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Abstract

Synthetic biology seeks to enable programmed control of cellular behavior though engineered biological systems. These
systems typically consist of synthetic circuits that function inside, and interact with, complex host cells possessing pre-
existing metabolic and regulatory networks. Nevertheless, while designing systems, a simple well-defined interface between
the synthetic gene circuit and the host is frequently assumed. We describe the generation of robust but unexpected
oscillations in the densities of bacterium Escherichia coli populations by simple synthetic suicide circuits containing quorum
components and a lysis gene. Contrary to design expectations, oscillations required neither the quorum sensing genes (luxR
and luxI) nor known regulatory elements in the PluxI promoter. Instead, oscillations were likely due to density-dependent
plasmid amplification that established a population-level negative feedback. A mathematical model based on this
mechanism captures the key characteristics of oscillations, and model predictions regarding perturbations to plasmid
amplification were experimentally validated. Our results underscore the importance of plasmid copy number and potential
impact of ‘‘hidden interactions’’ on the behavior of engineered gene circuits - a major challenge for standardizing biological
parts. As synthetic biology grows as a discipline, increasing value may be derived from tools that enable the assessment of
parts in their final context.
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Introduction

Synthetic biology [1,2,3,4,5,6] seeks to enable predictable

engineering of cells and biological systems with altered or expanded

function. Critical to this effort is the (re)design of information

processing that establishes the timing and execution of cellular

operations. At the molecular level, interpretation of particular

internal and external stimuli is determined by the concentration and

activity of cellular components (such as proteins, nucleic acids, and

metabolites). Cellular responses, in turn, are executed by dynam-

ically modulating these components in accordance with the cell’s

genetic program. The task of engineering synthetic systems

therefore requires an understanding of not only the system components,

but also their interactions, and the control mechanisms that adjust

concentration and activity. In principle, a perfect understanding of

these factors enables the development of models that accurately

predict behavior for a proposed design. In reality, the scale and

scope of cellular physiology, coupled with an imperfect understand-

ing of the system and host components, make the construction of

such models quite challenging. For this reason, simplified models

that assume a well-defined interface between the circuit and host,

while ignoring the background processes of host metabolism, are

generally employed. If the predictions generated by the simple

models deviate from the experimental implementation it indicates

that the model insufficiently encompassed the critical components

and interactions of the system. In this manner, the validity of

common simplifying assumptions can partially addressed and

refined during the design process.

In this work we present a genetic circuit (ePop) that causes

oscillations in bacterial population density over time. The

oscillations arise through the unanticipated interplay of growth

conditions, the host cell, and one of the circuit’s ‘‘background

processes’’ – plasmid replication. Specifically, a density-dependent

rise in plasmid copy number leads to an increase in gene dosage and

concomitant increase in the expression of a plasmid-borne toxin

gene. Toxin expression causes cell lysis and decreases the population

density, allowing growth recovery, and generating oscillations as

multiple cycles proceed. Although this mechanism was not intended

during original circuit design, a refined mathematical model that

incorporates plasmid copy number control captures the circuit

dynamics, and predictions based on the model are validated by

experimental results. Conditional plasmid amplification as a con-

trol mechanism for population density has not previously been

described and evokes its potential for other applications. Further-

more, these results emphasize that copy number deserves increased

attention when designing plasmid-based synthetic gene circuits.

One synthetic biology focus has been exhaustive documentation

and standardization of individual biological parts [7]. While these

efforts are valuable, circuits such as ePop exemplify the context-

dependence of parts and devices and highlight the intrinsic

difficulty in attempting to anticipate every possible circuit/host/

condition interaction - even when using previously described and
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well-characterized parts, as is the case for ePop. Elucidating basic

control mechanisms and improving tools that enable the

assessment of parts in their final context is therefore important

to the advancement of synthetic biology.

Results

The simple gene circuit ePop causes oscillations in cell
density

The gene circuit (ePop) contains two modules (Figure 1A). The

first module confers cell killing and consists of a lysis gene (E) from

phage wX174 [8,9] placed behind the luxI promoter (PluxI) from

Vibrio fischeri, recently reclassified as Aliivibrio fischeri [10]. The E

protein is an inhibitor of MraY, an enzyme that catalyzes the

production of the first lipid intermediate in E. coli cell wall

synthesis. Cells deficient in MraY activity lyse during septation, a

process that requires newly synthesized cell wall [11]. The second

module was intended to confer density sensing and consists of an

inadvertently mutated luxR gene (luxR*) and an intact luxI gene

under control of an isopropyl b-D-1-thiogalactopyranoside (IPTG)

inducible promoter (Plac/ara-1). The luxR and luxI genes originate

from A. fischeri and constitute a quorum sensing pair. LuxI

produces a quorum signal, an acyl- homoserine lactone (AHL),

from cellular precursors. LuxR is a transcription factor that

responds to AHL and activates the PluxI promoter. In ePop, luxR*

contains a frame-shift mutation that introduces an early stop

codon and completely abolishes the luxR DNA-binding domain,

as determined by homology to TraR [12]. ePop was implemented

in a single plasmid that carries a chloramphenicol resistance

gene and a ColE1 origin of replication that lacks the Rom/Rop

protein.

When transformed into MC4100z1 cells, ePop generated

multiple cycles of population oscillations during long-term batch

cultures (Figure 1A). These oscillations were highly reproducible

and showed only minor difference upon induction by IPTG

(Figure S1B). MC4100z1 cells consistently displayed many cycles

of oscillations, proceeding at times for five rounds of lysis.

Oscillations were also observed in TOP10F’, DH5a, BW25113

and MG1655. Colony forming unit (CFU) experiments (Figure

S1C) showed that optical density reflected changes in viable cell

density, although loss of viability appeared to precede lysis –

consistent with previous characterization of E protein function.

MC4100z1 cultures that did not carry ePop did not oscillate under

these conditions (Figure S1D). The increasing baseline observed in

optical density can be attributed to the accumulation of lysed

‘ghost’ cells. Solid phase measurements with BW25113 show

synchronous growth arrest and lysis (Supplementary Movie S1).

The MC4100z1 oscillations were among the most robust

oscillations generated in a population of cells by synthetic gene

circuits. Oscillations from past studies were less robust [13,14,15],

operated among a sub-population of individual cells [13,14], or

required highly specialized devices to be observed [13,14,16,17].

Generation of oscillations by synthetic circuits has recently been

extended to mammalian cells [18].

To further characterize the oscillations, we investigated effects

of culturing conditions specific to our growth assay, including

media, temperature, and oxygenation. Complex media (Luria

Broth) might have contributed to oscillations as shifts in preferred

Figure 1. ePop dynamics in liquid culture. (A) MC4100z1 cells containing the ePop circuit (top) grown in liquid culture exhibited regular
oscillations in cell density (bottom). Each trace represents a culture started from an individual colony. (B–D) Cultures treated with AHL: red (1000nM),
green (100 nM), yellow (10nM), and black (0 nM). (B) Cells containing ePop oscillated independent of AHL concentrations. (C) Cells containing ePop-
lite oscillated, but showed dose-dependent sensitivity to AHL (D) Cells containing ePop-mini oscillated independent of AHL concentrations (although
only two cycles of lysis were observed here, other experiments with this plasmid showed up to four cycles).
doi:10.1371/journal.pone.0011909.g001
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nutrient sources during growth could impact E protein expression.

However, cells grown in defined M9 minimal media supplemented

with glycerol exhibited oscillations similar to those grown in LB

supplemented with glycerol (Figure S2A). Culturing temperature

affects many parameters, such as growth rate and rates of cellular

reactions – all of which might impact oscillations. Cultures grown

at 33uC oscillated, but both the oscillation period and threshold

OD were increased relative to cells grown at 37uC (Figure S2B).

Because the majority of experiments were performed under

mineral oil, and oxygen availability is a factor that affects

luminescence in V. fischeri, anaerobic growth conditions might

have contributed to oscillations. Aerobically grown cells under-

went one or two rounds of lysis, but did not oscillate as well. These

results indicate that oxygen availability contributed to but was

insufficient to account for the observed oscillations.

Oscillations do not depend on luxRI quorum sensing or
promoter-level regulation

For oscillations to occur, the lysis phenotype conferred by the E

gene must be triggered at elevated cell density. However, the luxR

truncation and the low impact of IPTG induction suggested that

the luxR and luxI genes were not responsible for density sensing. To

test their role, we constructed two new versions of the ePop circuit.

By design, both have the same PluxI-E module as ePop. ePop-lite

contains functional luxR but no luxI (Figure 1C); ePop-mini

contains neither luxR nor luxI (Figure 1D). Both ePop-lite and

ePop-mini generated oscillations similar to those generated by

ePop. Furthermore, exogenously added AHL did not affect

oscillations by ePop (Figure 1B) or ePop-mini (Figure 1D) but

suppressed growth of cells containing ePop-lite, in a dose-

dependent manner (Figure 1C). These results confirmed that,

unlike cells carrying ePop-lite, cells carrying ePop did not produce

functional LuxR. More significantly, luxR, luxI and AHL-mediated

cell-cell communication were shown dispensable for population

oscillations. We conclude that LuxR* plays no role in oscillations

given the truncation of the DNA-binding domain, insensitivity to

AHL, and ability of circuits lacking it (ePop-lite) to oscillate.

Oscillations require at least one negative feedback coupled with

time delay (Figure 2A). In our circuits, time delay can be accounted

for by the non-instantaneous rates of reactions affecting the level

and function of the E protein, including transcription, translation,

cell killing by the E protein, and E protein degradation. It is unclear,

however, what control mechanism established feedback in ePop

given the non-functional LuxR. Because the minimal oscillatory

circuit was determined to be the PluxI promoter preceding the E

gene, density-sensing must occur at either the level of E production

or at the level of E protein activity (Figure 2B).

We hypothesized that regulation of mRNA production was a

major cause of oscillations. This hypothesis predicts the existence of

some signal X, whose level is a function of cell density, that either

induces gene expression from the PluxI promoter or modulates gene

dosage. Several candidates for X might be capable of inducing E

gene transcription, such as the host cell’s quorum sensing systems.

Although E. coli do not possess a luxI homolog, their genome

contains a luxR homolog, sdiA, which might activate the PluxI

promoter. Two lines of evidence argued against this explanation.

First, cells containing the ePop circuit did not respond to AHL

(Figure 1C), which has been shown to bind SdiA [19] and activate

gene expression. Second, oscillations were not significantly affected

by indole (2mM), a stationary phase signal that has been reported to

act through SdiA [20]. E. coli possesses a second quorum sensing

system, the luxS-based AI-2 system [21], whose signal is derived

from 4, 5-Dihydroxy-2, 3-pentanedione (DPD). Enzymatically

produced DPD had a minor effect on oscillation dynamics, but

did not inhibit growth in the manner that might be expected were it

the feedback signal X (Figure S2C).

Figure 2. Possible sources of negative feedback. (A) Sustained population oscillations require negative feedback at the population level
mediated by an unknown signal (X) and time delay. (B) Model for activation of the PluxI promoter integrating information from cAMP and X, where n
represents the plasmid copy number per cell. The dashed line indicates the potential for post translational regulation, which we cannot rule out as a
possibility. (C) Glucose and cAMP were added to LB and the impact on oscillations recorded. 1% glucose (blue) abolished oscillations; 5mM cAMP
(red) slightly affected oscillation period; cultures containing 1% glucose and 5mM cAMP (green) reached an intermediate density and regained some
oscillation. Cultures containing no exogenous glucose or cAMP are shown in black.
doi:10.1371/journal.pone.0011909.g002
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It has been shown that cyclic adenosine monophosphate

(cAMP) and cAMP receptor protein (CRP) play a significant role

in V. fischeri luminescence [22,23]. In its natural genetic context,

the lux promoter is located between the divergently expressed

genes luxR and luxI. The literature suggests that cAMP-CRP

activates the left-operon (luxR) and represses the right operon

(luxICDABE). In ePop, the original CRP site is present and the E

gene is located at the position of right operon. E expression and

lysis was therefore predicted to be repressed by cAMP and

stimulated glucose (which reduces cAMP concentrations). Para-

doxically, glucose supplementation abolished oscillations and

allowed elevated culture densities (Figure 2, blue lines). cAMP

supplementation only slightly increased oscillation period and lysis

density (Figure 2, red lines). When added concurrently with

glucose, cAMP limited growth to intermediate densities, and some

cycles of lysis were recovered (Figure 2, green lines); cAMP thus

seemed necessary for oscillations to occur (Figure 2C). Neverthe-

less, exogenous cAMP neither prevented growth, nor increased

lysis severity when added in the absence of glucose. These data

suggest that cAMP is required for the manifestation of oscillations

but is not the feedback signal X. Furthermore, these results were

inconsistent with the previously reported promoter-level effects of

cAMP on transcription in the lux operon.

To address whether glucose and cAMP operated at the

promoter level, as well as whether specific promoter regions

required for oscillations could be isolated, a promoter deletion

series was constructed (Figure 3A). ePop constructs that removed

the lux box, cAMP site, or both maintained oscillations. Only those

that deleted the core promoter site and the ribosome binding site

abolished oscillations. These results demonstrate that transcrip-

tional activation from upstream promoter elements, such as the lux

box or CRP site, were not required for oscillations.

Plasmid amplification can account for negative feedback
In the apparent absence of transcriptional regulation, we

surmised that changes in gene dosage at higher cell density could

cause oscillations. Modulation of DNA levels has been implicated

in effects of iron deprivation on luminescence in V. fischeri as well as

E. coli transformed with the lux operon from V. fischeri [22]. To

investigate plasmid amplification, MC4100z1 cells carrying

plasmid pNewTet.E, which is a backbone vector of ePop

containing a resistance marker and origin of replication identical

to that of ePop, were grown in the presence and absence of

glucose. Plasmid content at various time points was measured by

the miniprep yield of culture samples resuspended to similar ODs.

Final values were normalized to OD readings to account for slight

difference in the density of resuspended cultures. pNewTet.E was

used rather than ePop because cells in the process of lysing are

fragile and cannot withstand the miniprep protocol. Given the

identical plasmid backbone, plasmid amplification should impact

copy number similarly. This allows pNewTet.E to serve as proxy

for ePop for the purposes of addressing copy number as a function

of culture phase under different media conditions. Miniprep yield/

OD was found to increase upon transition to stationary phase in

the LB grown cultures, but not those supplemented with glucose

(Figure 3B). Together with the existing understanding of ColE1

plasmid copy number control, this data suggested a mechanism for

both density sensing and inhibition of oscillations by glucose –

plasmid amplification.

ColE1 replication
Regulation of replication in ColE1-type plasmids has been well

characterized, for reviews see [24,25]. Briefly, the origin codes for two

constitutively expressed regulatory RNAs. One is an RNA primer

(RNA II) that initiates replication after recognition and cleavage by

RNase H. The other (RNA I) is short-lived, more highly expressed,

antisense RNA that associates with RNA II and inhibits processing

by RNase H, and therefore replication. In ColE1-type origins that

lack the Rom/Rop protein (like ePop), basal copy number is

increased because Rom/Rop stabilizes the RNA I/RNA II

interaction. This feedback provides a means of copy number

control because levels of RNA I increase with copy number and

serve to inhibit further replication (Figure 4). A consequence of this

mechanism is that copy number is very dependent on factors that

affect RNA I production and degradation.

Relevant to the ePop dynamics, studies have identified several

environmental factors that increase ColE1 copy number. Chlor-

amphenicol causes the arrest of protein synthesis and chromo-

somal replication while stimulating replication from the ColE1

origin resulting in drastic plasmid amplification [26]. Amino acid

starvation can result in amplification similar to chloramphenicol

and was found to be particularly pronounced in relaxed strains

[27] invoking a role for the stringent response mediators

(p)ppGpp, relA, and spoT. Also, growth rate is inversely related

to copy number across cells strains as well as by altering media

composition for a given cell strain [28,29]. This relationship is

observed in both relA+ and relA strains (Lin-Chao et al. 1986) and is

somewhat enhanced for plasmid lacking the Rom/Rop protein

[30]. Finally, IPTG can lead to increased copy number of ColE1

plasmids, but only when protein expression caused a decreased

growth rate and drop in ppGpp levels [31].

Details on a mechanistic link between environmental factors

and ColE1 replication have recently emerged and suggest that

uncharged tRNAs directly catalyze the degradation of RNA I

thereby dis-inhibiting replication [32]. Accumulation of uncharged

tRNAs can be mitigated by the stringent response and ppGpp

accumulation, which is perturbed in MC4100z1 [33], and

prevented by chloramphenicol respectively [34,35]. For a brief

discussion of the interplay between ColE1 replication, stringent

control, and plasmid amplification in MC4100z1, see Figure 4.

Construction of a mathematic model that captures ePop
dynamics

The complexity and number of inputs inherent to the both the

stringent response and ColE1-type plasmid regulation (only

partially encompassed in Figure 4) challenge the construction

and parameterization of a comprehensive and accurate mathe-

matical model. To this end, we have constructed a drastically

simplified model to capture the key aspects of observed dynamics.

The purpose of our model is not to intricately simulate ColE1 copy

number control or its interaction with metabolism, and more

detailed models of these types have been built [36,37,38,39,40].

Rather the model provides a simplified framework to interrogate

effects of the perturbations on plasmid copy number amplification

with regards to ePop oscillations.

We propose the following: E. coli growth proceeds until culture

density is sufficiently high. At high cell density, RNA I levels and

division rate decrease, causing plasmid amplification, leading to

increased basal production of E. Lysis of the majority of the cells

results in nutrient release and loss of cell density signals allowing

growth recovery and a subsequent cycle of growth and lysis. A

schematic of these major reactions is shown (Figure 5A). A system of

ordinary differential equations describes key reactions for the four

basic model components: cell growth and killing, E protein

accumulation, plasmid amplification, and modulation of RNA I

levels (Figure 5B). By broadly considering the impact of cell density

on RNA I, the model is equivalently valid whether uncharged

Oscillations by Gene Circuits
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tRNAs provides the feedback or some other molecular mechanisms

are involved in coupling cell density to plasmid amplification.

Perturbations that modulate copy number impact
oscillations

Parameterized appropriately (Figure 5C), the model can

generate sustained or damped oscillations in the absence of

promoter-level or post-transcriptional regulation. It cannot be

determined from batch culture experiments whether the oscilla-

tions caused by ePop are damped or sustained because conditions

change as nutrients are depleted. However, the model can indi-

cate parametric space that promotes sustained oscillations. A key

parameter that determines the strength of feedback between cell

density and copy number control is d1, the half-maximal constant

for RNAI cleavage by cell density. Bifurcation analysis indicates

that oscillations become sustained for when d1 is sufficiently small

(Figure 5D).

Given the established link between chloramphenicol and

plasmid amplification (Figure 4), we hypothesized that if ePop

oscillated though a plasmid amplification mechanism, increasing

Figure 3. Plasmid amplification rather than promoter regulation may be the cause of oscillations. (A) Feedback is not at the promoter
level. A promoter deletion series demonstrates that removal of the cAMP receptor site (DCRP), Lux box (DLUX), or both (DCRP/LUX) did not abolish
oscillations. Deletion of the full promoter (DPROMOTER) did abolish oscillations, but this can be explained by deletion of the RNA polymerase binding
site and ribosome binding site (DRBS). (B) OD (triangles) and miniprep yield (circles) from cells grown in LB (open symbols, blue) and LB + 0.2%
glucose (closed symbols, red). Miniprep yield increases upon entry to stationary phase in the LB culture, but not in the glucose supplemented culture.
doi:10.1371/journal.pone.0011909.g003
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chloramphenicol should mirror the effect of decreasing d1.

According to our model, decreasing d1 would lead to an increasing

number of cycles of damped oscillations (Figure 6A, left column) or

sustained oscillations (corresponding to an infinite number of

cycles, Figure 5D). Experimentally, we indeed observed an

increasing number of oscillations increasing chloramphenicol

concentrations (Figure 6A, right column), consistent with the

model prediction.

Similarly, the model provides an interpretation for the effects of

glucose. If E synthesis rate (b1) is set to zero, lysis does not occur

and the model reduces to a simplified treatment ColE1 copy

number control. Increasing d1 in this context minimizes the

plasmid amplification that occurs as stationary phase is reached

and mirrors the impact of glucose on the accumulation of the ePop

backbone pNewTet.E (Figure 6B). If we consider the impact of

glucose on ePop dynamics as being mediated through an increase

in d1 then the observation that glucose abolishes oscillations

(Figure 2C) is not surprising. On a molecular level it is more

difficult to attribute the precise role played by glucose, which could

exert an impact through growth rate, ppGpp production/

degradation by SpoT, overall energetic state or any number of

host pathways under catabolite control.

Discussion

Given the frequent application of the quorum sensing in gene

circuits [41,42,43,44,45,46,47,48], it is perhaps surprising that

quorum sensing-like behavior resulting from plasmid amplification

Figure 4. Modeling plasmid amplification, lysis, and oscillations. The diagram shows stringent control, plasmid replication, and a possible
mechanistic link. The host stringent response prepares E. coli cells for prolonged periods of nutritional limitation through the control of ppGpp levels
[56,57]. Although the ppGpp response is multifaceted, for simplicity, only the regulation of tRNAs is shown. In wild-type cells ppGpp is either
produced by RelA as a consequence of uncharged tRNAs resulting from amino acid starvation, or by SpoT in response to other nutritional stresses.
However, because MC4100 cells are relaxed (relA1 allele) ppGpp is not produced in response to amino acid starvation and uncharged tRNA levels can
accumulate to a greater degree. Uncharged tRNAs have been shown to degrade RNA I, the negative regulator of plasmid replication, in vitro, and lead
to plasmid amplification when overexpressed in vivo [32]. Indeed, relaxed hosts experience ColE1 plasmid amplification when starved for amino acids.
Our observations on ePop are consistent with a model where uncharged tRNAs accumulate and plasmid is amplified at high cell density and nutrient
limitation. Low nutrient goes unacknowledged by the cell because RelA is not present to sense uncharged tRNAs and chloramphenicol is present to
inhibit ppGpp accumulation. Plasmid amplification leads to increased E expression, cell lysis, decreased population density, and subsequent release
of nutrient limitation. Although this model can account for the observations, we cannot exclude the possibility that other interactions exist to provide
alternate or additional linkage between host metabolism and plasmid replication.
doi:10.1371/journal.pone.0011909.g004
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has not been described or encountered in synthetic systems until

now. One possible explanation is due to differences in the

threshold at which downstream genes become effective, under-

scoring the importance of matching the dynamic range of input/

output elements in a circuit (Figure 7). Cell density induced

increases in mRNA production should result in comparable

expression of either the E protein or a typical reporter protein,

such as the green fluorescent protein (GFP). Whereas low levels of

the E protein can cause loss of viability [49], at the same level, the

reporter protein may be below the detection threshold of standard

methods [7]. Our results also suggest that plasmid amplification is

most pronounced when the ColE1 origin and chloramphenicol are

used in tandem. For this reason the chloramphenicol resistance

marker could be considered partially incompatible with the ColE1

origin when minimal plasmid copy number change is desired. In

addition, it appears that culturing conditions and cell strain have a

significant impact on oscillations. Perhaps the confluence of

needed conditions for significant plasmid amplification was not

met in the past. In this regards, ePop itself can be valuable as a

probe of cell physiology to interrogate what culturing and genetic

conditions must be met for plasmid amplification. For example,

observations on the impact of glucose on ePop oscillations

motivated the experiments demonstrating that glucose inhibited

plasmid amplification (Figure 3B). As a probe, ePop has the

advantage of a simple observable (OD), high sensitivity, and rich

information from complex dynamics. A better understanding of

Figure 5. A simplified model for ePop function. (A) Solid lines indicate positive and negative regulation. Dashed lines represent the effect of cell
growth on component dilution. a. Increasing cells density causes RNA I degradation (possibly through uncharged tRNAs. See Figure 4 for more details).
b. RNA I inhibits plasmid replication (through its interaction with RNA II). c. RNA I is produced from the ePop plasmid; elevated plasmid levels increase
RNA I production. d. E protein is produced from ePop plasmid by basal expression from the luxI promoter in the absence of functional LuxR. Elevated
plasmid levels increase E protein production. e. E protein decreases cell density by blocking cell-wall synthesis and lysing cells. (B) Dimensionless ODE
model of the circuit. Changes in cell density (n) are modeled as logistic growth with an intrinsic growth rate, a. We assume that killing of cells by the E
protein is cooperative and describe it using a Hill-type function (Hill coefficient, p). We note that cooperatively of E protein-mediated killing is not
required for generating oscillations. The E protein is produced from a plasmid (y) with a rate b1 and degraded with a rate c1; both processes follow first-
order kinetics with regards to the amount of plasmid and E protein, respectively. Plasmid replication is inhibited by RNA I (s), and replication inhibition
follows a power of hyperbolic function where r is the effective number of reaction steps in the inhibitory scheme [1]. b2 sets the maximum plasmid
replication rate and c3 the intrinsic decay rate. RNA I is produced from the plasmid with a rate b3 whereas its degradation rate is dependent on the cell
density. Degradation of RNA I is described by a Hill-type function (Hill coefficient, v) to account for possible cooperativity. E protein, plasmid and RNA II
are subject to dilution with cell growth. (C) The base parameter set that can generate sustained oscillations. Rate coefficients are normalized to a
maximum killing rate (i.e. the maximum cell killing rate by E protein is 1). Biologically relevant parameter values have been chosen to illustrate the basic
dynamics. E protein production rate b1 is set to be small to reflect leaky expression. Plasmid decay rate c3 is set small to reflect the stability of plasmid
molecules, and under oscillatory conditions plasmid dilution dominates. (D) Bifurcation diagram showing a region of sustained oscillations over varying
‘half-maximal constant for RNAI cleavage’ (d1). Insets show simulated time courses of cell density for three d1 values. Damped oscillations can be
generated outside the bifurcation region.
doi:10.1371/journal.pone.0011909.g005
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the factors that influence ColE1 control in a particular genetic and

environmental context will enable the exploitation of plasmid

amplification as a feature in future circuits.

The ease with which plasmids are isolated, genetically engi-

neered, and re-introduced has led to their near ubiquitous use in

synthetic biology, despite the potential consequences of variable

copy number. Theoretical work has shown that even small changes

to copy number values can result in significant non-linear effects on

simple network motifs [50]. Nevertheless, plasmid copy number is

often ignored under the assumption that any variation (basal or

dynamic) will not have a large impact on the overall performance of

the genetic device. In the case of ePop, this assumption was violated

as plasmid amplification appears to be the cause of population

oscillations. Placement of a circuit subsystem like copy control in a

black box while ignoring molecular details is not faulty per se, and

often necessary in order to initiate the engineering of large-scale

systems [51]. However, it is most appropriate when the input/

output relationship of the boxed subsystem is well defined.

Unfortunately, no equation exists that takes any combination of

strain genome, media composition, temperature, and chloram-

phenicol concentration into account while accurately returning

copy number as a function of cell density.

ePop therefore underscores a fundamental challenge in

standardizing cellular parts for synthetic biology [4,52]. The value

of information from standardized parts is critically dependent how

closely characterization conditions mirror implementation condi-

tions. When choosing parts for engineering a circuit, literature

data are the primary resource, but such data are often available for

the parts only in their natural context or a narrow range of

characterization conditions. Because biological parts are influ-

enced by, and exert their influence through, interactions with

other parts and their host cell, their behavior likely changes with

their context. For example, even identical parts and network

motifs can behave differently depending on their physical DNA

configuration [53]. Circuit-host interactions (Figure 7) can

drastically influence dynamics as evidenced by this work and the

recent example of circuit-induced growth retardation leading to

bistability [54]. Furthermore, it is impossible to assume that all of a

part’s functions and interactions have been determined, even for

well-characterized systems. While the definition of ‘‘standard’’

biological parts and the concept of parts abstraction and

hierarchical composition can often simplify circuit design and

analysis, these strategies can drastically underestimate the potential

complexity of circuit dynamics. The likelihood that circuit

behavior will deviate from predictions derived from characteriza-

tion information scales non-linearly with the size and complexity

of circuit as each new part can have unexpected interactions with

every other circuit component and the host strain.

These issues call for greater emphasis on the development of

methods to produce and monitor systems using parts for which

Figure 6. Model predictions and experimental responses to system perturbations. (A) Model predictions of increasing d1 outside the
bifurcation region on oscillations (left) match the result of decreasing chloramphenicol concentration (right), providing further support for the
plasmid amplification mechanism. All chloramphenicol concentrations tested completely inhibited the growth of MC4100z1 cells without ePop and
are therefore sufficient to prevent the growth of plasmid free segregates. (B) (top) Simulation of plasmid levels as a function of cell density in the
absence of E protein (b1 set to 0). Increasing d1 values result in depressed plasmid amplification. (bottom) Experimental data of plasmid amplification
(plotted as DNA/cell as a function of OD) demonstrate adding glucose or lowing chloramphenicol concentrations have the apparent effect of
increasing d1. Glucose when present was used at 0.2% and chloramphenicol concentrations were 30.6mg/mL or 106 mg/mL. Coloring of traces is
meant to demonstrate the trend and should not imply a direct quantitative agreement of specific model values with specific culturing conditions.
The two traces at 106 mg/mL are from the same data as Figure 2B.
doi:10.1371/journal.pone.0011909.g006

Oscillations by Gene Circuits

PLoS ONE | www.plosone.org 8 July 2010 | Volume 5 | Issue 7 | e11909



data are incomplete, and whose behavior may change when

placed in a new setting. Every circuit whose real-world behavior

varies dramatically from our best predictions represents an

opportunity to better understand the components, interactions,

and control mechanisms of both the system and the host. The

advantages of a standard parts-based approach should not obscure

the fundamental biological insight that can be gained from a more

holistic analysis of synthetic systems and their emergent properties

– especially when those systems ‘‘fail’’ to behave as anticipated.

Materials and Methods

Strains, growth conditions, chemicals and media
MC4100Z1 cells were the gift of M Elowitz. BW25113 and

MG1655 were obtained from the E. coli stock center. Unless

otherwise noted Luria Broth (LB) buffered with 100mM MOPS

(pH = 7.0) was used for cell growth. 3oxoC6 homoserine lactone

(AHL) was synthesized by the Duke Small Molecule Synthesis

Facility. DPD was produced using pfs and luxS genes cloned from

MG1655, expressed in BL21 (DE3) cells using pET-21 and

purified using an immobilized metal affinity chromatography

column (GE Healthcare). The enzymatic reaction was performed

as previously described [55] and 5,59-Dithio-bis(2-nitrobenzoic

acid) (DTNB, Ellman’s reagent) was used to calculate yield on the

basis of homocysteine released. All other chemicals were

purchased from Sigma-Aldrich.

Liquid culture monitoring
Cells were grown in 48 well Tissue Culture Plates (Falcon

353078, BD Labware) inside a Perkin-Elmer VICTOR3 plate

reader heated to 37uC unless otherwise noted. Wells containing

500mL fresh media and the appropriate chemicals were inoculated

with 50mL of a starter culture (grown aerobically in a 5mL culture

tube for 2–4h from glycerol stocks or fresh colonies). 250mL mineral

oil was layered above each well to prevent evaporation over the

course of the experiment. Care was taken to ensure starter cultures

did not reach densities high enough to induce lysis. Prior to each

measurement, plates were shaken for 5 sec in an orbital pattern.

OD at 600nm was measured every 15 min. Data presented are the

raw OD values that result from 500uL culture in the plates used.

They have not been modified to account for path length.

Plasmids
ePop (ColE1 origin, chloramphenicolR) was constructed using

the lux box region (140 bp upstream of luxI in V. fischeri) from

pluxGFPuv [43] and E gene coding sequence from wX174 (NEB).

Each region was PCR-amplified and then joined together in an

overlap PCR reaction. The ‘lux box-E gene’ fragment was inserted

into the AatII site of host vector pLuxRI2 [44]. ePop-mini was

constructed by inserting the lux box-E gene fragment (AatII digest

of ePop) into pLuxR2 [44] at the AatII site. ePop-lite was

constructed by digesting ePop with HindIII (deleting most of luxR

and all of luxI) and re-ligating the larger fragment from an agarose

gel purification. Promoter deletion mutants were generated using

divergent primers flanking the deletion of interest. Each primer

introduced a terminal NheI site. Digestion and intramolecular

ligation generated plasmids where the region targeted for deletion

was replaced by a 6 base pair NheI ‘‘scar’’. pNewTet.E was

generated by introducing a 40bp oligo with NdeI and NheI sites

into the AatII site of pProTet.E (Clontech).

Plasmid content determination
A starter culture of MC4100z1 cells carrying the pNewTet.E

plasmid was grown until it had entered early logistic growth

(OD = 0.28). 750mL of starter culture was added to 2L of LB or

LB+glucose (0.2% final concentration) in 6L non-baffled flasks and

grown at 37C and 180rpm. Chloramphenicol was added to the

media to a final concentration of 30.6 mg/mL or 106mg/mL. An

equivalent OD of cells was removed at various time points using a

previously determined calibration curve to account of the non-

linearity of OD measurements. Cultures were centrifuged for

10min at 5000g and re-suspended in 2mL Tris-buffered Saline.

240mL of the resuspended culture was added to 2mL LB and OD

was recorded. Resuspended OD values were all within 20% of one

another, enabling linear normalization. The remaining re-

suspended culture was used to perform triplicate 500mL minipreps

using the Zyppy miniprep kit (Zymo Research). Miniprep yield

was measured on a ND-1000 UV spectrophotometer (Nanodrop).

Supporting Information

Figure S1 OD monitoring of MC4100z1 cells carrying the ePop

circuit. Cells were grown in the absence (A) or presence (B) of

1mM IPTG and OD (600nm) was measured (every hour in this

case) in a plate reader. 1mM IPTG did not drastically change the

nature of the oscillations but did affect the synchronization across

different colonies and starter cultures (different colored traces) (C)
Colony forming unit (CFU) experiments were performed every

three hours and show that viable cell density correlated with OD.

(D) MC4100z1 cells that do not carry any plasmids (red) do not

show the oscillations exhibited by MC4100z1 cells that carry the

ePop plasmid (green) demonstrating that strain and culturing

conditions were insufficient to produce oscillations.

Found at: doi:10.1371/journal.pone.0011909.s001 (0.48 MB TIF)

Figure 7. Gate matching and unexpected feedbacks. (top) Total
PluxI activity is the combination of plasmid amplification and quorum
sensing. In ePop, defective LuxR prevents the contribution from quorum
sensing - leaving only that of plasmid amplification. Low PluxI activity is
sufficient to cause lysis, due to the extreme toxicity of the E gene. A more
typical reporter used for promoter characterization (such as GFP) may be
undetectable at this level, causing the effects of plasmid amplification to
be missed. (bottom) A gene circuit can be designed as an open loop to
process a series of inputs into defined outputs. When circuits are placed
into host cells, however, hidden interactions between circuit and cellular
components can introduce feedback that significantly impacts circuit
dynamics. In ePop, the interaction between cell density and plasmid
amplification is an unanticipated feedback that allows the circuit output
(cell density) to serve as an input by modulating gene dosage.
doi:10.1371/journal.pone.0011909.g007
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Figure S2 Effect of changing culturing conditions. (A) Cells

grown in buffered LB supplemented with glycerol (top) showed

similar oscillations to cells grown in M9 minimal media

supplemented with glycerol (bottom). Different colored traces

represent individual colonies. Oscillations are therefore not due to

some unknown component in complex media or shifts in preferred

media source. (B) Cells grown at 33C (black) exhibit an elevated

lysis density and longer period than those grown at 37C (red). (C)
Cultures treaded with DPD exhibited one of two phenotypes in

response. Cells either oscillated with a similar period but recovered

more quickly from an initial round of lysis (top) or had oscillation

period significantly increased by DPD (bottom). The differences

between the two types of colonies, presumably of genetic origin,

have not been determined. DPD and AI-2 did not appear to be the

feedback signal X, however, because neither prevented growth or

caused increased lysis.

Found at: doi:10.1371/journal.pone.0011909.s002 (0.57 MB TIF)

Movie S1 Solid phase growth monitoring of BW25113 cells

carrying the ePop plasmid. Microscope slides were prepared by

allowing warm LB agarose (1%) containing the appropriate

antibiotics and inducers (1mM IPTG, 100ng/uL aTc) to be drawn

under a suspended cover slip. After cooling, the coverslip was

removed and the agarose pad cut to size with a clean razor blade.

1 mL low density starter culture (BW25113, ePop) was placed on

the agarose and a fresh coverslip was applied. Slides were sealed

with mineral oil and nailpolish to prevent evaporation. Cells were

placed on a Leica inverted microscope in an environmentally

controlled enclosure set to 37uC. After 1–2 hours, a region for

monitoring was selected on the basis of exhibiting cell division.

Images were captured using a Hammamatsu 1384 ORCA-ERA

camera at 4 frames per minute overnight using autofocus feature

to maintain the focal plane.

Found at: doi:10.1371/journal.pone.0011909.s003 (4.17 MB

MP4)
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