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Abstract: Placental oxidative stress has been implicated as a main risk factor for placental dysfunction.
Alleviation of oxidative stress and enhancement of antioxidant capacity of porcine trophectoderm
(PTr2) cells are effective means to maintaining normal placental function. The present study was
conducted to evaluate the protective effect of melatonin (MT) on H2O2-induced oxidative damage in
PTr2 cells. Our data revealed that pretreatment with MT could significantly improve the decrease
in cell viability induced by H2O2, and reduce intracellular reactive oxygen species (ROS) levels and
the ratio of apoptotic cells. Here, we compared the transcriptomes of untreated versus melatonin-
treated PTr2 cells by RNA-seq analysis and found that differentially expressed genes (DEGs) were
highly enriched in the Wnt signaling, TGF-beta signaling and mTOR signaling pathways. Moreover,
pretreatment with MT upregulated the antioxidant-related genes such as early growth response3
(EGR3), WAP four-disulfide core domain1 (WFDC1), heme oxygenase1 (HMOX1) and vimentin (VIM).
These findings reveal that melatonin protects PTr2 cells from H2O2-induced oxidative stress damage.
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1. Introduction

Pregnancy is particularly sensitive to oxidative stress, defined as increased basal
oxygen consumption in both the fetus and the mother [1]. Numerous factors can trigger
oxidative stress during gestation. The placenta plays an important role in maintaining fetal
and maternal homeostasis, is rich in mitochondria and consumes approximately 1% of the
basal metabolic rate of the mother when fully developed [2]. Meanwhile, the placental
environment transforms from a hypoxic environment to an oxygen-rich environment as the
placenta matures and its vascularization develops. Considering, the placenta’s significant
mitochondrial mass, high metabolic rate and oxygen-rich environment, the generation of
ROS increases in the placenta, which is easily subjected to a degree of oxidative stress.

During pregnancy, the placenta is susceptible to oxidative stress and has a reduced
antioxidant capacity, which can pose a potential problem for late animal reproduction
and affect maternal homeostasis and fetal growth and development [3–5]. PTr2 cells are
a significant cell type of the placenta, and they represent one of the earliest events of
spectral differentiation in mammalian embryos [6–8]. Placental oxidative stress is involved
in pregnancy complications, and previous studies have shown that oxidative stress of PTr2
cells can lead to pathological conditions of pregnancy (early pregnancy loss and impaired
placentation) [9,10]. Therefore, improving the defensive ability of PTr2 cells to effectively
counteract ROS generation is beneficial to maintaining fetal pig growth and increasing the
productive performance of dams.

The imbalance between ROS production and antioxidant capacity leads to oxidative
stress [11]. To prevent oxidative stress, the supply of antioxidants is essential. Although
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endogenous antioxidants help protect against oxidative damage, alone they are insufficient
to solve the problem. In preclinical studies, antioxidants (vitamins C and E) can lower
maternal oxidative stress during pregnancy, but decreased fetal growth and abnormal
maternal blood pressure might occur with a certain probability [12]. There are few satisfac-
tory treatment strategies for these conditions, thus, developing new strategies to alleviate
oxidative stress is of great significance.

MT is an endogenous substance with antioxidant properties [13]. MT exerts antiox-
idative action through multiple pathways [14]. On the one hand, MT protects the body
from the harmful effects of free radical damage [15,16]. On the other hand, MT alleviates
oxidative stress and protects the ovaries from oxidative damage by elevating antioxidant
enzyme activity [17,18]. The antioxidant effects of MT can protect cells from the damage of
oxidative stress damage [19,20]. However, its protective effects against PTr2 cells oxidative
stress and the underlying antioxidant mechanism have yet to be investigated.

In this study, we investigated the protective effects of MT against H2O2-induced oxida-
tive damage in PTr2 cells. Our findings can provide a theoretical basis for the development
of the clinical application of MT during pregnancy and provide guidance for developing
effective nutritional strategies to improve sow health.

2. Materials and Methods
2.1. Cell Culture and Sample Preparation

The PTr2 cell line used in this experiment were previously established and charac-
terized from porcine blastocysts (collected on day 12 of pregnancy) [21,22]. Cell cultures
were grown under completely sterile conditions and kept incubated at 37 ◦C in a 5%
carbon dioxide (CO2) atmosphere. When the culture reached 80−90% confluence, cells
were detached from the culture flasks by 0.25% trypsin treatment and counted, and the
concentration was adjusted to 104 cells/mL (0.1 mL) of DMEM/F12 complete medium for
subsequent experiments.

Chemicals were purchased from Thermo Fisher Scientific (Fair Lawn, NJ, USA):
1% penicillin–streptomycin liquid (catalog #: 15140122); DMEM/Ham’s F-12 medium
(DMEM/F12; catalog #: 11330032); 10% fetal bovine serum (FBS; catalog #: 10099141); and
trypsin-EDTA (catalog #: 25200-056, purchased as 0.25%). Cell culture plates and plastic
flasks were purchased from Corning Incorporated (Corning, NY, USA). MT was purchased
from Sigma—Aldrich: (catalog #: M5250).

2.2. Evaluation of the Cell Protection against Oxidative Damage

To evaluate the protective effect against oxidative stress in PTr2 cells after treatment
with MT, preliminary experiments were performed to determine assess cell viability and
determine an appropriate concentration of H2O2 for subsequent experiments by the CCK-8
assay [23]. PTr2 cells were inoculated into 96-well plates, treated with 50, 100, 200 and
500 µM MT and cultured at 37 °C with 5% CO2 for 24 h. Then, the cells were stimulated
with 120 µmol/L H2O2, and after 4 h, cell viability was measured by the CCK-8 assay [24].
The relative number of viable cells can be determined from the measured absorbance value
(OD value). There were six replicate sets of wells per MT concentration.

Cell viability was calculated by the following formula:

Cell viability (%) = (treatment group OD − blank group OD)/(control group OD − blank group OD) × 100.

2.3. Apoptosis Detection

To further investigate whether MT could protect against H2O2-induced cell apop-
tosis in PTr2 cells, apoptosis rates were evaluated by flow cytometry using Annexin
V-FITC/PI [25]. Based on the 2.2 testing, PTr2 cells were incubated in a 6-well plate
(1× 105 cells/well) and pretreated with MT (0, 100, 250, 500 and 1000 µM) for 24 h, and sub-
sequently treated with 120 µM H2O2 for 4 h. The cells were washed; 2 µg annexin-V FITC
and 10 µL PI were added, and then the cells were incubated in the dark for 15 min and ana-
lyzed on a flow cytometer (ex488 nm and em578 nm, Becton Dickinson, San Jose, CA, USA).
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2.4. Measurement of Intracellular ROS

The intracellular ROS levels were detected by flow cytometry using the ROS-specific
fluorescence dichlorodihydrofluorescein diacetate (DCFH-DA) [26]. Based on the
2.2–2.3 testing, PTr2 cells were incubated in a 6-well plate and pretreated with MT (0,
250 and 500 µM) for 24 h, and subsequently treated with 120 µM H2O2 for 4 h. After
that, cells washed twice with PBS, and then incubated with 10 µM DCFH-DA in PBS at
37 ◦C for 30 min. After the cells were collected and the fluorescence intensity of DCF was
quantified on a FACS Calibur (λex/em = 488/525 nm). Then, mean intensity of ROS was
collected from 1 × 105 cell counts. Finally, the intracellular ROS levels and their analyses
were performed using a FACS Calibur Flow Cytometer (BD Biosciences).

2.5. Transcriptome Sequencing

PTr2 cells were grouped based on reference to the transcriptome sequencing, and the
cells were cultured in 6-well plates (1 × 105 cells/well) with 500 µM MT and 120 µM H2O2
at the indicated time points, as described above. The PTr2 cell samples of three individuals
(designed as biological replicates) in each of the four groups were subjected to high-
throughput transcriptome sequencing, and the rest of the samples were reserved for standby
using. Total mRNA was extracted from cells as previously described. RNA sequencing
data were processed using Trimmomatic [27], gene expression calculation using cufflinks
and the read counts of each gene were obtained by htseq-count [28,29], differentially
expressed genes (DEGs) identification with the DESeq R package functions estimate size
factors and the nbinom test [30], gene ontology (GO) enrichment analysis and pathway
enrichment were performed using R based on the hypergeometric distribution [31,32].
The high-quality reads were aligned to the pig reference genome (UCSC susScr3) using
Hisat2 software [33]. Then, the protein–protein interaction network (PPIs) information of
these DEGs was predicted by the STRING database (version 11.5) [34]. After mapping
the DEGs into this database, and a combined score ≥ 0.4 was exported [35]. Then, the
PPIs of these DEGs were visualized in Cytoscape, and the hub genes among the PPI
network were identified and ranked using the CytoHubba plugin and the maximal clique
centrality (MCC) method of Cytoscape software (Version 3.8.2; The Cytoscape Consortium,
New York, NY, USA).

The grouping information is as follows:

(1) Control group: The PTr2 cells were cultured in basic growth medium (DMEM,10%
FBS) were used as a control;

(2) MT group: The PTr2 cells were treated for 24 h in a medium containing 500 µM MT;
(3) H2O2 group: The PTr2 cells were grown in normal medium for 24 h, washed with

PBS three times and treated with H2O2 for 4 h;
(4) MT-H2O2 (MH) group: The PTr2 cells were grown in a medium containing 500 µM

MT for 24 h, washed with PBS three times and treated with H2O2 for 4 h.

2.6. Real-Time PCR Analysis

To verify the data of RNA-Seq data, real-time quantitative PCR (qRT–PCR) was
performed on six randomly selected DEGs. The β-actin gene was used as the reference
gene, and the primers for the six genes were designed using Primer5. Real-time PCR was
performed using the miScript SYBR Green PCR kit (Thermo) to detect the expression of
DEGs on the Rocho Lightcycler 480II (Roche). We calculated the relative gene expression
levels with the comparative CT method (referred to as the 2−44CT method), with three
replicates for each reaction [36].

2.7. Western Blot Analysis

PTr2 cells were cultured in different media and performed as described in the methods.
After two washes with PBS, the cells were lysed with protein extraction reagent and har-
vested (Thermo Fisher Scientific Inc., Waltham, MA, USA) [37]. The protein concentrations
were determined by using a BCA kit. All protein samples were diluted to an equal concen-
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tration using RIPA buffer. Western blot analysis was performed as previously described
with minor modifications [38]. After protein concentration determination, the extracted pro-
teins were loaded on a 10% separation gel and 4% concentration gel, and then transferred
onto PVDF membranes. The proteins were sealed with 5% skimmed milk powder, and then
incubated overnight with the indicated primary antibodies at 4 ◦C, followed by incubation
at room temperature for 2 h with secondary antibodies. Experiments were conducted using
the following primary antibodies: WFDC1 (1:500, OM117200, omnimAbs), HMOX1 (1:500,
27282-1-AP, Proteintech), MXI1 (1:500, OM105330, omnimAbs), PLAG1 (1:500, OM108610,
omnimAbs), ViIM (1:200, OM115585, SANTA CRUZ), EGR3 (1:500, OM106724, omnimAbs)
and β-actin (1:5000, 66009-1-Ig, Proteintech).

2.8. Statistical Analysis

The statistical analysis was performed using one-way ANOVA with SPSS software
(version 18.0, USA), and values were expressed as the mean ± SEM (standard errors of
means) where the p-value was considered less than 0.05 and it was statistically significant.

3. Results
3.1. Effects of H2O2 on the Viability of PTr2 Cells at Different MT Concentrations

Initially, the viability of PTr2 cells treated with different concentrations of H2O2 was
determined using a CCK-8 assay. As shown in Figure 1A, the 120 µM H2O2 was used
to establish the oxidative stress model of PTr2 cells, and the cell viability decreased to
50.15 ± 0.03% compared with the control group after induction for 4 h. PTr2 cells were
pretreated with different concentrations of MT (50, 100, 200 and 500 µM) for 24 h, and then
treated with 120 µM H2O2 for 4 h. As shown in Figure 1B, pretreatment with 500 µM MT
significantly enhanced the viability of H2O2-treated PTr2 cells.
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Figure 1. Effect of H2O2 on antioxidant properties of PTr2 cells. (A) The PTr2 cells were treated with
different concentrations of H2O2 for 4 h, and then the cell vitality was detected using a CCK-8 assay.
(B) The PTr2 Cells were cultured with different concentrations of MT for 24 h before incubated with
120 µM H2O2 for 4 h and cell viability was detected using a CCK-8 assay. The data are expressed as
the means ± SEM from at least 6 separate experiments. p < 0.05 was considered to be statistically
significant. p > 0.05 (ns), p < 0.01 (**), p < 0.0001 (****).

3.2. Protective Effects of MT against H2O2-Induced Apoptosis in PTr2 Cells

To further investigate whether MT could protect against H2O2-induced cell apoptosis
in PTr2 cells, apoptosis rates were evaluated by flow cytometry using Annexin V-FITC/PI.
Compared with the group, the cell apoptosis rate was significantly (p < 0.05) increased in
the H2O2 group. The increased apoptosis rate of PTr2 cells caused by H2O2 induction was
significantly (p < 0.05) decreased after MT pretreatment (Figure 2).
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Figure 2. Effects of MT treatment on H2O2-induced apoptosis in PTr2 cells. The PTr2 cells were
treated with medium as control (A) and MT at the concentrations of 0 (B), 100 (C), 250 (D), 500 (E),
and 1000 (F) for 24 h and then exposed to H2O2 for 4 h. (G) Histograms showed that distribution of
apoptotic cells after different treatment. The data are expressed as the means ± SEM from at least 6
separate experiments. p < 0.05 was considered to be statistically significant. p > 0.05 (ns), p < 0.01 (**),
p < 0.0001 (***).

3.3. Effect of MT on H2O2-Induced ROS Production in PTr2 Cells

To study the antioxidant activity of MT, the intracellular ROS levels of PTr2 cells were
examined by measuring the DCFH fluorescence intensity (Figure 3). Treatment with H2O2
significantly increased the intracellular level of ROS in PTr2 cells. However, 500 µM MT
pretreatment significantly reduced ROS production.
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Figure 3. Effect of MT on H2O2-induced release of ROS in PTr2 cells. (A) Intracellular ROS level was
detected by flow cytometry; (B) Histogram analysis showing the intracellular ROS levels. The data
are expressed as the means ± SEM from at least 6 separate experiments. p < 0.05 was considered to
be statistically significant. p > 0.05 (ns), p < 0.0001 (****).
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3.4. Transcript Expression in PTr2 Cells

To investigate genes affected by MT, gene expression profiling of the control, MT,
MH and H2O2 groups was performed: A total of 178 DEGs were obtained in MT group
compared with the control group, including 67 downregulated and 111 upregulated genes
(Figure 4A); Similarly, compared with the H2O2 group, a total of 95 DEGs were found
in the MH group, including 59 downregulated and 36 upregulated genes (Figure 4B).
A heatmap of DEGs is shown in Figure 4C, which displays a contrasting gene expression
profile between different groups.
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Figure 4. Effect of MT on mRNAs expression of PTr2 cells. (A) The volcano figure analysis of
differentially expressed mRNAs in MT and control groups of porcine trophectoderm cells by RNA-
seq (B) The volcano figure analysis of differentially expressed mRNAs in MH and H2O2 groups of
PTr2 cells by RNA-seq. The pink, blue, and grey colors represent the terms means upregulation
downregulation and normal expression, respectively. (C) Cluster analysis of DEGs by the FPKM
value. The x-axis indicates the samples in the different groups. The y-axis is the gene cluster across
different groups. Green indicates the highly expressed genes, and red indicates the genes with low
expression by the value of log10 (FPKM + 1).

3.5. Functional Enrichment of DEGs

To further analyze the function of DEGs, we performed a pathway analysis. As shown
in Figure 5, the GO analysis showed that the DEGs were significantly enriched into the
terms, including “establishment of integrated proviral latency” in the biological process
(BP) category, “host cell plasma membrane” in the cellular component (CC) category,
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and “structural constituent of virion” in the molecular function (MF) category (MT vs.
CON) (Table S1). Furthermore, “microtubule-based movement” was identified in the BP
category, “neuronal cell body” was identified in the CC category, and “microtubule motor
activity” was identified in the MF category between the MH and H2O2 groups (Table S2).
In addition, the KEGG pathway enrichment analysis showed that upregulated DEGs in
MT pretreatment were significantly enriched in the “Wnt signaling pathway”, “TGF-beta
signaling pathway”, and “mTOR signaling pathway” and so on (Figure 5C,D).
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Figure 5. KEGG pathway enrichment, GO functional annotation and PPI network analysis for DEGs.
(A) the top 30 enriched GO terms (MT vs. CON); (B)the top 30 enriched GO terms (MH vs. H2O2);
The y-axis represents enrichment factor. The x-axis represents GO terms. The pathways with numbers
of differential genes greater than 2 were screened. (C) the top 20 KEGG enriched pathways (MT vs.
CON); (D) the top 20 KEGG enriched pathways (MH vs. H2O2); The y-axis The y-axis corresponds
to the KEGG Pathway. The x-axis shows the enrichment factor. The color of the dot represents the
p-value and the size of the dot represents the number of DEGs mapped to the reference pathways.
(E) Module 1 (MT vs. CON). (F) Module 2 (MH vs. H2O2). The color indicate in red (high score) and
yellow (low score).

To further screen for hub genes, a network of the DEGs was obtained using STRING,
MCODE and CytoHubba to identify the modules and hub genes in Cytoscape. As shown
in Tables S3 and S4, the hub genes were identified by CytoHubba plug-ins in the groups
(MT vs. CON) and groups (MH vs. H2O2), respectively. Furthermore, the most significant
1 modules were filtered using the MCODE (Figure 5C,D).

3.6. qRT–PCR Validation

To validate the accuracy of the RNA-seq data and detect DEGs, we screened six DEGs
(HMOX1, VIM, RBP2, WFDC1, MXI1 and PLAG1) for qRT-PCR analysis. The same trends
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in gene expression were detected in the data obtained by RNA-seq and qPCR, suggesting
that RNA-seq accurately quantified cell gene expression in the CON, MT, H2O2 and MH
groups (Figure 6). Notably, the significant positive correlation between RNA sequencing
data and a qRT-PCR analysis supported the results found.
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3.7. Effects of MT Pretreatment on H2O2-Induced Protein Expression in PTr2 Cells

To investigate the effect of MT on H2O2-mediated oxidative stress in PTr2 cells, we
selected EGR3, PLAG1, MXI1, WFDC1, HMOX1 and VIM for the Western blot analysis.
As shown in Figure 7, the EGR3, HMOX1, VIM and WFDC1 proteins were significantly
upregulated in the MT group compared with the CON group and significantly were
upregulated in the MH group compared with the H2O2 group. However, the expression
levels of the PLAG1 and MXI1 were significantly lower in the MT group than in the CON
group, and significantly lower in the MH group than in the H2O2 group. The corresponding
differentially expressed genes are listed in Table 1.

Table 1. RT-qPCR measurement of differential gene expression.

Gene Name CON MT p-Value H2O2 MH p-Value

HMOX1 1 ± 0.0613 0.793 ± 0.109 0.046 24.073 ± 2.338 35.906 ± 5.714 0.029
VIM 1 ± 0.057 2.204 ± 0.187 0.005 0.629 ± 0.077 3.228 ± 0.710 0.003

WFDC1 1 ± 0.078 1.488 ± 0.151 0.008 0.711 ± 0.083 2.502 ± 0.469 0.003
MXI1 1 ± 0.0416 2.164 ± 0.304 0.003 0.417 ± 0.034 2.337 ± 0.559 0.004

PLAG1 0.999 ± 0.078 1.887 ± 0.134 0.001 0.163 ± 0.015 0.773 ± 0.161 0.003
EGR3 1 ± 0.106 1.948 ± 0.366 0.013 1.868 ± 0.134 42.606 ± 4.535 0.004

The RT-qPCR results are expressed as the mean ± SEM of at least three independent experiments.
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4. Discussion

Oxidative stress in the placenta can lead to reproductive dysfunction, and can be
transmitted to offspring [39,40]. Some antioxidants have been shown to reduce oxidative
damage in animals, but this remains to be further explored [41]. Therefore, in this study,
the protective effects of MT on oxidative stress were investigated.

PTr2 cells are significant cell types of the placenta and play important roles in fetal
nutrition and growth throughout development [42]. However, overproduction of ROS
may lead to placental oxidative stress and cell apoptosis [11,43,44]. We observed that
pretreatment with 500 µM MT ameliorated the H2O2-induced reduction in PTr2 cell viability
and significantly decreased ROS production. These results indicated that MT pretreatment
exhibited antioxidant activity, consistent with previous studies showing that MT has various
positive anti-apoptotic and antioxidative stress effects during pre- and postimplantation
development of cloned mouse embryos [45,46]. Furthermore, we found that MT (500 µM)
pretreatment significantly alleviated H2O2-induced cell apoptosis, suggesting that MT
might alleviate H2O2-induced oxidative damage by reducing ROS levels and protecting
cells against apoptosis.

To filter candidate genes involved in the regulation of the oxidative stress response, a
transcriptome analysis was further performed in cultured PTr2 cells with different treat-
ments. The GO enrichment analysis of upregulated DEGs (CON vs. MT) showed that
“response to oxidative stress” (GO: 0006979) was significantly enriched. The results in-
dicated that DEGs involved in “positive regulation of the Wnt signaling pathway” were
upregulated in the MH group.

The KEGG pathway enrichment analysis showed that the Wnt signaling pathway,
“TGF-beta signaling pathway” and “mTOR signaling pathways” were significantly enriched
for DEGs between the MH and H2O2 groups. The Wnt signaling pathway has been
reported to be redox-sensitive and regulated by oxidative stress [47–49]. In the present
study, DEGs were significantly enriched in the Wnt signaling pathway, suggesting that MT
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may play a protective role in H2O2-induced oxidative stress in PTr2 cells by regulating the
Wnt signaling pathway. In addition, the TGF-beta signaling pathway is also an effective
signaling pathway involved in the acceleration of oxidative stress and apoptosis [50].
Previous studies have shown that long-chain fatty acids (LCFAs) facilitate hepatocyte
activation by upregulating oxidative stress through TGF-β signaling pathway-related
genes [51]. Compared with H2O2-treated cells, PITX2 was identified as an upregulated
DEG in MT-treated PTr2 cells, and it was demonstrated to be significantly enriched in
the TGF-beta signaling pathway. PITX2 is a pivotal component of both the TGF-beta and
Wnt/beta-catenin signaling pathways, which play an important role in TGF-beta signaling
pathway [52]. Together, these results suggest that MT alleviates H2O2-induced oxidative
stress by activating the TGF-beta signaling pathway. The mTOR signaling pathway is also
related to oxidative stress or antioxidant capacity [53,54]. In this study, ATP6V1C2 was
upregulated in MT-treated PTr2 cells and was enriched in the mTOR signaling pathway.
Similar results have been described indicating that melatonin alleviates high glucose-
induced apoptosis in Schwann cells through the mTOR and Wnt signaling pathways [55].

Our study suggests that MT may serve as a protective agent against oxidative stress-
induced PTr2 cell apoptosis. According to the results, MT (500 µM) pretreatment signifi-
cantly increases the expression of HMOX1, VIM and EGR3 at both the mRNA and protein
levels in PTr2 cells. Previous studies have reported that HMOX1, VIM and EGR3 can
protect cells against oxidative stress and play roles in cellular antioxidant defense [56–59].
HMOX1 is a commonly used marker of oxidative stress, and its increased expression is
associated with resistance to oxidant-induced apoptosis as an adaptation response [60,61].
In addition, the activation of HMOX1 is involved in heme catabolism and induced by
oxidative stress [62]. In this study, MT-pretreated cells showed higher HMOX1 expression
levels than the H2O2 group, suggesting that MT (500 µM) may alleviate oxidative stress by
upregulating the expression of HMOX1.

Previously, VIM has been shown to effectively improve the decreased epithelial-
to-mesenchymal transition (EMT) capacity of placental trophoblast cells caused by hy-
poxia [63]. VIM is significantly increased in response to increased ROS under oxidative
stress conditions in H2O2-treated renal cell lines [64]. Loss of VIM function in mice results
in defects in the response and adaptation to oxidative damage [65]. Here we showed
that MT (500 µM) significantly reduced H2O2-induced apoptosis in vitro, which may be
involved in upregulating the expression of VIM.

EGR3 is a member of the EGR family transcription factors that regulate cell responses
to proliferation, survival and apoptosis [66,67]. In this work, we found that MT (500 µM)
pretreatment significantly increased EGR3 expression and was associated with increased
PTr2 cell proliferation and decreased apoptosis compared with the H2O2 group in vitro.
Therefore, MT (500 µM) may affect the expression of antioxidant-related proteins (such as
HMOX1, VIM, EGR3) to alleviate oxidative stress induced by H2O2.

Additionally, we prioritized the module hub genes ISG15 and ISL1 by CytoHubba in
groups (MT vs. CON) and groups (MH vs. H2O2), respectively. ISG15 is a stress response
gene that may act as a contributor to tumor suppressors and inflammatory responses [68].
Previous studies have shown that ISG15 can reach high levels in response to oxidative
stress [69]. Moreover, ISL1 was downregulated to protect cells from apoptosis under
oxidative stress conditions [70]. Interestingly, our study showed that ISL1 gene expression
was lower in the MH group than in the H2O2 group, suggesting that MT might alleviate
the oxidative stress by downregulating ISL1 expression.

5. Conclusions

In summary, MT effectively protects H2O2-treated PTr2 cells against oxidative stress
by decreasing intracellular ROS generation and cell apoptosis and regulating the expression
of antioxidant-related genes. MT as an antioxidant candidate might protect PTr2 cells
from excessive oxidative stress during pregnancy. These results are expected to provide a
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theoretical basis for the development of the clinical application of MT during pregnancy
and provide guidance for developing effective nutritional strategies to improve sow health.
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Table S4: Hub genes ranked by the Degree method in CytoHubba (MH VS. H2O2).
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