intestine and colon, the ICC produce electrical 

slow waves that propagate based on a frequency gradient 

that gives direction to peristalsis.26–28 This may be similar 

in the esophagus where regular slow-wave activity at four 

to seven cycles per minute has been recorded in healthy 

volunteers, propagating at 4–6 cm/s.29 The close associa-

tion between nitrergic nerves and intramuscular ICC would 

suggest that they may become reduced simultaneously in 

achalasia; however, this was not observed; in patients with 

severe reduction of nitrergic nerves, ICC could be struc-

turally normal.23 This appeared to confirm that nitrergic 

nerves are primarily responsible for the propagating nature 

of the esophageal contraction. It is interesting to note that 

the frequency of the contractions in an achalasia patient 

occurred at seven cycles per minute,24 in the range of the 

slow-wave activity.29 It was proposed that weak peristalsis 

or reflux may be due to failure of ICC to produce significant 

slow-wave activity.29

The vagal sensory pathways from the 
smooth muscle esophagus
Vagal afferent neurons originate in special terminal  structures 

in the myenteric plexus ganglia, the intraganglionic laminar 

endings (IGLEs),30 sensing shearing and tension,31 or within 

the musculature in intramuscular arrays (IMAs)32 where the 

nerve endings interact with intramuscular ICC (ICC-IM) but 

not with ICC associated with the myenteric plexus.33 The 

ICC-IM form a three-dimensional network within the circular 

muscle layer of the esophagus coursing parallel to smooth 

muscle fibers;22 they form gap junctions and peg and socket 

contacts with smooth muscle cells and are therefore ideally 

suited as stretch receptors.3434,35 It is the ideal configuration 

to facilitate bidirectional communication between the vagus 

nerve and smooth muscle cells.33 ICC-IM are also heavily 

innervated by nitrergic nerves; it is not known how inner-

vation of ICC affects vagal sensory information. Through 

IGLEs and IMAs a bolus transmits sensory information 

to the solitary nucleus via the nodose ganglion to regulate 

the intensity and timing of vagal output via vagal dorsal 

motor neurons that determines the timing and amplitude 

of the peristaltic contractions.18 Larger boluses and greater 

viscosity increase the contraction amplitude and duration 

and slow peristaltic velocity. IEM associated with secondary 

distention-induced peristalsis may therefore be caused by 

disturbance of sensory vagal pathways affecting motor func-

tion. In addition to sensory nerve endings located within the 

musculature, mucosal vagal afferents convey low threshold 

Figure 1 Vagal innervation of the smooth muscle esophagus.
Notes: The solitary nucleus (or nucleus of the solitary tract) receives sensory input 
from a wide variety of organs and houses the central pattern generator for the 
smooth muscle part of the esophagus. The nodose ganglion is a gateway for sensory 
neurons to the solitary nucleus. It contains the cell bodies of the afferent nerves from 
the esophagus. The intramuscular arrays are vagal afferent nerve endings that mingle 
with ICC-IM in the musculature to form sensory units. The intramuscular ICC are 
likely the pacemaker cells of the esophagus that can generate rhythmic propulsive 
activity in the absence of innervation. The IGLEs are the vagal afferent nerve endings 
in the myenteric plexus. EC cells secrete 5-HT upon stimulation that activates vagal 
sensory neurons. The dorsal motor nucleus of the vagus sends motor neurons to 
the esophageal body, after receiving central pattern generator information from the 
solitary nucleus. The cortex/hypothalamus communicates with the solitary nucleus, 
so that ones acute or chronic emotional state can influence any aspect of swallowing.
Abbreviations: 5-HT, 5-hydroxytryptamine, Ach, the neurotransmitter acetylcholine; 
CPR, central pattern generator; EC, enterochromaffin cells; ICC, interstitial cells of 
Cajal; IGLEs, intraganglionic laminar endings; IMA, intramuscular array; ICC-IM, 
intramuscular ICC; M, muscarinic receptor; N, nicotinic synapse; NO, nitric oxide.
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in vitro, without innervation, cholinergic stimulation pro-

duces peristaltic rhythmic contractions at a velocity similar 

to that of swallow-induced peristalsis,21 but how this is 

integrated in the neural networks during swallow- or bolus-

induced peristalsis is not known.18 Only intramuscular ICC 

form a dense network in the esophagus.22–24 The rhythmic 

contractions likely associated with ICC pacemaker activ-

ity become obvious in some patients with achalasia when 

strong rhythmic nonpropagating simultaneous pressure 

waves are present; the hypothesis is that normal nitrergic 
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functional information to the brain, including mechanical, 

chemical, and temperature changes.36 This information may 

come directly from free nerve endings at the base of epithelial 

cells or indirectly via enterochromaffin cells or mast cells.36

The vagal motor pathways to the smooth 
muscle esophagus
The sensory information that is processed in the solitary 

nucleus and the reticular formations around the solitary 

nucleus is transmitted to the dorsal motor nucleus.17 The 

rostral neurons in the dorsal motor nucleus of the vagus 

nerve preferentially innervate the excitatory motor neurons, 

whereas the neurons in the caudal region innervate inhibitory 

motor neurons.37,38 Through extensive branching, via nicotinic 

synapses, vagal efferents communicate extensively within the 

myenteric plexus ganglia and stimulate via nicotinic synapses 

to cholinergic as well as nitrergic neurons to affect smooth 

muscle cells (Figure 1). Possibly 60%–70% of myenteric 

neurons are connected to vagal cholinergic efferent neurons.36 

Excitatory cholinergic motor neurons must be adequately 

stimulated by central and/or peripheral neural input to obtain 

a sufficient amplitude of peristaltic contractions. Ultimately, 

the threshold for peristaltic contraction, its timing in the 

peristaltic sequence, and the contraction amplitude are 

determined by a balance between excitatory and inhibitory 

influences at the muscle level,18 as described earlier.

Vagal efferent pathways to the esophagus 
via the stomach
In patients with acid reflux, spontaneous TLESRs, occurring 

primarily by gastric distention, are accompanied by strong 

inhibition of esophageal body smooth muscle as evidenced 

by incomplete swallow-induced peristalsis during this activ-

ity.39 Careful analysis of TLESRs lasting >15 seconds, which 

were not influenced by other events, showed that 91% of 

the swallows during these long TLESRs were accompanied 

by peristaltic waves that were only seen in the most proxi-

mal lead.39 Poor peristaltic activity during TLESR was not 

observed in healthy persons.40 This indicates that IEM may be 

associated with abnormal vagal tone derived from abnormal 

sensory and/or motor vagal pathways from the stomach via 

the solitary nucleus to the esophagus. GERD is treated with 

antacids, but acid secretion is not the problem; the cause is 

a disordered control of the gastroesophageal reflux barrier.12 

This suggests that the vagal mechanoreceptors may be the 

most important cellular target for future pharmacological 

treatment.12 The mechanoreceptors include the IGLEs and 

the IMAs.32 TLESRs accompanied by some form of reflux 

Figure 2 Illustration of the relationship between videofluoroscopic, manometric, impedance, and topographic representations of esophageal peristalsis.
Notes: (A) Schematic drawing of placement of a combined manometry/intraluminal impedance monitoring system with five manometric side holes (SHs) spaced 4 cm apart 
and a 6 cm sleeve sensor placed just distal to the last manometric port. (B) Concurrent videofluoroscopic, manometric, and multichannel intraluminal impedance recordings 
of a 5 mL Renografin swallow that was completely cleared by one peristaltic sequence. (C) Comparison of conventional manometry obtained with a sleeve assembly as 
depicted in (A) and high-fidelity manometry with recording sites at 1 cm intervals displayed topographically as an isocontour plot. The standard manometric recordings are 
superimposed on the isocontour plot at axial locations corresponding to the equivalent portion of the high-fidelity manometry it represents. Reprinted from Gastroenterology. 
Vol 128(1). Pandolfino JE, Kahrilas PJ, American GA. AGA technical review on the clinical use of esophageal manometry. Pages:209–224. Copyright 2005, with permission from 
Elsevier.77
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are markedly increased after a meal, coinciding with  

a change in vagal activity as measured by vagal input to the 

cardiovascular system.41 Gastric vagal afferents send powerful 

vagal inhibition to the LES and esophagus, likely in part by 

suppressing vagal excitatory input12 that might be measured 

as reduced vagal cardiac tone. Hence, vagal tone, regulated 

by the central nervous system (CNS) and modified by vagal 

afferents, and receptors on the cell types that constitute 

vagal mechanosensors, including ICC, may be important 

targets for GERD treatment.36 Abnormal vagal activity was 

also suggested to be involved in IEM commonly observed 

in asthmatics.42

Many CNS activities can influence 
swallowing via the solitary nucleus
The fascinating feature of the solitary nucleus is that it receives 

sensory information from the gut, the lung, the heart, and the 

vasculature and sends this information to the motor neurons 

that control these organs. Although input from different 

organs has a relation to specific subnuclei, this organ-specific 

distribution is not mutually exclusive, and visceral afferents 

have been shown to distribute widely within other subnuclei 

of the solitary nucleus.31,43 Dye labeling of swallow-related 

neurons showed many collaterals that presumably contact 

other neurons within the solitary nucleus.44 During a swallow, 

intracellular recording of respiration-modulated neurons in 

the solitary nucleus shows bursts of action potentials.44 This 

interaction at the level of the solitary nucleus is likely a rea-

son why diseases with a high risk of aspiration have neural 

incoordination of breathing and swallowing.44 The solitary 

nucleus also houses the dorsal respiratory group involved in 

the generation of respiratory rhythm.44 The solitary nucleus is 

the primary site for reception of vagal afferents stimulated by 

baroreceptors.45 The solitary nucleus projects vagal efferents 

to the sinus node to affect heart rate, it also projects to spinal 

sympathetic neurons to increase heart rate and affect blood 

pressure.46 The interactions between various branches of the 

vagal nerve is demonstrated by a change in heart rate when  

a balloon is distended in the esophagus. Tougas et al47 showed 

that stimulation of the distal esophagus by balloon distension 

induced cardiac autonomic changes such as an decrease in 

heart rate, an increase in vagal activity measured by the high-

frequency component of heart rate variability, and a reduction 

in sympathetic activity measured by its low-frequency com-

ponent, demonstrating the link between esophageal sensory 

pathways and cardiac autonomic nervous system function.

Communication between gut microbiota and the brain 

involves vagal sensory pathways.46 Chronic probiotic 

 treatment can alter γ-aminobutyric acid expression in the 

cortex, which is dependent on vagal activity, and this infor-

mation projects to the solitary nucleus where it can affect 

vagal output to the esophagus.48 Bifidobacterium longum has 

anxiolytic effects that require intact vagal pathways and act 

through changes in enteric neural excitability.49,50 Bacterial 

infections in the gut or abnormal gut microbiota can lead to 

anxiety behavior; the gut signals are carried by the vagus 

to the cortex and hypothalamus that project to the solitary 

nucleus.51–54 The descending excitatory and inhibitory drives 

from the cortex and subcortex can influence the oropharyn-

geal initiation of swallowing and modulate the central pat-

terns generator for swallowing.55 The cortex is plastic and 

neural circuitry can be influenced by trauma that may have 

long-lasting effects.56 This can influence cortex information 

that is communicated to the solitary nucleus, which can affect 

cardiac function56 and likely esophageal function.

Neural pathways that link the cortex, the hypothalamus, 

and the central amygdala to the solitary nucleus suggest that 

neural activity in various brain centers will influence solitary 

nucleus output.36,57,58 A psychiatric disorder such as major 

depression that affects the cortex may affect the output of the 

solitary nucleus thereby giving gastrointestinal (GI) symp-

toms.59,60 This may be the reason that treatment of depression 

can alleviate GI symptoms. Drugs that work on the brain in 

psychiatric disorders such as olanzapine also work on 5-HT
2A

 

receptors that are found in many areas of the brain including 

the solitary nucleus and it might be the reason that it can help 

alleviate psychiatric as well as GI symptoms.59 For a subset 

of patients, anxiety and emotion may be a direct cause of 

esophageal dysfunction.61

The solitary nucleus also houses the central pattern gen-

erator for vomiting. Chemosensitive receptors detect emetic 

agents in the blood and relay this information by means of 

neurons in the area postrema to the adjacent solitary nucleus 

from which projections are made to the central pattern gen-

erator for vomiting.62

Therapeutic interventions in IEM
Weak peristalsis accompanied by low-amplitude contractions 

and short-duration LES relaxation63 can be related to abnor-

mal control of peristaltic activity at the level of the CNS, the 

enteric nervous system, or the muscle layers including the ICC 

pacemaker cells and treatment, therefore, may involve any or 

all of the control systems. Antireflux medication may inhibit 

acid reflux but it may not improve esophageal motor function.6

The critical role of the vagus in the control of esophageal 

peristalsis makes it logical to assume that pharmacological 
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treatment of vagal dysfunction may be one of the avenues 

to treat IEM. Vagal activity can potentially be modulated 

by the numerous receptors on its sensory and motor neu-

rons, extensively reviewed elsewhere.12,46,64,65 Buspirone 

has been shown to increase LES pressure and amplitude of 

esophageal contractions possibly associated with 5-HT
1A

 

receptors stimulating acetylcholine release in the hippo-

campus.4,66 5-HT
3
 receptors are potential targets present 

on vagal afferent endings in the solitary nucleus and in 

the nodose ganglion.46,67 Vagal afferents show  spontaneous 

rhythmic activity that is attenuated by the 5-HT
3
 antagonist, 

 granisetron, and by transient receptor potential vanilloid 

receptor 1 antagonist, capsazepine, suggesting that tonic 

activation of 5-HT
3
 and transient receptor potential vanilloid 

receptor 1 contributes to the spontaneous activity.31 Patients 

with multiple sclerosis and severe dysphagia improved 

with electrical stimulation of the solitary nucleus over a 

3-month period with an implanted nerve stimulator.68 On 

the other hand, dysphagia can be a side effect of treatment 

of epilepsy with vagal nerve stimulation. The 5-HT
4
 agonist 

prucalopride decreased esophageal acid exposure but did 

not affect parameters of esophageal motor activity nor LES 

relaxation,69 although another 5-HT
4
 agonist tegaserod (it 

is also a 5-HT
2B

 antagonist) did improve midesophageal 

motility, the peristaltic propagation velocity and in some 

patients it improved bolus transit.70

Eating habits may influence IEM since the nature and 

size of the bolus strongly influence the amplitude, dura-

tion, and velocity of the peristaltic wave.18 Patients may be 

advised to chew sufficiently to stimulate the vagal output to 

the esophagus.4 In some patients, regularly chewing gum 

appears to have a beneficial effect in IEM,71 likely through 

vagal activation. Chewing gum also benefits gastric motility 

through vagal stimulation.72,73

The problem may also lie in the musculature. In systemic 

sclerosis, esophageal aperistalsis and IEM are common,74 

possibly related to circulating antibodies against the mus-

carinic M3 receptor.75 Vagal sensory units in the esophagus 

and fundus, associated with ICC, are major potential targets 

for drug development.12

Manometry may aid in predicting success of treatment 

for IEM. Prokinetic treatment may be encouraged in patients 

who show a good response to MRS, judged by successful 

treatment with the cholinesterase inhibitor edrophonium 

intravenous.14 Autonomic nerve dysfunction as judged by 

cardiovascular reflex tests was related to delayed transit and 

abnormal peristalsis,76 and monitoring vagal activity, even 

indirectly, may also aid in understanding pathophysiology 

and potentially predicting success of treatment.

Conclusion
Weak peristaltic contractions are very often observed during 

an esophageal motility test. To determine if this constitutes  

a motor pattern that is ineffective in bolus transit, a simple 

wet swallow manometry test is not sufficient and hence addi-

tional tools are suggested in this review. Clinically relevant 

IEM may well be related to some kind of vagal dysfunction 

or reduced vagal tone since the vagal activity is paramount 

in controlling all aspects of esophageal peristalsis. Since the 

vagal afferent neurons communicate with many parts of the 

brain involved in control of heart rate and respiration as well 

as anxiety and emotion, IEM can be caused or influenced by 

a variety of extragastrointestinal conditions.
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