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Abstract
Objectives: Our aim was to evaluate Korea’s Pandemic Influenza Preparedness
Plan.
Methods: We conducted a sensitivity analysis on the expected number of
outpatients and hospital bed occupancy, with 1,000,000 parameter combina-
tions, in a situation of pandemic influenza, using the mathematical simulation
program InfluSim.
Results: Given the available resources in Korea, antiviral treatment and social
distancing must be combined to reduce the number of outpatients and hospi-
talizations sufficiently; any single intervention is not enough. The antiviral
stockpile of 4e6% is sufficient for the expected eligible number of cases to be
treated. However, the eligible number assumed (30% for severe cases and 26% for
extremely severe cases) is very low compared to the corresponding number in
European countries, where up to 90% of the population are assumed to be eligible
for antiviral treatment.
Conclusions: A combination of antiviral treatment and social distancing can
mitigate a pandemic, but will only bring it under control for the most optimistic
parameter combinations.
1. Introduction

It is necessary to evaluate a nation’s pandemic

influenza preparedness plan for whether it effectively

reflects the capacity of the public health system on
ibuted under the terms o
y-nc/3.0) which permits un
is properly cited.

ase Control and Prevention
a national basis. Several papers have reported that an

influenza pandemic can stretch the capacity of a nation’s

health system [1e3]. Some studies use static models

without parameter sensitivity analysis but consider a few

fixed values for attack rates, hospitalization rates, and
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mortality rates [4e10], and a few consider the thera-

peutic use of neuraminidase inhibitors [5,8,10]. As

pharmaceutical and nonpharmaceutical interventions

can change the course of a pandemic, any sensitivity

analysis must include whether these can lower the

burden on the national public health system to

a manageable level.

However, this evaluation is difficult because we do

not know the contagiousness of any upcoming unknown

influenza strain. Here, we defined feasible ranges for the

parameters of a future influenza pandemic, and then

randomly sampled from these ranges. For each combi-

nation of sampled parameter values, we simulated the

course of the pandemic wave using InfluSim software

(http://www.influsim.info) [11,12]. We thereby gener-

ated a whole range of plausible influenza pandemics for

which we could evaluate how many persons would seek

medical help or need hospitalization. Simulations were

conducted both with and without interventions, and the

effects of the intervention were then estimated for each

set of parameter values.
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2. Materials and Methods

We conducted the sensitivity analysis using InfluSim

version 2.1, a deterministic compartment model that

extends the ‘susceptibleeexposedeinfectiouseremoved’

(SEIR) model by using clinical and demographic

parameters relevant for pandemic preparedness planning

[11,12]. The simulation produces daily time courses and

cumulative numbers of influenza cases, outpatients, and
Table 1. Parameter values

Randomly sampled parameters Ranges

Infection and disease

Basic reproduction number 1.5e3.5

Initial infectivity of infected individuals (%) 75e95
Fraction of infections remaining

asymptomatic (%)

25e50

Relative infectivity of asymptomatic

individuals (%)

0e100

Hospitalization factor 0.5e1.5

Antiviral treatment

Reduction in infectivity of treated cases (%) 60e98
Reduction in hospitalization of treated

cases (%)

49e69

Social distancing

Contact reduction in the general

population (%)

5e25

Contact reduction of moderately sick

cases (%)

0e20

Contact reduction of severely sick

cases at home (%)

10e30

Contact reduction of hospitalized

cases (%)

20e40
hospitalizations using demographic parameters from

Korea (see the Appendix).

The default setting of InfluSim parameters is that

about one-third of infected individuals will become

severely ill and seek medical care. Patients seeking

medical care are “outpatients.” The distribution of

outpatients delayed visits is exponential, which means

that patients visit hospitals/clinics some time after onset

of symptoms, on average after 24 hours. If patients seek

medical care within 48 hours after the onset of their

symptoms, they are given antiviral treatment, which

reduces the duration and degree of infectivity and the

chance of hospitalization [13].
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Figure 1. The number of outpatients in a no-intervention

scenario (population size 100,000 individuals). (A) Epidemic

curves for nine out of 100,000 realizations, representing the

10%, 20%, ., 90% percentiles of all realizations. (B)

Parameter values from normal distributions (means given in

bold, with 99% of the values lying within the ranges specified

by dotted lines). R0Z basic reproduction number; x50Z
cumulative infectivity during the first half of the symptomatic

period; cAZ fraction of infections remaining asymptomatic;

bAZ relative infectivity of asymptomatic compared to symp-

tomatic cases; fkZ factor by which the InfluSim default

percentage of hospitalizations was varied. (C) Distribution of

the cumulative number of outpatients. (D) Correlation between

the cumulative number of outpatients and the number of

outpatients on the peak day.

http://www.influsim.info
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Figure 2. Effects of social distancing, antiviral treatment, and a combination of both interventions compared to the no-

intervention scenario. (A) Total number of outpatient visits; (B) outpatient visits prevented as a percentage of the no-

intervention scenario; (C) total number of hospitalizations; (D) hospitalizations prevented as a percentage of the no-intervention

scenario.
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As many parameters of future viruses and interven-

tion effects are uncertain, we performed sensitivity

analyses by randomly choosing values for the key

parameters listed in Table 1 for given ranges. All

parameter samples were taken randomly assuming

normal distributions with a mean value in the middle of

the interval given in Table 1 and a 99% confidence

interval (see Figure 1B below). A total of 1,000,000

different combinations of parameter values were

sampled and a set of four simulations performed for the

following scenarios: no intervention, social distancing

(contact reduction) only, antiviral treatment only, and

a combination of both. Social distancing can cause

reduce the number of contacts in the general population

and for cases with different levels of disease severity
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Figure 3. Simulation results of different intervention scenarios

outpatient visits per physician in practice; (B) left axis: peak percen

right axis: peak percentage of available intensive care unit (ICU) b
(Table 1). Antiviral treatment is given on average 24

hours (but not later than 48 hours) after the onset of

symptoms; it reduces the infectivity of patients and the

course of their disease, thus preventing a proportion of

hospitalizations (Table 1).

From each simulation, the peak number of outpa-

tients, the cumulative number of outpatients, the peak

hospital bed occupancy, and the cumulative number of

hospitalizations were extracted. To evaluate the effects

of the different interventions, each simulation outcome

was divided by the result of the no-intervention

scenario. Finally, we related our results to the avail-

able number of hospital beds [14] and the number of

physicians in practice (general medicine, internal

medicine, and pediatrics) [15].
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Figure 4. Demand for intensive care. The curves show the percentage of the currently available intensive care unit (ICU) beds in

Korea, assuming that 15% of hospitalized patients need intensive care. The horizontal lines indicate 50% and 100% of the available

ICU capacity. The gray areas under the curves indicate what percentage of cases needing ICU care cannot receive proper treatment

if at most 50% of ICU beds can be made available for influenza patients. (A) Social distancing alone; (B) social distancing

combined with antiviral treatment.
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3. Results

This parameter sensitivity analysis has revealed some

interesting properties of an influenza pandemic in

Korea. As expected, the basic reproduction number and

distribution of contagiousness over the infectious period

have the largest effect on the course of the epidemic.

Other parameters describing the contagiousness of cases

in the late prodromal period and the contagiousness of

asymptomatic and moderate cases compared to severe

cases have only a moderate effect on the course of the

epidemic. Interestingly, an increased contagiousness of

moderately sick individuals reduces the peak and

cumulative number of cases.

The antiviral stockpile of 4e6% is sufficient for the

expected eligible number of cases to be treated.

However, the eligible number assumed (30% for severe

cases and 26% for extremely severe cases) is very low

compared to the equivalent figure in European countries,

where up to 90% of the population are assumed to be

eligible for antiviral treatment [16]. The two parameters

describing the effect of antiviral treatment, i.e., the

reduction in the duration of the contagious period and

the reduction in the contagiousness of treated individ-

uals, have only a minor effect on the simulation results.

The general reduction of contacts has a large effect

on the course of the epidemic, while the threshold for

closing schools has only a minor effect. This can be

explained by the small overall effect of school closure

even though Korea has a larger fraction of school chil-

dren than most European countries. However, the school

closure threshold has been investigated for very small

threshold values. The use of a deterministic simulator

such as InfluSim may not be adequate to address the

analysis of optimal school closure thresholds.

Comparing the effect of social distancing interven-

tions with antiviral treatment, social distancing inter-

ventions clearly have a larger effect. This can be
explained by the small fraction of individuals eligible

for treatment (26e30%). However, additional prophy-

laxis for healthcare workers and essential service

workers will rapidly exploit the antiviral stockpile, so

that treatment of cases will no longer be possible and the

overall effect will be negative.
4. Discussion

It is important to consider ranges of parameter values.

Sampling random values from reasonable intervals

translates input uncertainty into expected output vari-

ability. The wide regions of tolerance for the total

number of outpatients and hospitalizations (Figure 1)

show that pandemic preparedness plans should consider

“best case” and “worst case” scenarios, not “average

case” scenarios.

The most important parameter that determines both

the duration and the height of a pandemic is the basic

reproduction number, R0. However, there is a wide

range of proposed values for past pandemics and for

seasonal influenza, ranging from 1.5 to 4 [17e21].

Many authors have adopted Longini’s containment

strategies for R0, using a value of 1.1e2.4 [22]. Fergu-

son et al’s R0 for 1918 pandemic data should be regar-

ded as an effective reproduction number that also

reflects the effect of interventions, and they proposed

R0Z 1.7 as “moderate” and R0Z 2.0 as “high” trans-

mission scenarios [23]. We explored a wider range of

pandemics (R0Z 1.5e3.5) and also considered hospital

bed occupancy and intensive care unit (ICU) demand.

The effects of antiviral treatment depend on the

patients’ treatment time and on where they have already

spent most of the contagious period before treatment.

The success of social distancing measures depends on

the compliance of the population. At the most pessi-

mistic end of our simulations (high R0 and a strong
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concentration of contagiousness in the early phase of the

infection, combined with low public health compliance

and low treatment effects), the number of hospitaliza-

tions can be 1.9 times higher than the mean, whereas at

the most optimistic end, a major outbreak may be pre-

vented (cf. the 99% interval for the combined inter-

vention in Figure 2C).

Our study confirms the results of previous studies

using static models [5,8] that have pointed out ICU

capacity as a bottleneck in hospital settings, and have

stated that appropriate contingency planning must

consider a rapid expansion of ICU capacity. We show

that, in pessimistic cases, a non-negligible percentage of

hospitalized patients (ranging from 5.5% to 39.5%)

would be at a higher risk of death if 50% of the currently

existing ICU beds could be made available at the peak

of the epidemic. We believe that, as ICU capacity is

difficult to expand and costly to maintain, additional

measures must be considered and extensive preparation

will be needed. This includes occupational safety

measures and the development of triage policies

(Figures 3 and 4).
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Appendix.

Table A1. Age distribution of the Korean population (per 10
influenza by age class and risk group

Children Adults Elderly

Age (years) 0e5 6e12 13e19 20e39 40e59 �60

Number per 100,000 6,969 9,780 9,319 34,214 27,021 12,697

Total number in class 26,068 61,235 12,697

Contacts per week 0e5 6e12 13e19 20e39 40e59 �60

With 0e5-year-olds 169.14 31.47 17.76 34.5 15.83 11.47

With 6e12-year-olds 31.47 274.51 32.31 34.86 20.61 11.50

With 13e19-year-olds 17.76 32.31 224.25 50.75 37.52 14.96

With 20e39-year-olds 34.5 34.86 50.75 75.66 49.45 25.08

With 40e59-year-olds 15.83 20.61 37.52 49.45 61.26 32.99

With �60-year-olds 11.47 11.50 14.96 25.08 32.99 54.23

Risk category Low risk High risk Low risk High risk Low risk High risk

Fraction of age class (%) 90 10 85 1 60 40

Fraction of infected individuals who become

severely sick (%)

33 33 33 33 33 33

Fraction of severely sick patients who need

hospitalization (%)

0.18 1.33 2.33 2.76 3.56 7.76

Fraction of hospitalized patients who die (%) 5.54 16.53 39.50
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