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Zinc-α2-glycoprotein (ZAG) is a major plasma protein whose levels increase
in chronic energy-demanding diseases and thus serves as an important
clinical biomarker in the diagnosis and prognosis of the development of
cachexia. Current knowledge suggests that ZAG mediates progressive
weight loss through β-adrenergic signalling in adipocytes, resulting in the
activation of lipolysis and fat mobilization. Here, through cross-linking
experiments, amine oxidase copper-containing 3 (AOC3) is identified as a
novel ZAG binding partner. AOC3—also known as vascular adhesion
protein 1 (VAP-1) and semicarbazide sensitive amine oxidase (SSAO)—
deaminates primary amines, thereby generating the corresponding alde-
hyde, H2O2 and NH3. It is an ectoenzyme largely expressed by adipocytes
and induced in endothelial cells during inflammation. Extravasation of
immune cells depends on amine oxidase activity and AOC3-derived H2O2

has an insulinogenic effect. The observations described here suggest that
ZAG acts as an allosteric inhibitor of AOC3 and interferes with the associ-
ated pro-inflammatory and anti-lipolytic functions. Thus, inhibition of the
deamination of lipolytic hormone octopamine by AOC3 represents a novel
mechanism by which ZAG might stimulate lipolysis. Furthermore,
experiments involving overexpression of recombinant ZAG reveal that its
glycosylation is co-regulated by oxygen availability and that the pattern of
glycosylation affects its inhibitory potential. The newly identified protein
interaction between AOC3 and ZAG highlights a previously unknown
functional relationship, which may be relevant to inflammation, energy
metabolism and the development of cachexia.
1. Introduction
Zinc-α2-glycoprotein (ZAG) was first isolated from human plasma more than 50
years ago. Its name derives from its physico-chemical properties, as it precipitates
with bivalent ions such as zinc, appears in the α2 fraction of electrophoretically
separated plasma proteins and is glycosylated [1]. The highest expression levels
of ZAG are found in liver [2,3], white adipose tissue [4,5] and prostate [6,7].
ZAG is primarily found in body fluids including plasma and semen, and is
thought to mediate its effect by binding to the β3-adrenergic receptor [8]. ZAG
is a major histocompatibility complex (MHC)-like molecule and accordingly its
structure comprises a peptide-binding groove, surrounded by α-helices forming
the α1 and α2 domains and the α3 subdomain [9,10]. Unlike classical MHC
molecules, ZAG has no transmembrane domain and is therefore only found as
a soluble protein in body fluids [11,12]. Furthermore, ZAG specifically binds
fluorophore-tagged 11-(dansylamino)-undecanoic acid, which is not observed
for other MHC homologues [11]. To date, only prolactin-inducible protein has
been identified as a physiological ligand for seminal ZAG [12] but it is not
clear whether ZAG forms part of the antigen-processing pathway.

ZAG has been associated with many divergent biological functions. For
example, after stable transfection or addition to the medium, ZAG inhibits
the progression of cancer cells through the cell cycle by downregulation of the
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cyclin-dependent kinase 1 (CDK1) gene [13]. Intriguingly, the
opposite effectwas observed in 3T3-L1 pre-adipocytes: transfec-
tion with ZAG cDNA stimulated cell growth but inhibited
differentiation, accompanied by a nearly 40% reduction in
triglyceride content [14]. ZAGhas also been identified as a ribo-
nuclease, with comparable activity to onconase, but a much
lower activity than RNase A [15]. In seminal fluid, ZAG is
found on the surface of spermatozoa, where it is thought to be
involved in sperm motility and capacitation [16,17].

ZAG is an important clinical marker in the diagnosis and
prognosis of cancer [7,18]. It is strongly elevated in the plasma
of cancer patients suffering from progressive weight loss
[19,20]. Elevation of ZAG has been especially observed in
patients suffering from cancer of the gastrointestinal system
[21,22], breast [23,24] and prostate gland [7,18,25,26]. All
these malignancies are accompanied by higher energy expen-
diture and progressive loss of muscle and fat mass [4,27,28].
This devastating state—named cachexia—is a multi-factorial
syndrome that cannot be overcome by nutritional support
and ultimately leads to functional impairment. The positive
correlation between increased ZAG expression and weight
loss has also been observed in mice suffering from tumour-
induced cachexia [28–30]. ZAG is also elevated in chronic
diseases of the heart [31], the kidney [32,33] and the lung
[34–36], as well as in AIDS (acquired immunodeficiency
syndrome) [37,38], all of which are also associated with the
development of cachexia. However, ZAG levels are also
significantly reduced during the early phase of sepsis, but
increase again during recovery [39]. This is underpinned by
the finding that ZAG is downregulated by pro-inflammatory
mediators such as TNF-α: an inverse correlation between
ZAG and TNF-α, VCAM-1, MCP-1 and CRP has been
observed in patients suffering from systemic inflammation
associated with chronic kidney disease, obesity and metabolic
syndrome [40–42]. Therefore, ZAG is described as having an
anti-inflammatory function.

ZAG has been also linked to the development of organ
fibrosis [43]. An important mediator of this process is TGF-β,
which turns fibroblasts into myofibroblasts, resulting in the
production of large amounts of collagen and extracellular
matrix components, thereby inducing dedifferentiation of sur-
rounding parenchymal cells [44,45]. ZAG has been shown to
counteract TGF-β-mediated effects [46]. Indeed, in experimen-
tal models of renal tubulointerstitial fibrosis, ZAG deficiency
exacerbates deposition of interstitial collagen and fibroblast
activation [43]. Furthermore, induction of cardiac hypertrophy
and fibrosis in mice by thoracic aortic constriction leads to the
same tissue alterations as interstitial fibrosis and fibroblast
activation [43]. Notably, the exogenous application of recombi-
nant ZAG reduces fibrosis in ZAG knockout (k.o.) mice to the
level of heterozygous littermates. In vitro experiments revealed
that TGF-β-induced expression of α-SMA can be blocked
by addition of ZAG. Co-immunoprecipitation experiments
showed that ZAG neither interacts with TGF-β nor its receptor,
however. Furthermore, blocking ZAG signalling, which is
supposedly mediated through the β3-adrenergic receptor, by
propranolol, a non-selective antagonist of β-adrenergic recep-
tors, did not restore TGF-β-induced α-SMA expression. This
suggests that ZAG mediates its anti-inflammatory effect
through a β3-adrenergic-independent signalling pathway [43].

ZAG-deficient mice exhibit mild obesity and reduced
in vitro lipolysis. The lipolytic effect was tested by increasing
cAMP levels using forskolin and isobutylmethylxanthine
and stimulating β-adrenergic receptors using isoproterenol
(β-nonspecific) and CL2316,243 (β3-specific). All tested sub-
stances showed reduced lipolysis compared with wild-type
(wt) controls [47]. The authors suggest that ZAG might
mediate its effect by binding to a receptor other than the
β3-adrenergic receptor.

Taken together, ZAG seems to play many physiological
roles, although scientists disagree on which signalling
pathways mediate its effects. Hence, identifying the ZAG
receptor could provide much-needed insight into the mech-
anism of ZAG function and stimulate future work in basic
and clinical research on ZAG.
2. Results
2.1. ZAG binds to ectoenzyme AOC3
To attempt to identify ZAG interaction partners, purified
recombinant ZAG and freshly prepared adipocyte plasma
membranes were co-incubated and any physical interactions
between them were stabilized by a photoactivatable cross-
linker molecule (figure 1). Both human and murine ZAG
(without leader sequence) were produced in E. coli after
cloning in the expression plasmid pGEX-6P-2 and affinity
purified by GST (glutathione-S-transferase)-tag. Both purified
human and mouse proteins (GST-hZAG and GST-mZAG,
respectively) and GST-tag alone—serving as a control—
were labelled with the photoactivatable crosslinker
Sulfo-SBED (Sulfo-N-hydroxysuccinimidyl-2-(6-[biotinamido]-
2-(p-azido benzamido)-hexanoamido) ethyl-1,30-dithioproprio-
nate). Labelled GST-mZAG and GST-tag were incubated with
prepared plasma membranes from murine wt adipose tissue,
while GST-hZAG was incubated with plasma membrane
from differentiated SGBS cells (human adipocyte cell line).
After UV light exposure and the addition of β-mercaptoethanol
(reducing agent), the samples were separated by SDS-PAGE
and proteins revealed by western blot (WB) using streptavidin
and anti-GST antibody. Using streptavidin, one band was
detected using GST-tag (figure 2a(i), lane 1) as bait protein
and three bands were detected using GST-mZAG or GST-
hZAG as bait proteins (figure 2a(i), lane 2 and 3). The lowest
band at approximately 26 kDa (kilodalton) represents the
labelled GST-tag (*) (figure 2a(i), lanes 1–3) and was found
in the control and samples incubated with GST-ZAG (**).
This is due to loss of the GST-tag, which could not be comple-
tely prevented during overexpression of GST-ZAG in E. coli.
The band at approximately 66 kDa represents labelled
GST-ZAG (**) (figure 2a(i), lanes 2 and 3). The band at approxi-
mately 80 kDa represents a hitherto-unknown protein X (***),
to which a biotin tag was transferred after reducing the cross-
linker molecule with β-mercaptoethanol (figure 2a(i), lanes 2
and 3). Notably, the approximately 80 kDa band was only
present when GST-mZAG or GST-hZAG were used as bait
proteins. The GST-tag alone was not associated with any
signal at approximately 80 kDa. Interestingly, using plasma
membrane of SGBS cells (of human origin) led to the same
signal as observed with murine wt adipocyte plasma mem-
brane (figure 2a(i), lane 3). After stripping, the WB membrane
was reprobed with α-GST antibody, when only GST-tag
(figure 2a(ii), lane 1–3), GST-tagged murine ZAG (figure 2a(ii),
lane 2) and GST-tagged human ZAG (figure 2a(ii), lane 3)
were detected. Under non-reducing conditions (i.e. without
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Figure 1. Synopsis of the cross-linking experiment. (a) First, murine and human GST-tagged ZAG and GST alone were overexpressed in E. coli and affinity purified.
Plasma membranes were isolated from murine adipose tissue and SGBS cells. Purified proteins were labelled with Sulfo-SBED and co-incubated with isolated plasma
membranes. (b) GST-ZAG binds to its interaction partner, whereas GST alone does not. (c) To stabilize the protein interaction, samples were exposed to UV light,
inducing the highly reactive aryl azide (red circle, b) to form a covalent bond with a nearby amine. After cross-linking, the samples were delipidated and bound to
streptavidin agarose via the biotin tag (blue square). The red-dotted box indicates the GST-ZAG/receptor complex, the blue-dotted box the GST-tag serving as a
control. (d ) Treated samples were separated by SDS-PAGE. Adding β-mercaptoethanol (reducing agent) split the disulfide bond leading to two bands, GST-ZAG (*)
and the unknown protein (**). Without β-mercaptoethanol, a shift in MW of GST-ZAG was observed (***). For identification of the unknown interaction partner,
samples were separated by non-reducing SDS-PAGE, stained with Coomassie Brilliant Blue and cut into pieces. Proteins extracted from gel slices were subjected to
LC-MS/MS peptide sequencing.
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β-mercaptoethanol and leaving the crosslinker uncleaved) the
GST-ZAG signal (figure 2a(iii), lane 1) shifts to a size of
around 250 kDa (figure 2a(iii), lane 2).
Due to the simplicity and availability of murine adipose
tissue, special focus was placed on identifying the 80 kDa
interaction partner. Non-reduced samples from the above
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Figure 2. Analysis of cross-linking experiment. (a)(i) WB. Cross-linking samples carrying a biotin tag were bound to streptavidin agarose and eluted with 1 × SDS.
Samples were reduced with β-mercaptoethanol and probed with streptavidin; lane 1: GST-tag incubated with plasma membrane of murine wt white adipose tissue;
lane 2: GST-mZAG incubated with plasma membrane of murine wt white adipose tissue; lane 3: GST-hZAG incubated with plasma membrane of differentiated SGBS
cells. (ii) WB. The membrane was stripped and probed with α-GST-antibody; lane 1: GST-tag incubated with plasma membrane of murine wt white adipose tissue;
lane 2: GST-mZAG incubated with plasma membrane of murine wt white adipose tissue; lane 3: GST-hZAG incubated with plasma membrane of differentiated SGBS
cells. (iii) WB. GST-mZAG (lane 1) and cross-linked GST-mZAG without β-mercaptoethanol (lane 2). (iv) Coomassie Brilliant Blue-stained SDS gel: proteins were
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plasma of C57Bl6 wt mice. After performing the GST-pulldown experiment proteins were separated by SDS-PAGE and blotted proteins detected using α-GST and
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affinity purification were separated by native SDS-PAGE to
guarantee their presence in the same gel fraction. The gel
was stained with Coomassie Brilliant Blue and bands excised
with a scalpel (figure 2a(iv)). For orientation, a WB of non-
reduced samples probed with streptavidin was carried out
in parallel. Excised bands were prepared and subjected to
mass spectrometry-based peptide sequencing. One excised
band contained ZAG and identified SSAO (figure 2b red
box)—from this point named AOC3—as a putative interaction
partner. AOC3 has a molecular weight of approximately
84 kDa and exists as a homodimer. Given this, the shift of
the GST signal to a higher molecular weight under non-
reducing conditions (figure 2a(iii)) can be explained by
binding between one homodimeric AOC3 and at least one
GST-ZAG molecule. To confirm the newly identified protein
interaction, it was attempted to purify AOC3 from E. coli.
Since all expression conditions failed, a modified method
using HEK293 cells as expression host was chosen [48].
Using lentivirus, secretable forms of GST-AOC3 (figure 3)
and GST-tag were stably expressed in HEK293 cells. Both
proteins were affinity purified from the conditioned
medium. To ascertain whether recombinant GST-AOC3
interacts with murine plasma ZAG, a GST-pulldown was per-
formed (figure 2c). Plasma of overnight-fasted C57Bl6 male
wt mice was incubated with recombinant GST-AOC3 and
GST as a control. A WB of the eluate fraction revealed that
GST-AOC3 bound ZAG from murine plasma, whereas GST
alone did not.

2.2. ZAG functions as an allosteric inhibitor of AOC3
AOC3 belongs to the family of copper-containing amine
oxidases. It catalyses the oxidative deamination of primary
amines, generating the corresponding aldehydes, hydrogen
peroxide (H2O2), and ammonia (NH3). The enzyme forms a
homodimer, with each unit bound to the plasma membrane
via a short transmembrane domain and the catalytic centre
oriented on the extracellular side [49]. For activity measure-
ments, recombinant or endogenous AOC3 is incubated with
the synthetic substrate benzylamine or [14C]-benzylamine.
Non-radioactive assays measure H2O2, which oxidizes
Amplex Red to its fluorescent analogue resorufin in the
presence of horseradish peroxidase (HRPO). Using
[14C]-benzylamine as substrate, the activity corresponds to
the amount of [14C]-benzaldehyde generated. For each mol-
ecule of benzylamine, one molecule of H2O2 and one
molecule of NH3 are generated. LJP1586 (Z-3- fluoro-2-(4-
methoxybenzyl)-allylamine hydrochloride) serves as an
inhibitor. To investigate whether ZAG can modulate AOC3
activity, both GST-tagged AOC3 and ZAG of murine origin
were purified from lentivirally transduced HEK293 cells
and the GST-tag was removed. In all control assays, ZAG
was replaced by the same amount of GST purified from
stably transfected HEK293 cells. In a first attempt, activity
assays were performed using Amplex Red reagent (figure 4a).
A saturation curve using benzylamine as substrate revealed
the highest activity at 100 µM (figure 4b). To characterize
the interaction between AOC3 and ZAG, both proteins
were mixed at different molar ratios. A stepwise increase in
the concentration of recombinant ZAG led to a stepwise
decrease in recombinant AOC3 activity. The strongest
inhibition was observed at a molar AOC3/ZAG ratio of
approximately 1 : 1 (25 ng ZAG) (figure 4c). GST alone did
not show any inhibitory effect. Next, the mechanism of inhi-
bition was investigated by generating a Michaelis–Menten
plot, which revealed that Vmax (maximum velocity)
decreases, whereas Km (i.e. the Michaelis–Menten constant:
substrate concentration at half-maximum velocity) remains
almost constant, with rising ZAG concentrations (figure 4d ).
A Lineweaver–Burk diagram clearly illustrates the difference
in Vmax and Km behaviour. A constant Km value is rep-
resented by the intersection of the function with the x-axis
(figure 4e). This suggests that ZAG functions as a highly
effective allosteric inhibitor of AOC3. It means that ZAG
binds AOC3, but not at the catalytic site, thereby reducing
the activity of the enzyme in a non-competitive manner.

Subsequently, it was tested whether recombinant mamma-
lian ZAG inhibits endogenous AOC3 activity as effectively as
that of recombinant AOC3. Since AOC3 is expressed on the
surface of adipocytes and endothelial cells, differentiated
3T3-L1 adipocytes and human coronary artery endothelial
cells (HCAEC) were chosen. As a positive control for
inhibition, AOC3 activity was blocked by inhibitor LJP1586.
To eliminate any non-specific background signals in the cell
experiments, assays were performed radioactively. The
activity of 3T3-L1-derived AOC3 was effectively reduced as
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the amount of recombinant ZAG was increased. The addition
of 50 µg ml−1 recombinant ZAG inhibited [14C]-benzaldehyde
formation to a similar extent as LJP1586 (figure 5a). This is
remarkable since the highest concentration of ZAG used
(50 µg ml−1 = approx. 1.2 µM) is nearly tenfold less in molar
terms than for the small molecule inhibitor LJP1586 (10 µM).
This underpins the highly specific nature of this protein inter-
action, with similar ZAG concentrations being present in
human plasma (approx. 50 µg ml−1 serum) [50]. Furthermore,
the inhibitory effect of recombinant ZAG on HCAEC AOC3
(figure 5b) confirmed the similarity between murine and
human AOC3, underlining the cross-linking results obtained
with SGBS cell membranes and indicating that the ZAG–
AOC3 interaction also plays an important role in humans.
Since the inhibitor LJP1586 is designed for murine AOC3, a
higher concentration was needed to block human AOC3 of
HCAEC origin. Comparing the raw data, 3T3-L1 adipocytes
and HCAEC cells showed the same AOC3 activity. The ten-
fold-higher activity of 3T3-L1 adipocytes compared with
HCAEC relates to the normalization to mg cellular protein/
measurement: 3T3-L1 adipocytes contain much less protein.

Since recombinant ZAG inhibits endogenous AOC3, it
was asked whether endogenous ZAG could inhibit recombi-
nant AOC3. For this purpose, plasma of C57Bl6 wt mice was
collected and rebuffered in 10 mM Tris-HCl, pH 8 (ZAG-pI:
approx. 5.8). Plasma proteins were separated by anion
exchange chromatography and eluted by linear NaCl gradi-
ent (figure 6a). ZAG-containing fractions were identified by
WB and used for activity assays. Fractions C12 and D1
showed a signal between 37 and 50 kDa, which corresponds
to murine plasma ZAG (figure 6a). ZAG-containing fractions
(C12 and D1) were pooled, as were fractions without any
ZAG (D3 and D4) as controls, and incubated with 50 ng
recombinant AOC3 (figure 6b). The ZAG-positive fractions
reduced recombinant AOC3 in a dose-dependent manner.
However, the control IEX fractions, which contained no
ZAG, enhanced recombinant AOC3 activity in a dose-
dependent manner, rather than having the expected neutral
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effect. This stimulatory effect is probably due to both
endogenous AOC3 activity and plasma components. First,
murine plasma (except that of AOC3 k.o. mice) contains
endogenous amine oxidase activity, which can be blocked
by the inhibitor LJP1586 (electronic supplementary material,
figure S1A–C). Plasma-derived AOC3 activity results from
release of the membrane-bound enzyme from cells by metal-
loprotease activity [51–53]. However, measurement of amine
oxidase activity of IEX fractions—either containing or not
containing ZAG—before adding recombinant AOC3 revealed
no endogenous activity (electronic supplementary material,
figure S2C). Second, incubation of recombinant AOC3 with
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plasma of wt, AOC3 k.o. and ZAG k.o. mice enhanced AOC3
activity approximately threefold (electronic supplementary
material, figure S1D). Therefore, a plasma component found
in all three genotypes must be responsible for enhancing
AOC3 activity. Third, the IEX fractions lacking ZAG (D3
and D4) correspond to the major protein peak of the IEX
profile, which mostly derives from albumin. Incubating
recombinant AOC3 with fatty acid-free bovine serum albu-
min (BSA) also enhanced recombinant AOC3 activity to the
same extent as murine plasma (electronic supplementary
material, figure S2A). Fourth, the literature describes a low-
molecular-weight plasma component (3.8 kDa), which in
combination with lysophosphatidylcholine (LPC) boosts
AOC3 activity [54]. LPC makes up to 4–20% of total plasma
phospholipid content [55] and albumin is an important
LPC storage protein [56]. Therefore, the IEX fractions lacking
ZAG may contain the AOC3-activating plasma component,
which is fully active in the presence of LPC. Notably, incu-
bation of human lung-microsomal AOC3 with filtered and
lyophilized human plasma (FLHP) enhances AOC3 activity
up to fivefold [54], which is similar to the effect of adding
200 µl of the IEX fractions lacking ZAG to recombinant
AOC3 (figure 6b).

To substantiate this finding, the plasma of wt mice and
ZAG k.o. mice were compared. ZAG-containing fractions
(C12 and D1) of wt plasma were identified by WB using α-
ZAG antibody (figure 6c). AWB of the corresponding fractions
of ZAG k.o. plasma showed no signal (figure 6c). Fifty µl of the
IEX fractions of wt plasma and the corresponding IEX fractions
of ZAG k.o. plasma were incubated with 50 ng AOC3. As
before, ZAG-containing fractions of wt plasma reduced
benzylamine catalysis by AOC3, whereas the corresponding
fractions of ZAG k.o. plasma did not (figure 6d).
2.3. ZAG inhibition of AOC3 augments stimulation
of lipolysis

Most of the literature describes ZAG as an agonist of the
β-adrenergic receptors, thereby stimulating downstream
elements leading to an increase in lipolysis. To test this
hypothesis, ZAG (50 µg ml−1), GST (50 µg ml−1), LJP1586
(10 µM) and isoproterenol (10 µM), a short-acting non-specific
β-adrenergic agonist, were incubated with differentiated
3T3-L1 cells (figure 7a). Compared to ZAG, isoproterenol
significantly enhanced glycerol release already within the
first thirteen minutes. ZAG, GST and LJP1586 showed no
such effect. Incubating differentiated 3T3-L1 cells with ZAG
(50 µg ml−1), GST (50 µg ml−1) and LJP1586 (10 µM) for sev-
eral hours revealed that, although ZAG showed a lipolytic
effect, this did not occur until 12 h (figure 7b). Therefore,
ZAG definitely does not behave as a classical β-adrenergic
agonist such as isoproterenol and another mechanism must
be involved in ZAG-stimulated lipolysis, most likely involving
AOC3. Although it is not well characterized, AOC3 is thought
to be involved in the catalysis of biogenic amines such as
methylamine, aminoacetone, dopamine, histamine and trace
amines [57,58]. Hence, blockade of AOC3-dependent deami-
nation of biologically active amines by ZAG might indirectly
affect the metabolic state of the cell. To investigate which
biogenic amines might modulate lipolytic activity, a set of
biogenic amines was tested for catalysis by AOC3 (figure 7c).
A colorimetric assay based on 4-nitrophenyl-boronic acid
oxidation in the presence of H2O2 was performed [59], since
molecules such as noradrenaline, octopamine and dopamine
interfered with the Amplex Red assay, due to the photo-
oxidation of substrates [60]. The strongest activity was observed
with tyramine, histamine, dopamine, cadaverine, cysteamine,
ethanolamine, octopamine, putrescin, spermidine, isopentyla-
mine and benzylamine (figure 7c). Subsequently, the same set
of biogenic amines was tested for their ability to stimulate
lipolysis in 3T3-L1 adipocytes (figure 7d). Comparing the two
assays revealed that histamine, cysteamine, cadaverine and
octopamine (trace amine) are converted by AOC3 and stimulate
lipolysis to a varying degree. Notably, noradrenaline and octo-
pamine both strongly stimulated lipolysis, but only octopamine
was converted by AOC3. In the follow-up experiments, only
noradrenaline and octopamine were used to generate a signifi-
cant difference in glycerol release. Noradrenaline belongs to
the family of catecholamines and is described as an agonist of
α- and β- adrenergic receptors [61]. Octopamine belongs to
the family of trace amines and functions by binding to trace
amine associated receptor 1 (TAAR1) and β3-adrenergic recep-
tor [62,63]. To ask whether reduced AOC3 activity enhances
glycerol release, lipolysis stimulation assays were performed
in the presence of LJP1586 or ZAG. In all control assays, ZAG
was replaced by the same amount of GST purified from
stably expressing HEK293 cells. In the case of noradrenaline
and isoproterenol, the addition of LJP1586 did not enhance gly-
cerol release (figure 7e,f ). This is in line with the observations
that noradrenaline is not converted by AOC3 and isoproterenol
contains no primary amine. However, the presence of LJP1586
(10 µM) or ZAG (50 µg ml−1) boosted octopamine-stimulated
lipolysis (figure 8a,b). This suggests that reduced deamination
of octopamine results in higher bioavailability, leading to a
stronger β3-adrenergic or possibly TAAR1-mediated lipolytic
stimulation, although the presence of TAAR1 in adipocytes
has not been described thus far. Finally, it is notable that the
effect of ZAG diminished with increasing octopamine concen-
tration compared with LJP1586 (figure 8a,b), which probably
points to a different mode of inhibition.
2.4. The inhibitory potential of recombinant ZAG
depends on glycosylation

ZAG is a highly abundant protein found in body fluids such
as blood and semen. According to the literature, ZAG can
be glycosylated in a number of different ways, suggesting
different functions [64,65]. This is in accordance with the
observation that the plasma ZAG of different C57Bl6 mice
was not always the same size (figure 9a1). The notion that
this size difference depends on glycosylation was proven by
the treatment of murine plasma proteins with PNGase F (pep-
tide: N-glycosidase F). Upon treatment with PNGase F, ZAG
reduced in size to approximately 32 kDa (calculated MW
approx. 33.6 kDa) according to SDS-PAGE. In ZAG k.o.
plasma, no ZAG signal was detected (figure 9a2). During
this study, recombinant ZAG expression was tested in differ-
ent expression hosts such as E. coli, Saccharomyces cerevisiae,
Komagatella pastoris, Sf9 and BTI-Tn-5B1-4 insect cells, as well
as the mammalian cell lines Expi293F and adherent HEK293
cells. Among all the expression hosts tested, the largest differ-
ence in glycosylation was found between Expi293F and
HEK293 cells. Expi293F cells are HEK293 cells adapted to
grow in suspension; they are used for large-scale production
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of recombinant proteins in industry. Overexpressing
GST-ZAG in HEK293 cells and removal of the GST-tag by Pre-
Scission Protease resulted in a SDS-PAGE band of less than
46 kDa (figure 9a3). Overexpressing GST-ZAG and Flag-
ZAG in Expi293F resulted in a broad band that became
more diffuse with increasing expression time (figure 9a4). To
confirm that this was due to glycosylation, Expi293F-driven
GST-ZAG overexpression was combined with tunicamycin
(a compound suppressing glycosylation in general) at differ-
ent concentrations (figure 9a5). Overexpression of GST-ZAG
and Flag-ZAG in the presence of 1 µg ml−1 tunicamycin
showed a reduction in size of both proteins (figure 9a6).
Treating Expi293F-derived GST-ZAG with PNGase F led to
the same result. After removal of the GST-tag, two distinct
bands (figure 9a7, asterisks) were detected and, after deglyco-
sylation by PNGase F, both ZAG bands appeared to combine
at approximately 32 kDa (figure 9a7), as observed with
PNGase F-treated murine plasma ZAG and tunicamycin-
treated Flag-ZAG. Since O-glycosylation might also affect
the size of the protein, another overexpression experiment
was performed with GST-ZAG in the presence of the inhibitor
benzyl-2-acetamido-2-deoxy-α-D-galactopyranoside (BAGN).
No effect on the size of the protein was observed, however,
which underlines the notion that size differences depend
on N-glycosylation events (figure 9b). The N-glycosylation
site—known as the sequon—is defined by the amino acid
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sequence Asn-X-Ser (asparagine-X-serine) or Asn-X-Thr
(asparagine-X-threonine). X can be any amino acid except pro-
line and the Asn residue serves as the anchor point for
N-glycosylation. The murine ZAG peptide sequence has three
different N-glycosylation sites at positions 123, 190 and 254
(the numbers relate to the position of the Asn residue within
the murine peptide sequence with the leader sequence). Differ-
ent glycoforms of ZAG were generated by mutating the Asn
residues to glutamine. Single mutations and combined
mutations led to seven different ZAG glycoforms: 123, 190,
254, 123/190, 123/254, 190/254 and Δ3 (where, in the latter
case, all three sites were mutated). Using HEK293 and
Expi293F cells as expression hosts showed that the size of the
protein declined with the number of available N-glycosylation
sites (figure 10a1 and b1). Nevertheless, reducing the number of
glycosylation sites did not lead to a discrete, monodisperse
ZAG band in Expi293F cells, as was observed for ZAG overex-
pressed in HEK293 or for plasma-derived ZAG. One sample
of Expi293F cells collected 24 h post-transfection gave a
more disperse signal (figure 10a2). The molecular weights of
Expi293F-derived ZAG result from differently glycosylated iso-
forms (asterisks). It appears that overexpression in Expi293F
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cells leads to one higher MW and one lower MW glycosylated
form in addition to the ‘true’ isoform.

This variability in the same cell line might be due to
growth conditions, which can affect post-translational
modifications. Thus, HEK293 cells are adherent and grow
in serum containing medium, whereas Expi293F cells grow
in serum-free suspension. Concerning serum as medium sup-
plement, serum-free medium is already described to
significantly increase N-linked glycosylation of interleukin-2
when overexpressed in suspension growing baby hamster
kidney cells [66]. Adding serum at different concentrations
to Expi293F suspension culture made the cells clump and
did not change glycosylation. In other types of suspension
culture with host cells such as E. coli, insect cells (BTI-
Tn-5B1-4 and Sf9) or mammalian cells, oxygenation has a
major impact on the success of protein expression [67–69].
From this perspective, it seemed likely that the state of oxy-
genation might influence the glycosylation pattern of ZAG.
Since Expi293F cells grow in suspension, they might have a
higher level of oxygenation than HEK293 cells. Hence, redu-
cing oxygenation might simplify the ZAG glycosylation
pattern. To test this hypothesis, Expi293F cultures were
supplemented with CoCl2, a hypoxia mimetic substance.
Hypoxia is transcriptionally co-mediated by the transcription
factor HIF1-α. During normoxia, HIF1-α is prolyl hydroxyl-
ated by prolyl-4-hydroxylases (PHDs), directing the protein
to degradation by ubiquitylation. Hypoxia induces the oppo-
site: HIF1-α is stabilized and PHDs are inhibited [70,71].
CoCl2 mimics hypoxia by inhibiting HIF1-α hydroxylation
by PHDs. In a first attempt, different concentrations of
CoCl2 were tested. Indeed, supplementing the media with
the highest concentration of CoCl2 (500 µM) simplified the
signal of wt ZAG overexpressed in Expi293F cells from
multiple bands to a single band, which is similar to the
appearance of wt ZAG when expressed in HEK293 cells
(figure 10a3). In another experiment, all glycomutants of
ZAG were overexpressed in Expi293F cells in the presence
of 500 µM CoCl2. As observed for the wt form, all ZAG
mutants appeared as a single band (figure 10a4).

To investigate how glycosylation affects the inhibition of
AOC3 by ZAG, all glycomutants were overexpressed in
HEK293 and Expi293F cells in parallel. After GST affinity
purification, PreScission Protease digestion and dialysis, all
proteins were adjusted to a concentration of 50 µg ml−1 and
incubated with HEK293 stably expressing AOC3 with a trans-
membrane domain (i.e. located on the surface of the cell;
figure 10b2). Comparing the wt forms showed that HEK293
cell-derived ZAG inhibited AOC3 activity, whereas the
Expi293F cell-derived ZAG did not (figure 10c). Although
the less-glycosylated form of Expi293F cell-derived ZAG is
very likely to be present with the hyperglycosylated form,
its inhibitory potential is strongly reduced. Hence, the inhibi-
tory effect of recombinant ZAG depends on which expression
host is used. Furthermore, the various ZAG glycomutants,
produced in both HEK293 and Expi293F cells, showed a
widely differing ability to inhibit AOC3. Importantly, the
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loss of all glycosylation sites (Δ3-ZAG) led to the same inhibi-
tory potential in both forms of the protein, whether produced
in HEK293 or Expi293F cells, which confirms the impact of
aberrant glycosylation. Since the ZAG molecular weight
was not consistent in all plasma samples, plasma of different
mouse strains was collected. WB analysis of mouse plasma of
different mouse strains did not show a homogeneous pattern
(figure 10d ). Plasma ZAG of DBA and FVB mice showed a
more disperse pattern, as observed when overexpressing
ZAG in Expi293F cells.
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3. Discussion
This work aimed to identify a new interaction partner of
ZAG, which might help to explain its biological functions.
Although the scientific literature is divided on the issue,
most authors claim that ZAG acts via the β-adrenergic
system.

The role of the adrenergic receptor system in ZAG-
mediated lipolysis has been investigated in vitro using
CHO-K1 cells, which were transfected with human β1, β2
and β3 receptors [72]. The binding kinetics revealed that
ZAG has an affinity for β2 and β3 receptors, but not for β1
receptors. When transfected cells were incubated with recom-
binant human ZAG, there was an increase of cAMP levels that
could be reduced by β-adrenergic antagonists [72]. Based on
these in vitro results and the fact that ZAG deficiency leads
to obesity [47], it was of interest to ask whether treatment
with ZAG has anti-obesity and possibly anti-diabetic effects.
Therefore, the in vivo effect of ZAG was studied in ob/ob
mice, which are deficient in the hormone leptin and conse-
quently suffer from obesity, hyperphagy and insulin
resistance [73]. Studies performed with ob/ob mice showed
that ZAG administration causes improved insulin sensitivity
and reduced fat mass, which could be attenuated by the
addition of the non-specific β-adrenoreceptor antagonist
propranolol [69]. Another study with ZAG-treated male
Wistar rats confirmed these results [74]. Therefore, it is very
likely that ZAG acts as an adipokine and is directly involved
in the breakdown of fat tissue.

However, another group directly compared the in vivo
effects of recombinant ZAG and the β3/2-agonist BRL35135
in ob/ob mice [75] and showed that, although there were
similarities with previous published work, ZAG definitely
did not behave as a β3/2-agonist. Compared with the immedi-
ate effect of recognized β3/2-agonists, the ZAG-mediated
effect took several days. This correlates with the delayed lipo-
lytic effect of ZAG compared with isoproterenol in 3T3-L1
cells (figure 7a). β3/2-agonists also led to a downregulation
of β-adrenoreceptors, which was not observed with ZAG [75].

Due to this inconsistency in how ZAG function is under-
stood, a more direct approach was followed in this study to
identify an interaction partner. The identification of AOC3
in this role highlights new possibilities for ZAG signalling
and previously unsuspected functional relationships. To
date, the only ligands known to interact with AOC3 are the
sialic acid-binding immunoglobulin-type lectins Siglec-9
and Siglec-10 [76,77]. Interestingly, Siglec-10 serves as a sub-
strate for AOC3, which deaminates an arginine residue [77].
AOC3 is an ectoenzyme and is strongly expressed on the sur-
face of adipocytes and, during inflammation, on endothelial
cells. On adipocytes, it comprises 2.3% of total plasma
membrane protein [78]. On endothelial cells, it promotes leu-
cocyte adhesion and transmigration to sites of inflammation,
which is not restricted to a specific immune cell population
[44]. AOC3 is also shown to serve as homing receptor on
high endothelial venules of lymphatic tissue, showing a
strong binding preference for CD (cluster of differentiation)
8+-T-lymphocytes [79]. Homing of CD8+-T-lymphocytes is
necessary for antigen-specific priming and activation. It is
noteworthy that antigen-specific priming and activation of
CD8+-T-lymphocytes during a viral infection leads to infec-
tion-associated-cachexia (IAC) [80]. In this regard it cannot
be excluded that an interplay between AOC3 and ZAG
could serve as additional co-regulator of priming and acti-
vation of T-lymphocytes in general or during IAC.
Leucocyte transmigration in AOC3 k.o. mice is massively
hampered, leading to abnormal leucocyte traffic [47] and
strongly reduced leucocyte infiltration into adipose tissue
[48]. AOC3 appears to have both catalytic and adhesive func-
tions, although the molecular mechanism mediating
leucocyte migration is incompletely understood. On the one
hand, leucocyte adhesion is blocked by anti-AOC3 antibodies
that do not inhibit enzyme activity. On the other hand, inac-
tivation of the enzyme by a single point mutation—which is
critical for enzyme activity—renders AOC3 unable to pro-
mote leucocyte migration [81]. AOC3 has also been shown
to play a role in liver, lung and kidney fibrosis [82–84]. Treat-
ment with the AOC3 inhibitor semicarbazide significantly
reduced kidney fibrosis in a unilateral ureteric obstruction
model in mice. Inhibition of AOC3 activity led to suppression
of matrix gene expression, interstitial inflammation, oxidative
stress and total collagen accumulation [84]. This matches the
outcome in experimentally induced kidney fibrosis in ZAG
k.o. mice [43]. ZAG deficiency leads to severe fibrosis,
which can be rescued by injecting recombinant ZAG. If
pharmacological inhibition of AOC3 blocks fibrosis, ZAG-
dependent inhibition of AOC3 might produce a similar out-
come [43]. Hence, AOC3 and ZAG are co-regulators for the
development of fibrosis and ZAG-dependent inhibition of
AOC3 might serve to attenuate this process.

Obesity is associated with adipose tissue inflammation
and concomitant insulin resistance [85]. Obese patients have
markedly reduced plasma concentrations of ZAG [86],
which is explained by the elevated levels of TNF-α secreted
by tissue-resident and activated macrophages [85]. Lean
and healthy subjects have a higher plasma ZAG level and
show no tissue inflammation [87]. From this perspective, it
would be of interest to ask whether the reduced level of
plasma ZAG observed in obese individuals results in reduced
occupation of AOC3 on the surface of cells. If this were the
case, more AOC3 molecules would be available for leucocyte
adhesion and transmigration, which would promote insulin
resistance. Enhanced plasma levels of ZAG might reduce
inflammation-dependent transmigration and ameliorate its
negative side effects, as already shown for chronically-
administered AOC3 inhibitors [88]. Hence, it is tempting to
speculate that increased or reduced levels of ZAG inversely
correlate with the degree of inflammation observed in lean
and obese people suffering from insulin resistance.

Similar logic could also explain the increased levels of
ZAG observed in people suffering from cachexia. ZAG is
one of the most prominent clinical markers of cachexia,
which is highly upregulated during this energy-demanding
state. However, inflammation of white adipose tissue is not
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observed in patients suffering from cancer cachexia [89].
Nevertheless, unlike healthy controls and cancer patients
not suffering weight loss, IL-6 plasma levels were strongly
elevated [89], which fits the observation that ZAG expression
is stimulated by hormones such as IL-8, leptin and IL-6 [90].
If ZAG is able to regulate leucocyte transmigration by
binding to AOC3, elevated ZAG levels might act to prevent
pronounced tissue inflammation and concomitant insulin
resistance during cachexia.

The deamination of primary amines by AOC3 generates
H2O2, which is known to activate insulin signalling [57].
Indeed, in AOC3-deficient mice, the stimulation of glucose
uptake byAOC3 substrates is abolished,whereas insulin-stimu-
lated glucose uptake remains unaffected [91]. Furthermore,
acute and chronic administration of benzylamine increases
glucose uptake in non-diabetic and diabetic rat models [92].
Inhibitors of AOC3were also shown to have anti-obesity effects.
Chronic administration of AOC3 inhibitors led to a reduced
gain of fat adipose tissue in different mouse models on a high
fat diet [93,94]. These findings support the indirect lipolytic
effect of LJP1586 and ZAG by reduced deamination of lipolytic
biogenic amines, as observed with octopamine in 3T3-L1 cells
(figure 8a,b). However, this contradicts the observation that
AOC3 k.o. mice have a significantly enlarged fat tissue mass
compared with wt littermates [91]. In this regard, it should be
noted that pharmacological inhibition does not always reflect
a k.o. model [95] and undefined long-term counter-regulation
of the nervous system cannot be excluded.

AOC3 substrates have been shown to inhibit lipolysis in
isolated adipocytes [96], whereas ZAG is purported to stimu-
late lipolysis by binding to the β2 and β3 adrenoreceptors [72].
Using H2O2 as a signalling molecule, ZAG-mediated inhi-
bition of AOC3 might serve as an alternative explanation of
its lipolytic effect (figure 7). AOC3 substrates exert an insu-
lin-like effect on adipocytes, and this is dependent on the
formation of H2O2 [97]. H2O2 is a highly prevalent reactive
oxygen species that controls enzyme activity by modulating
the redox state of cysteine residues [98]. H2O2 is non-polar
and able to diffuse through membranes or is transported
through aquaporin 3 [99,100]. Although H2O2 is found
throughout the cell, its signalling function is restricted and
transduced by compartmentalization of antioxidant enzymes
such as the peroxiredoxins [101]. Accordingly, AOC3-derived
H2O2 could interfere with enzymes involved in stimulating
lipolysis. Important components of this pathway are mem-
brane-bound adenylate cyclase (AC), which generates cyclic
adenosine monophosphate (cAMP), and the catalytic subunit
of protein kinase A (PKA-C). Enhanced levels of cAMP bind to
the regulatory unit of PKA, thereby releasing PKA-C, which in
turn phosphorylates downstream elements, inducing lipolysis
[61]. H2O2 increases levels of G(α)i—which reduces AC
activity [102]—whereas PKA-C itself is inactivated by H2O2

[103,104]. Hence, binding of ZAG to AOC3 on adipocytes
could potentially trigger lipolysis by reducing insulinogenic
concentrations of H2O2 or by deamination of lipolytic biogenic
amines, as observed in 3T3-L1 cells incubated with recombi-
nant ZAG (figure 7a). AOC3/ZAG-dependent signalling
could also involve trace amine-associated receptors (TAARs)
[105], which form a subfamily of rhodopsin G-protein coupled
receptors (GPCR). An important part of this signalling path-
way is the heterotrimeric G-protein Gs, which is activated
upon stimulation of GPCRs and promotes cAMP-dependent
signalling by activating AC. Interestingly, Gs is also associated
with TAAR1. Therefore, indirect activation of TAAR1 due to
higher concentrations of trace amines such as octopamine,
which is released by platelets [106], or any other trace amine
cannot be excluded. Notably, noradrenaline, serotonine, hista-
mine and dopamine are also described as agonists of TAAR1
[107]. In this regard, two aspects are of interest. First, a phys-
iological concentration of ZAG (50 µg ml−1) shows almost the
same inhibitory potential as the highly selective inhibitor
LJP1586 (figure 5a,b). Second, a similar concentration of
ZAG is sufficient to enhance octopamine-stimulated lipolysis
in the low-micromolar range. Trace amine concentrations in
plasma are also in the low- to sub-micromolar range
[106,108]. Therefore, AOC3/ZAG-dependent changes in trace
amine concentrations could strongly affect TAAR signalling.

Regarding octopamine-stimulated lipolysis in the pres-
ence of LJP1586 and ZAG (figure 8), it is notable that,
compared with LJP1586, ZAG loses its stimulatory effect at
higher octopamine concentrations. This difference in behav-
iour of ZAG and LJP1586 might reflect different types of
inhibition. LJP1586 is a small molecule inhibitor that enters
the catalytic site of the enzyme and is highly selective for
AOC3 [30,109,110]. ZAG behaves like an allosteric inhibitor,
i.e. it binds away from the active site, and reduces substrate
affinity. On the one hand, AOC3-derived H2O2 is described
as affecting its own enzyme activity [111,112]: the crystal struc-
ture of human AOC3 reveals a vicinal disulfide bridge [49],
which is suggested to serve as a redox switch, possibly indu-
cing a conformational change [113]. On the other hand, human
ZAG contains one disulfide bridge in its MHC-fold and one
inter-sheet disulfide bridge in the immunoglobulin (Ig)-like
domain. Oxidation of disulfides by H2O2 and one- or two-
electron oxidants at physiological pH results in the formation
of disulfide monoxides or disulfide dioxides, which further
leads to cleavage of disulfides and the formation of sulfonic
acid [114–116]. Notably, copper-containing amine oxidases
also form hydroxyl radicals (one-electron oxidants) due to
the reaction between H2O2 and reduced copper [117].
Extracellular proteins mainly contain disulfides [118] and are
exposed to a higher level of ROS in general [119]. Modification
of the disulfides in receptors and plasma proteins is involved
in protein stability [120], protein oligomerization [121], the
transformation of biological function [122,123] and receptor–
ligand interaction [124]. A similar interplay between ROS
signalling, ligand recognition and protein–protein interaction
is imaginable for AOC3 and ZAG, which could restrict
the inhibitory function of ZAG. To test whether AOC3
activity affects protein–protein interaction, wt and different
glycoforms of recombinant ZAG were incubated with ben-
zylamine in the presence or absence of recombinant AOC3
(electronic supplementary material, figure S3). In the presence
of AOC3, only wt ZAG shifts to a higher molecular weight,
whereas in the absence of AOC3 it does not. By contrast, incu-
bation with H2O2 induces a shift in wt ZAG, irrespective of
whether AOC3 is present. This could hint at an oxidation-
dependent oligomerization of ZAG, influencing AOC3/ZAG
and/or ZAG/ZAG protein–protein interaction, in which
glycosylation plays an additional role. ZAG oligomerization
could serve as a self-regulatory mechanism, and explain
why a complete inhibition of activity was never observed at
an equimolar ratio of both proteins (figure 4c), as well as
why ZAG loses its lipolysis-stimulatory effect (figure 8).

Besides H2O2, NH3 might also serve as a signalling
molecule. Compared with H2O2, less is known about its
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function in this context. NH3 is known to stimulate autop-
hagy, playing an important role in energy metabolism in
tumour cells [125]. In summary, H2O2 and perhaps also
NH3 may have currently uncharacterized effects on AOC3
activity—with or without ZAG modulation—that interfere
with signalling pathways. This represents a challenge to
researchers to identify physiological compounds serving as
substrates for AOC3.

During this study, many different expression hosts were
tested to find a way to express both AOC3 and ZAG in suffi-
cient, biologically active quantities. Specifically, a surprising
difference between HEK293 and Expi293F was observed.
Both derive from the same attached cell line, but the latter
has been adapted to grow in suspension. Compared with
HEK293 cells, overexpression of ZAG in Expi293F cells
results in a hyperglycosylated and—to a lesser extent—hypo-
glycosylated form (figure 10a2). Different glycosylated forms
of ZAG were previously identified by isoelectric focusing and
are found in plasma, amniotic fluid, saliva and tears [64]. The
carbohydrate content of human plasma-derived ZAG makes
up to 12–15% of total mass [65]. By contrast, human seminal
fluid-derived ZAG contains no carbohydrate [126]. One pub-
lication analysed murine ZAG of plasma and different tissues
by WB. Interestingly, ZAG had different molecular weights in
most tissues and plasma [47]. This is in line with the obser-
vation that plasma ZAG from different mouse strains also
shows no coherent pattern (figure 10d ). Tunicamycin,
BAGN and PNGase F treatment of purified ZAG proteins
confirmed that size differences originate from N-glycosyla-
tion. Strikingly, the addition of 500 µM CoCl2—a hypoxia
mimetic that stabilizes the transcription factor HIF1-α—
reverses this effect (figure 10a3,4). Glycosylation of proteins
is highly variable among individuals and is influenced by
oxygen levels. For instance, hypoxia has been shown to
reduce uridine diphosphate N-acetyl-glucosamine (UDP-
GlcNAC) levels [127]. This fact is explained by HIF1-α-
induced transcription of pyruvate dehydrogenase kinase
(PDK) and inactivation of pyruvate dehydrogenase by
PDK. As a result, production of acetyl-CoA (coenzyme A)
is suppressed, such that acetylation of glucosamine and bio-
synthesis of UDP-GlcNAC are reduced [128]. Hypoxia also
limits production of nucleotides such as ATP, GTP, UTP and
CTP, which might also interfere with the addition of UDP
to GlcNAC [129]. Hence, a higher oxygen level causes the
opposite effects, as observed with Expi293F cells. Differences
in the carbohydrate content of plasma ZAG and seminal fluid
ZAG are thought to affect physiological function [126]. The
interdependence of glycosylation and physiological function
has been described for many other proteins [50]. For example,
glycoproteomic profiling of glycodelin revealed different
isoforms, each of which contains unique carbohydrates
associated with different functions involved in capacitation,
acrosome reaction, immune suppression or apoptosis
[130–134]. This finding might support the idea that hypergly-
cosylated ZAG, which is produced when overexpressed in
Expi293F cells and shows markedly reduced inhibition of
AOC3 activity (figure 10c), corresponds to one specific
in vivo glycoform and thus might have a particular physio-
logical impact. Modification of the carbohydrate content of
recombinant ZAG in the presence of CoCl2 provokes the
notion that differences in ZAG glycosylation are co-regulated
by oxygen-sensing factors and that these differences affect
biological function in vivo. Diseases associated with a rise in
ZAG levels, such as cancer, AIDS [37] and chronic heart
and kidney disease [40,135,136], often manifest dyspnoea
due to highly interdependent symptoms such as fatigue,
physical impairment, pulmonary hypertension, lung infec-
tions and heart failure [137–139]. It would be interesting
to observe whether overall oxygen saturation affects the
glycosylation pattern of ZAG. Moreover, a paraneoplastic
syndrome such as cachexia has also been attributed to ZAG
secretion by tumour cells, which contributes to a rise in
plasma ZAG levels [7]. Since hypoxia is a characteristic
feature of solid tumours, it cannot be excluded that this
also affects the glycosylation and biological function of
ZAG secreted by tumour cells [140,141]. Clinical studies on
ZAG have been solely based on the quantification of ZAG
by qRT-PCR, ELISA or tissue microarray-based immunohis-
tochemistry. However, the amount of ZAG might not be as
important as the form of its glycosylation. Glycoproteomic
profiling or at least precise estimation of its molecular
weight might offer deeper insights into the true biological
function of ZAG. Taken together, the recognition of ZAG as
an allosteric inhibitor of ectoenzyme AOC3 should prompt
a reinterpretation of ZAG-associated functions, in particular
its pro-lipolytic and anti-inflammatory roles.
4. Methods
4.1. Protein expression and purification
E. coli BL21 (DE3): Both human and murine ZAG (without
leader sequence) were produced in E. coli after cloning in
the expression plasmid pGEX-6P-2 which adds an N-terminal
GST -tag to each recombinant protein, enabling affinity puri-
fication using glutathione (GSH)-Sepharose. GST-tag alone
was purified from E. coli by using pGEX-6P-2 as expression
plasmid without gene of interest. Murine ZAG (mZAG fw
(XmaI): GCCC 50GGGGTGCCTGTCCTGCTGTC; mZAG
rev (XhoI): 50GCTCGAGTTACTGAGGCTGAGCTACAA) a-
nd human ZAG (hZAG fw (XmaI): 50TCCC-
GGGGTAAGAATGGTGCCTGTCCT; hZAG rev (XhoI): 50

TCTCGAGCTAGCTGGCCTCCCAGGGCA) were amplified
by PCR from cDNA of murine liver and HEPG2 cells
(ATCC Cat# HB-8065, RRID:CVCL_0027), respectively. E.
coli cells (carrying the expression plasmid pGEX-6P-2-hZAG
or pGEX-6P-2-mZAG) from glycerol stocks were freshly
streaked on LB medium agar plates containing the appropri-
ate selection marker. For GST-ZAG overexpression, a 5 ml
overnight culture was set up. The following day, 3 ml of the
overnight culture was inoculated into 300 ml LB medium
and grown to an OD600 of around 0.8–1.0. The temperature
was reduced to 25°C and cells were induced with 50 µM
IPTG for 3 h. For the isolation of recombinant GST-ZAG,
cells were harvested at 4000g and 4°C for 10 min and resus-
pended in 1 × PBS supplemented with 10 mM EDTA and
lysozyme (100 µg ml−1). The suspension was incubated on a
rocking plate for 30 min and then frozen at −80°C. The
frozen suspension was thawed in a water bath at 37°C. The
viscous cell suspension was supplemented with 10 mM
MgSO4 and 10 units DNAse (Roche) and incubated for
5–10 min at 37°C in a water bath. Subsequently, the lysate
was centrifuged at 15 000g and 4°C for 20 min and incubated
with 400 µl pre-equilibrated glutathione (GSH)-Sepharose on
an over-the-top wheel. GSH-Sepharose was collected by
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centrifugation and washed with 1 × PBS. Protein was eluted
with 10 mM reduced GSH (Sigma) dissolved in 10 mM
Tris-HCl, 150 mM NaCl, pH 8 and dialysed against 1 × PBS.

4.2. Cell culture
3T3-L1 Cells (ATCC Cat# CL-173, RRID:CVCL_0123): Before
seeding, multi-well plates were coated with 0.2% gelatin
and left overnight. Cells were grown in DMEM high glucose
(Gibco) supplemented with 10% FCS (Gibco) until 2 days
after becoming confluent. To stimulate differentiation, the
medium was supplemented with 4 µg ml−1 dexamethasone,
10 µg ml−1 insulin and 500 µM isobutymethylxanthine
(IBMX). After 3 days, the medium was replaced with
medium supplemented only with insulin (10 µg ml−1),
which was changed every second day. After four more
days, the insulin concentration was further reduced to a
final concentration of 0.2 µg ml−1 and left until lipid droplets
developed. The medium was changed every third day.

SGBS cells (RRID:CVCL_GS28): For differentiation, the
following media were prepared: 0F (DMEM F-12, 1%
Biotin, 1% pantothenic acid, 1% penicillin/streptomycin,
10% FCS), 3FCB Dex/Mix (DMEM F-12, 1% Biotin, 1% pan-
tothenic acid, 1% penicillin/streptomycin, 0.01 mg ml−1

transferrin, 0.1 µM cortisol, 200 pM tri-iodothyronine,
20 nM human insulin, 0.25 µM dexamethasone, 500 µM
IBMX, 2 µM rosiglitazone), 3FC Dex/Mix (3FCB Dex/Mix
without rosiglitazone) and 3FC (3FC Dex/Mix without
dexamethasone and IBMX). 0F medium was used for culti-
vating SGBS cells and changed twice per week. For
differentiation, 2 × 105 cells per 10 cm culture dish were
seeded and grown until confluency. The growth medium
was switched to 3FCB Dex/Mix for 3 days and changed to
3FC Dex/Mix on the fourth day. On the seventh and eleventh
day, the medium was replaced with 3FC. Lipid droplets
developed after two weeks of differentiation.

HCAECs: HCAECs (kindly provided by GuntherMarsche)
were cultured in six-well plates coated with 1% gelatin and
left overnight. Cells were grown and used for experiments
until they reached the ninth passage. Special medium was
provided by Lonza (EGM™-2 MV Microvascular Endothelial
Cell Growth Medium mixed with supplements according
to manufacturer’s protocol: hydrocortisone, hFGF-B, VEGF,
R3-IGF-1, ascorbic acid, hEGF, and GA-1000).

HEK293 cells: HEK293 cells (CLS Cat# 300192/
p777_HEK293, RRID:CVCL_0045) were cultured in DMEM
high glucose (Gibco) and supplemented with 10% FCS
(Gibco). Cells were split on reaching 80% confluency.

Expi293F cells: Expi293F cells (RRID:CVCL_D615, kindly
provided by Walter Keller) were cultivated in a ventilated
125 ml disposable shaker flask (Corning) and maintained on
an orbital shaker. Cells were grown in Expi293 Expression
Medium (Gibco) and split 1 : 10 on reaching a density of 5 ×
106 cells ml−1.

All cells were grown in a CO2-controlled incubator with a
relative humidity of 90% at 37°C.
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4.3. Construction of expression plasmid pSpexMax
An expression plasmid, pSpexMax, was constructed as shown
in figure 11 for the production of both murine AOC3 and
murine ZAG in mammalian cells. The leader sequence of Ig
kappa light chain was taken from Ohman et al. [48], which
directs the protein into the medium. The SP163 translational
enhancer sequence was incorporated upstream of the leader
sequence to promote recombinant protein translation, while
the GST-tag, equippedwith a cleavage site (recognized by Pre-
Scission Protease; GE Healthcare), was inserted downstream
of the leader sequence to facilitate affinity purification. For
transient expression, GST-tag alone was purified from
Expi293F cells by using pSpexMax as expression plasmid
without gene of interest. For large-scale purification of both
proteins, the whole sequence (SP163, Igk, GST and AOC3/
ZAG) was amplified by PCR and cloned into the expression
plasmid pLVX-Tight Puro (Clontech), which allows packa-
ging of constructs in a lentiviral format. For GST purification
from stable HEK293 cells only SP163, Igk and GST were
PCR amplified and cloned into the expression plasmid
pLVX-Tight-Puro. Lentivirus versions of pTET-off and
pLVX-Tight Puro (AOC3/ZAG) were used to transduce
HEK293 cells.

Production of lentivirus: For production of lentivirus,
Lenti-X™, the HTX Packaging System (Clontech), was used
following the manufacturer’s protocol. Briefly, murine
AOC3 and murine ZAG were cloned into the plasmid
pLVX-Tight-Puro. For virus production, 5 × 106 HEK293T
cells were seeded in a 10 cm dish 24 h before transfection.
The Xfect Transfection System (Clontech) was used for trans-
fection of lentiviral plasmids, pLVX-Tight Puro and pTET-Off
(Clontech). After 2 days, the virus-containing medium was
collected and centrifuged at 1200g for 2 min. Supernatant
was aliquoted and stored at −80°C.

Transduction and selection of HEK293 cells: Twenty-four
hours before transduction, a six-well plate was seeded with
3 × 105 HEK293 cells per well. On the day of transduction,
medium was supplemented with 8 µg ml−1 hexadimethrine
bromide (Sigma) and virus. Plates were centrifuged at
1200g and 32°C for 1 h and incubated for another 24 h. Sub-
sequently, the medium was replaced with a medium
containing both selection markers, puromycin (2 µg ml−1)
and G-418 (400 µg ml−1). After selection, conditioned
medium and stable cells were analysed for protein expression
by WB.

Lentivirally transduced HEK293 cells: Lentivirally trans-
duced HEK293 cells, stably secreting GST-AOC3 and
GST-ZAG, were grown until they became confluent. On
every third day, conditioned medium was collected and
stored at −20°C. For protein isolation, 500 ml frozen
medium was thawed and incubated with 200 µl GSH-
Sepharose. Subsequently, the protein was eluted with
10 mM reduced GSH (Sigma) in 10 mM Tris-HCl, pH 8 and
150 mM NaCl. The purified protein was dialysed against
1 × PBS, the GST-tag was removed by PreScission Protease
and the released protein dialysed against 1 × PBS. Protein
integrity was checked by SDS-PAGE.

Expi293F cells: Transfections were performed using the
ExpiFectamine 293 Transfection Kit (Gibco) following
the manufacturer’s protocol. Briefly, cells were diluted to a
density of 3 × 106 cell ml−1 with a fresh medium. Plasmid
DNA (1 µg ml−1 culture) and ExpiFectamine 293 Reagent
(Gibco) were diluted in Opti-MEM I medium (Gibco) and
mixed by inverting. After 10 min, the reaction was added
to suspension cultures. After 18 h, the enhancer solutions
ExpiFectamine 293 Transfection Enhancer 1 and ExpiFecta-
mine 293 Transfection Enhancer 2 (Gibco) were added.
After 72 or 96 h, the medium was collected and prepared
for GST affinity purification or WB. Overexpression exper-
iments were performed in 125 ml disposable shaker flasks
or six-well plates.
4.4. Amine oxidase assays
AOC3 activity measurement using Amplex Red: For fluorescent
measurement of amine oxidase activity, AOC3 standard
reagent Amplex Red (Invitrogen) was used. The signal was
measured at an excitation/emission ratio of 560/590 nm.
All measurements were performed at 37°C by connecting
the fluorimeter (DU 640 Spektrometer, Beckman) to a water
bath. Only sterile-filtered 1 × PBS was used as a reaction
buffer since autoclaving produced non-defined peroxide
species, which caused false positive signals. The standard
reaction (500 µl) comprised 50 ng AOC3, 4 µM Amplex Red
and two units HRPO (Sigma). For inhibition, the sample
was pre-incubated with LJP1586 (La Jolla Pharmaceuticals)
or ZAG for 5 min at 37°C. The reaction was started by
addition of 5 µl 10 mM benzylamine (Sigma) and stopped
by adding 10 µl Amplex™ Red/UltraRed Stop Reagent
(Invitrogen).

Radioactive AOC3 assays: The standard reaction (500 µl)
comprised 50 ng AOC3, 100 µM benzylamine, 1 Ci/mol
[14C]-benzylamine (PerkinElmer) and 1 × PBS. For inhibition,
the sample was pre-incubated with LJP1586 or ZAG for 5 min
at 37°C. The sample was incubated at 37°C in a water bath for
60 min. After incubation, the reaction was stopped by adding
20 µl of 2 M HCl per 100 µl reaction volume followed by
200 µl of extraction solvent (toluene/ethyl acetate, 1 : 1,
v/v) per 100 µl reaction volume. Samples were vortexed
and centrifuged at 700g for 10 min, then 200 µl of the upper
organic phase (approx. 850 µl) were measured by liquid scin-
tillation counting.

Radioactive cell culture experiment: The day before the
experiment, stable HEK293 were seeded at a density of
2.5 × 105 cells well−1 (6-well plate). 3T3-L1 adipocytes were
used when fully differentiated and HCAEC cells when con-
fluent. For measurement, the cells were incubated with the
corresponding media without FCS supplemented with
100 µM benzylamine and 1 Ci/mol [14C]-benzylamine. For
inhibition, cells were pre-incubated with LJP1586 or ZAG
for 15 min. After 30 min incubation, supernatant was col-
lected, extracted and measured according to the standard
radioactive AOC3 assay. Cells were washed three times
with 1 ml 1 × PBS and lysed by incubation with 0.3 M
NaOH/1% SDS. Protein amount was quantitated using
BCA reagent.

AOC3 activity measurement using 4-nitrophenylboronic acid
pinacol ester (NPBE): This is a colorimetric assay based on
the oxidation of NPBE in the presence of H2O2 [59]. The
standard reaction (250 µl) comprised 50 mM potassium phos-
phate buffer pH 7.4, 10 µg AOC3, 150 mM NaCl, 100 µM
NPBE (ethanolic solution) and 20 mM substrate. Samples
were incubated at 37°C and stopped by adding 1 mM DTT
and 5 µl 5 M NaOH.
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4.5. Cross-linking
Plasma membrane was isolated according to Belsham et al.
[142]. The gonadal adipose tissue of 10 C57Bl6 mice (older
than four months) or differentiated SGBS cells (5 × 10 cm
culture dishes) were collected and mixed with 1 ml of
sucrose-based medium (SBM1) (10 mM Tris-HCl, 0.25 M
sucrose, 80 mM EGTA, pH 8.2) and homogenized on ice.
Samples were centrifuged for 30 s at 1000g, the infranatant
was collected with a syringe, pooled and centrifuged at 4°C
at 30 000g for 30 min. The pellet was resuspended in 500 µl
SBM1. Two tubes were filled with 8 ml ‘self-forming gradient
of percoll’ comprising Percoll (80 mM Tris-HCl pH 8, 2 M
sucrose, 80 mM EGTA), SBM2 (10 mM Tris-HCl pH 8, 0.25
M sucrose, 2 mM EGTA) and SBM1, mixed in a ratio of 7 :
1 : 32 (v/v/v). The resuspended pellet was gently loaded
onto the gradient solution and centrifuged at 4°C and
10 000g for 15 min. After centrifugation, a fluffy white band
at the bottom was collected with a large gauge needle,
washed two times with 1 × PBS and pelleted by centrifu-
gation at 10 000g. The pellet was finally resuspended in
500 µl 0.25 M sucrose dissolved in 1 × PBS.

Purified proteins were labelled with Sulfo-SBED (Thermo
Scientific) according to the manufacturer’s protocol (figure 1).
Sulfo-SBED comprises biotin, a sulfated N-hydroxysuccini-
mide (Sulfo-NHS) active ester and a photoactivatable
aryl-azide. Successful labelling of human or mouse GST-
ZAG and GST was confirmed by WB, and labelled proteins
were extensively dialysed against 1 × PBS to eliminate any
non-bound Sulfo-SBED molecules. In a dark room (with red
safety light), 100 µg of labelled proteins were mixed with
100 µl of freshly-isolated membranes in a six-well plate and
then wells were filled to a final volume of 500 µl with 1 ×
PBS. Plates were wrapped in aluminium foil and incubated
on a rocking plate at 4°C for 1 h. Subsequently, samples
were exposed to UV light while cooling on ice. The protein
solutions were transferred to a 1.5 ml tube and delipidated
by addition of 0.5% N-octyl-glucoside. Delipidated proteins
were either directly separated by SDS-PAGE or incubated
with 50 µl of streptavidin agarose. Agarose-bound proteins
were washed four times with 1 × PBS, once with 0.5 M
NaCl and then eluted with a 1 × SDS loading buffer. Eluted
samples were separated by SDS-PAGE. After SDS-PAGE,
samples were either analysed by WB or Coomassie Brilliant
Blue-stained bands were excised with a scalpel and subjected
to LC-MS/MS.

4.6. Peptide sequencing by LC-MS/MS
Excised gel bands were washed with 150 µl distilled H2O,
150 µl 50% acetonitrile and 150 µl 100% acetonitrile with a
brief centrifugation step in-between. After the last washing
step samples were dried in a vacuum centrifuge. Dehydrated
samples were reduced by adding 60 µl 10 mM DTT dissolved
in 100 mM NH4HCO3 and incubated at 56°C for 1 h. After
cooling, the supernatant was removed and replaced with
55 mM 2-iodoacetamide dissolved in 100 mM NH4HCO3.
After 1 h incubation, samples were washed with 100 mM
NH4HCO3 and then dehydrated and swollen by adding 50%
acetonitrile and 100 mM NH4HCO3, respectively. Treated
samples were dried in a vacuum centrifuge. Subsequently,
gel pieces were swollen by a stepwise addition of digestion
buffer (50 mM NH4HCO3, 5 mM CaCl2, and 12.5 ng µl−1
trypsin) on ice. Samples were covered with a digestion
buffer and incubated at 37°C in a thermomixer overnight.
The next day, peptides were extracted by adding 35 µl 1%
formic acid and 160 µl 2% acetonitrile followed by 35 µl
0.5% formic acid and 160 µl 50% acetonitrile. Supernatants
were collected and dried in a vacuum centrifuge. Extracted
proteins were resuspended in 0.1% formic acid separated on
a nano-HPLC system (Ultimate 3000, LC Packings, Amster-
dam, Netherlands), with a flow rate of 20 µl min−1 using
0.1% formic acid as a mobile phase. Loaded samples were
transferred to a nano-column (LC Packings C18 PepMap,
75 µm inner diameter × 150 mm) and eluted with a flow rate
of 300 nl min−1 (solvent A: 0.3% aqueous formic acid solution;
solvent B: water/acetonitrile 20/80 (v/v), 0.3% formic acid;
gradient: 5 min 4% solvent B, 35 min 55% solvent B, 5 min
90% solvent B, 47 min 4% solvent B). Samples were ionized
by a Finnigan nano-ESI source, equipped with NanoSpray
tips (PicoTip Emitter, New Objective, Woburn, MA). Analysis
was performed by Thermo-Finnigan LTQ linear ion-trap
mass-spectrometer (Thermo, San Jose, CA, USA). MS/MS
datawere synchronized with the NCBI (26.9.2010) non-redun-
dant public database with SpectrumMill Rev. 03.03.084 SR4
(Agilent, Darmstadt, GER) software. For identification, at
least three or more different peptide sequences must be
detected [143].

4.7. Ion exchange chromatography
Four overnight-fasted C57Bl6 mice were anaesthetized using
isoflurane and blood was collected via the retro-orbital sinus.
Protein from 2 ml collected murine plasma was desalted and
rebuffered in 10 mM Tris-HCl, pH 8 using a PD-10 desalting
column (GE Healthcare) and further diluted to a final volume
of 20 ml using 10 mM Tris-HCl, pH 8. Plasma proteins were
separated by anion exchange chromatography using
Resource Q column (GE Healthcare, 6 ml) connected to an
ÄKTA Avant 25 system (GE Healthcare). After loading, the
column was washed with 10 column volumes of binding
buffer and bound proteins were eluted by linear salt gradient
(0–1 M NaCl). The protein concentration of all fractions was
measured and ZAG-containing fractions identified by WB.

4.8. GST pulldown
GST-tagged AOC3 isolated from the conditioned medium
of lentivirally transduced HEK293 cells was incubated with
1 : 10 diluted murine plasma. The reaction comprised 100 µl
diluted murine plasma, 200 µl recombinant GST-AOC3
(50 µg ml−1), 50 µl pre-equilibrated GSH-sepharose and
150 µl 1 × PBS. The reaction was incubated on an over-the-
top wheel, centrifuged at 700g for 1 min and then the flow-
through was collected. The GSH-sepharose was washed five
times with 500 µl 1 × PBS and bound proteins were eluted
with 1 × SDS loading buffer. Samples were analysed by WB.

4.9. Glycerol measurement
The medium of stimulated 3T3-L1 adipocytes was collected
and glycerol content measured using a standard glycerol kit
(Sigma). Cells were washed three times with 1 × PBS and
lysed by incubation with 0.3 M NaOH and 1% SDS. Protein
was quantitated using BCA reagent (Pierce).
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4.10. Western blot
Proteins were separated by 10% SDS-PAGE according to
standard protocols and blotted onto polyvinylidene fluoride
membrane (Carl Roth GmbH). Membranes were blocked
with 10% blotting grade milk powder (Roth) in TST
(50 mM Tris-HCl, 150 mM NaCl, 0.1% Tween-20, pH 7.4) at
room temperature for 1 h or at 4°C overnight. Primary
antibodies were directed against GST (GE Healthcare
Cat# 27-4577-01, RRID:AB_771432), murine AOC3 (Abcam
Cat# ab42885, RRID:AB_946102) and ZAG (Santa Cruz
Biotechnology catalogue no. sc-11245, RRID:AB_2290216).
Signals were visualized by enhanced chemiluminescence
detection (Clarity Western ECL Substrate, Bio-Rad) and the
ChemiDoc Touch Imaging System (Bio-Rad).

4.11. Statistical analysis
Statistical analysis and diagrams were prepared using Graph-
Pad Prism 8.0.1 (GraphPad Prism, RRID:SCR_002798).
Figures and illustrations were prepared using CorelDRAW
2018 (CorelDRAW Graphics Suite, RRID:SCR_014235).
Data accessibility. This article has no additional data.
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