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A computational modelling study 
of excitation of neuronal cells 
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Neurological disorders and nerve injuries, such as spinal cord injury, stroke, and multiple sclerosis 
can result in the loss of muscle function. Electrical stimulation of the neuronal cells is the currently 
available clinical treatment in this regard. As an effective energy harvester, the triboelectric 
nanogenerators (TENG) can be used for self-powered neural/muscle stimulations because the output 
of the TENG provides stimulation pulses for nerves. In the present study, using a computational 
modelling approach, the effect of surface micropatterns on the electric field distribution, induced 
voltage and capacitance of the TENG structures have been investigated. By incorporating the effect of 
the TENG inside the mathematical model of neuron’s electrical behavior (cable equation with Hodgkin-
Huxley model), its impact on the electrical behavior of the neurons has been studied. The results show 
that the TENG operates differently with various surface modifications. The performance of the TENG 
in excitation of neurons depends on the contact and release speed of its electrodes accordingly.

Humans are surrounded by various types of energy sources in the environment including solar, thermal, mechan-
ical, chemical and biological energies1. In addition, the human body itself is a favorable source of energy as it is 
semi-permanent and easily available2. Furthermore, development of sustainable energy sources is an inevitable 
demand due to the emergence of portable electronic devices and sensor networks3. Among various types of 
energy sources, mechanical energy has attracted considerable attention owing to its universal availability in 
the natural environment, human body as well as living activities4. Therefore, research has been conducted to 
develop integrated systems called Nanoenergy, exploiting micro and nanostructures capable of easily harvesting 
the energy from the environment and operate continuously, independently and effectively5–7. Energy-harvesting 
techniques form possible solution to the power-supply issue of portable electronic devices, healthcare devices, and 
wireless sensors8 which are currently supplied by batteries. Application of usual batteries is getting impractical 
and unfavorable, mainly because of their limited lifetime, maintenance difficulties, and environmental hazards 
considering the leakage of the chemicals9,10. Beside the traditional technologies for mechanical energy harvest-
ing to provide the energy for electronic devices, the triboelectric nanogenerators (TENGs) have received close 
attention in recent years due to their strong potential for use in self-powered systems11. The TENGs are widely 
used to harvest and convert mechanical energy into electrical energy in different applications12. The working 
principle of the TENG is based on contact triboelectrification along with electrostatic induction effects13. As 
an old familiar phenomenon, the triboelectric effect occurs between two materials with different triboelectric 
affinities and leads to the transfer of charges and an increase in the tribo-potential14,15. When two materials are in 
contact and then separated, the alternating potential will drive electrons into the external electric circuit causing 
them to move back and forth16.

The TENGs have been widely used17,18 in various biomedical applications, such as cancer therapy19, 
pacemaker20, glucose monitoring21, sensors22,23, ion detection24, as well as in devices for muscle stimulation25 
due to their considerable output power, low weight, easy fabrication process with low cost, environmental com-
patibility, abundant available selection of materials, universal availability, and simple structure.

The measurement of electrophysiological signals from muscles or neural tissues is of great importance in the 
diagnosis of many neuronal dysfunctions while the electrical stimulation of the spinal cord and neurons can be 
utilized for the treatment of certain diseases26,27. The damage to human nervous system during stroke or spinal 
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cord injuries would result in the weakness of the muscles or atrophy and might deteriorate to paralysis28,29. The 
lack of neuronal innervation due to neurological damage, promotes muscle inability to produce the voluntary 
forces needed to create the movement of the joints30. Hence, numerous scientific investigations have focused on 
the devices, and strategies to assist the body to restore muscle atrophy, recover muscle movement and function 
after injury or surgery30,31.

In this regard, the TENGs can simultaneously serve as both a waveform generator and a power source for 
electrical stimulation of muscles29. The output of the TENG can be directly used for stimulation of nerves and 
muscles29,32. Inside the human body, electrical signals carry stimulus information and regulate neuronal activi-
ties. Neurological disorders and nerve injuries can lead to the loss of muscle function with increasing muscle 
atrophy as initial symptoms, which ultimately might culminate in the paralysis. Electrical muscle stimulations 
have been applied as a powerful tool to treat neurological disorders, prevent and restore muscle atrophy, and 
recover muscle movements31.

In the past few years, electrical currents generated from the TENGs have been successfully used in various 
studies for the electrical stimulation of the cells33,34, nerves35, and the brain36. On the cell level, a TENG-driven 
electric stimulation system has been designed for promoting cellular proliferation of the L929 cells which demon-
strates the effectiveness of the TENG and its safe operational conditions in biomedical stimulation37. The results 
demonstrate that the TENG-based stimulation regulates the cell proliferation and migration of the fibroblast 
cells37. Li et. al.33 fabricated a TENG that produced stable pulsed current output to stimulate the rejuvenation 
of aged mesenchymal stromal cells. The results indicated that the triboelectric stimulation improved the prolif-
eration of aged bone marrow mesenchymal stromal cells and increased their pluripotency and differentiation 
capacity.

On the peripheral nerve level, Zhang et al. first demonstrated the direct TENG stimulation with a peak output 
voltage of 265 V and current density of 18.3 μA/cm2 which was also successfully applied to stimulate a frog’s 
sciatic nerve38. In another study conducted by Lee et al., a stacked TENG with the configuration of patterned 
polydimethylsiloxane, polyethylene terephthalate film and Cu electrode was exploited as a potential power source 
for neural stimulation and proved to generate the output voltage and short circuit current of 160 V and 6.7 μA, 
respectively. Operating the device could directly stimulate the rat’s sciatic nerve, while controlling the muscle 
contraction and monitor the muscle signals39. In another study, Lee et. al.40 developed a novel water/air-hybrid 
TENG for peripheral nerve stimulation. Yao and coworkers41 presented a TENG-powered implanted nerve 
stimulation system on the rat’s vagus nerve for reduction in food intake and achieved the weight control. The 
nerve stimulation system was battery-free and spontaneously responsive to the stomach movements. The strategy 
was successfully applied to the rat models. Within 100 days, the average body weight was controlled which was 
38% less than the control group. On the brain level, Dai et al.42 demonstrated direct TENG stimulation of the 
rat’s somatosensory cortex and motor cortex. The device, which was connected to the mouse’s brain at primary 
somatosensory barrel cortex, could mimic the mouse perception and drove the mouse activities.

As mentioned previously, the high-performance TENGs could be achieved through an optimized device 
structure, proper selection of functional materials in the triboelectric series and surface modifications to enhance 
the contact area17.

Simulation methods are powerful techniques offering deep insight into the working mechanism of devices, 
material selection, exploring new features, operating conditions and analyzing the output performance of the 
TENG systems43. It seems necessary to study the mechanism in each application, while calculating the values for 
various conditions through laboratory tests is usually a time-consuming, expensive and lengthy task44. Moreover, 
simulation results could accelerate the design of novel systems. To this end, computational modelling and simu-
lation have been employed to determine the appropriate TENG structure and materials, and avoiding designs 
which would decrease the output performance3.

In this paper, based on a multiphysics computational modelling approach, we have studied the performance of 
the TENG structure for excitation of neuronal cells. The effect of surface structures and morphology of different 
substrates, as well as the velocity of striking, have been studied in the evoked action potentials of the neurons 
accordingly. Using the finite element method (FEM) in the COMSOL environment and through finding the 
electric field distribution for various structural design parameters, the values of the generated voltage and capaci-
tance were initially calculated for a TENG in a contact-separation mode in each relative position of its electrodes. 
The constructed model could be exploited as an effective design tool not only for the prediction of the response 
of a contact-separation mode TENG, but also for the selection of optimum values of the structural parameters 
such as width, height and the distance between the micro-structures11. Then, the intrinsic output characteristics 
of the open-circuit voltage (Voc), and the previously calculated inherent capacitance of the contact-separation 
mode are coupled to the cable equation with the Hodgkin-Huxley (H–H) model to represent the electrophysi-
ological behavior of the neuron in response to the TENG structure. To the best of our knowledge, this is the very 
first computational study focused on representing the effect of the TENG structure on the electrophysiological 
behavior of the neurons.

Modeling approach
The close contact between the TENG and neuron structure is schematically illustrated in Fig. 1 for which, the 
values of the output voltage and capacitance are calculated at various locations of the electrodes by solving the 
Poisson equation. The response of the neuron to the excitation from the TENG is calculated based on the devel-
oped model including the cable equation (with the H–H model) coupled with the TENG model.

TENG operation modelling.  Considering the influence of the morphology of substrate’s surface material, 
and its geometry on the local electric field and surface charge density, a 3D model incorporating various types 
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and geometrical parameters was developed. The Poisson equation was solved for the structure for distinct dis-
tances between the two substrates. After finding the electric field distribution, the capacitance for each structure 
was calculated by Eq. (1). The model considered not only the effect of surface roughness, but also the variation 
in the distance between the two substrates on the output performance. Considering the size and the frequency 
range, the AC/DC Module with the electrostatic physics was considered. Figure 2a shows the geometrical model 
developed in the COMSOL environment for various distances (Fig. 2b) between the substrates with different 
electrode surface modifications. To this end, a TENG with vertical contact-separation mode was constructed 
based on silk and polyimide (Kapton) as triboelectric materials and two gold (Au) layers were also considered as 
metal electrodes. Silk and polyimide were selected since they are located in almost two ends of the triboelectric 
series (43). The parameters used for the TENG in the model are given in Table 1.

Figure 1.   Schematic diagram of the operating TENG and electrical stimulation of the neuron.

Figure 2.   (a) Geometrical representation of the TENG electrodes with different surface modifications. (b) 
Representation of the computational model in the COMSOL environment for calculation of capacitance and 
charge for different distances between the TENG’s electrodes.
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At the outer surfaces of simulation box, zero charge was considered as the boundary condition while surface 
charge density was considered for the inner side of electrodes of the TENG.

The electric potential difference between the two substrates (open circuit output, Voc) was derived and the 
capacitance was calculated using

where VOC is the open circuit output voltage and Q denotes the triboelectric charge.

Neuron modelling.  Cable equation.  The propagation of action potential in an axon is an electrophysical 
process that has been studied using the cable theory coupled with the Hodgkin-Huxley (H–H) model involv-
ing different ionic currents45. In this regard, the cable Eq. (2) was used to find the behavior of the membrane in 
response to the external stimuli which is derived on the basis of the core-conductor model46

where a is the radius of the cylinder (axon), Vm is the transmembrane potential, Is is the transmembrane stimu-
lation current, Cm is the membrane’s capacitance per unit area, re and ri are the extracellular and intracellular 
axial resistances per unit length respectively, and Iion is the sum of different ionic current components (Na, K 
and other components).

Hodgkin‑Huxley model.  The H–H model was developed in 1952 as a result of Hodgkin’s and Huxley’s extensive 
studies of the giant axon of the squid47. It describes how the action potential is initiated and how it propagates in 
a neuron48. The ionic currents through the membrane can be calculated by Eq. (3).

where gL is the leak conductance, gNa is the sodium conductance, gK is the potassium conductance, Vm is the 
transmembrane potential, EL is the Nernst potential for the leak conductance, ENa is the Nernst potential for the 
sodium channel, and EK is the Nernst potential for the potassium channel.

The values of the conductances, gNa and gK, are formulated based on the H–H experiment on the giant squid 
axon46,49 and gL is considered fixed, and

where n, h, and m are gating variables, which are constrained between 0 and 1, and represent the probability 
for opening or closing of a channel. The terms with bar represent the maximum conductance of each channel.

Table 2 shows the parameters used in the cable equation and the H–H model.

Extended cable equation.  In order to incorporate the effect of the TENG’s presence on the neuron’s electro-
physiological behavior and the propagation of the action potential, its influence was introduced in the cable 
equation as an external current (Eq. 6).

In order to numerically solve the equation, all the derivatives were replaced with differences (Eq. 7) and finally 
Eq. (8) was derived accordingly.
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Q
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Table 1.   Parameters used in the calculation of TENG’s output characteristics.

Parameters Values and units

Surface area of layers 15 × 10–5 m2

Thickness of dielectrics layer 7 × 10–7 m

Thickness of electrodes 5 × 10–7 m

Surface charge density 5 × 10–5 C m−2

Relative dielectric constant of silk layer 2.6

Relative dielectric constant of Kapton layer 3.4
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where dx/dt represents the contact-release speed of the two the substrates and C denotes the capacitance between 
the TENG electrodes. Subscript m represents the membrane and superscript i denotes the ith time-step.

The complete set of equations, which describes the generation and propagation of the action potentials for 
any axon, was solved numerically using our own developed code in the MATLAB.

Results
TENG output specifications.  As mentioned previously, a vertical contact-separation mode was consid-
ered for the TENG setup wherein the bottom electrode was fixed while the top electrode was free and could 
move up and down. Two Au electrodes were also considered as the electrical contacts with the tribo-material 
(i.e. silk and Kapton). In order to study the effect of surface roughness, the simulations were performed for the 
surfaces with four different geometrical arrangements; flat surface (without micropattern) as well as surface 
covered with cube, pyramid, and sphere-shaped micropatterns (Fig. 2a).

Figures 3a–d illustrate the electric field distribution between the TENG electrodes with different micropat-
terns. Considering a simple model of two planar surface electrodes, it is expected that the electric field reaches 
its maximum value when the distance between the two substrates is at minimum. As can be clearly seen in 
Fig. 3e, the micropatterned structures exhibited a higher voltage output compared to the flat surface. Moreover, 
the output voltage for the cube-shaped TENG was higher than the two other micropatterns. The results dem-
onstrated that the capacitance of the TENG decreased slightly with an increase in the distance between the two 
electrodes (Fig. 3f).

Neuronal behavior in response to the TENG output.  The intrinsic properties of the action potential 
propagation along the axon in presence and absence of the nanogenerator were calculated based on the devel-
oped equation and in combination with the results of the FEM for the TENG specifications.

Figures 4a–d, show the effect of different values of contact-release speed of the two substrates on the forma-
tion of the action potential in the axon of the neuron. Initially, the neuron was in the rest state while with the 
application of the TENG, it was excited. As depicted in Fig. 4a, for the speed between 0 and 0.075 cm.s−1, no 
action potential was evoked. In other words, in this speed range, the membrane voltage did experience some 
fluctuations. It should be noted that in this case, by increasing the speed of the contact-release process, a slight 
increase in the rest potential of the neuron was observed. By further increasing the contact-release speed to 
0.1 cm.s−1 (Fig. 4b), there was a single evoked action potential for the resting neuron. For the speed in the range 
of 0.25 to 0.5 cm.s−1, the resting neuron started to fire action potentials (Figs. 4b and 4c). Figure 4d compares the 
results of the TENG for all the speeds in the time duration between 20 and 42 ms. Moreover, the transition from 
hyperpolarization to the rest state occurred more rapidly by increasing the speed of the contact-release process.

In order to find the effect of the TENG on the firing neuron, we considered a mathematical model of the neu-
ron which fired between 0 to 100 ms and the effect of the TENG was considered on its performance. Figures 5a-b 
show the transmembrane voltage of the firing neuron in presence of the TENG for different values of the contact-
release speed in the time duration of 0 and 200 ms. It was observed that for all of the speeds considered, during 
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Table 2.   The parameters used in the model.

Symbol Model parameters Value

ENa Sodium reversal potential 52.4 mV

EK Potassium reversal potential  72.1 mV

EL Leakage reversal potential  49.2 mV

gNa Sodium conductance 120.0 mS/cm2

gK Potassium conductance 36 mS/cm2

gL Leakage conductance 0.3 mS/cm2

C Membrane capacitance 1.0 μF/cm2

a Axon radius 0.001 cm

Vr Resting potential  60 mV

Ri Resistivity of intracellular 35 Ω.cm

Re Resistivity of extracellular 20 Ω.cm
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the period that the neuron was in the firing state (0 to 100 ms), the TENG imposed no tangible effect on the 
action potentials. When the neuron stopped firing (100 ms to 200 ms), the effect of the TENG on the neuron was 
similar to the resting neuron (Figs. 4a–c). Overall, for small speed values, there was no evoked action potential 
and just an elevation in the transmembrane potential occurred (Fig. 5a) while for higher speed values, the neuron 
started to fire (Fig. 5b). In addition, as can be clearly seen in Fig. 5b, there was a slight reduction observed in the 
amplitude of the action potentials with increasing speed.

Surface roughness effect.  In order to compare the efficiency of the flat TENG with those of the micropat-
terned in exciting the neurons, the role of various morphologies was considered in the computational model 
accordingly. The results showed the same trend with slight changes. For the resting neuron, as can be seen in 
Figs. 4a–c, the action potentials were evoked with different time behavior. Figure 6 shows the variations of the 
firing rate with the contact-release speed for the resting and firing neuron in response to the TENGs with dif-
ferent electrode structures. As can be observed from the plot, the speed of the contact-separation process had 
a direct impact on the firing rate so that it increased with the rising speed, while the surface morphology of 
electrodes did not affect the firing rate.

Based on the importance of pulse broadening, the values of full width at half maximum (FWHM) of the gen-
erated action potentials were compared for different contact-release speeds in presence of the TENG. Figure 7a 
shows the results of the variations of the calculated FWHM with the contact-release speed for different electrode 
structures. The results show a slight decrease in the FWHM with an increase in the speed for both firing and 
resting neuron. For all of the cases, peak broadening was not occurred.

Figure 7b shows the time delay between two consecutive evoked action potentials for different contact-release 
speeds. The results indicate that by increasing the contact-release speed, the time delay between two successive 
pulses had decreased. The same behavior was observed for all types of electrodes with a negligible difference for 
various surface microstructures.

Figure 3.   Electric field distribution between surfaces of the TENG for (a) flat shape surface and surfaces with 
(b) pyramidal, (c) cubic, (d) spherical shape micropatterns, (e) calculated open circuit voltage vs. distance, and 
(f) calculated capacitance between two the electrodes vs. distance.
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Figure 4.   Transmembrane voltage of the resting neuron for different contact-release speeds of (a) 0.025–
0.075 cm.s−1 and without the TENG, (b) 0.1–0.25 cm.s−1, (c) 0.5–1 cm.s−1, (d) results for the time duration 
between 20 and 42 ms.

Figure 5.   Transmembrane voltage of the firing neuron for different contact-release speeds of (a) 0.025–0.1 cm.
s−1 and without TENG, (b) 0.25–1 cm.s−1.

Figure 6.   Variations of the firing rate with speed for the resting and firing states in response to the TENG for 
different electrode structures.



8

Vol:.(1234567890)

Scientific Reports |        (2022) 12:13411  | https://doi.org/10.1038/s41598-022-17050-0

www.nature.com/scientificreports/

Discussion
In the present paper, we have studied the influence of the TENG structure on the excitation of neuronal cells. 
The effect of surface roughness as well as the contact-release speed of the two substrates on the evoked action 
potential of the neurons have been studied. First, by finding the electric field distribution of the TENG’s electrodes 
with different surface structures, the values of the generated voltage and capacitance of the structures in each 
relative position of the electrodes were calculated. As shown in Figs. 3e–f, the structures covered with micropat-
terns exhibited higher voltage output and lower capacitance values compared with the flat one. Moreover, the 
output voltage for the cube-shaped TENG was higher than the two other micropatterns, which confirms that 
the micropatterns increase both the surface charge and the surface area. The results are in good agreement with 
previous studies50. Muthu and Yinhu have discussed the effect of surface patterns on the TENG output voltage 
and capacitance11,51. Zhang et al. tried to use surface micropattern structures to increase the electric output which 
indicated that the films with pyramid arrays are optimal shapes with appropriate performance52. Compared 
with the flat films, pyramid arrays on the surface enhanced the voltage and the current by 100% and 157%. To 
confirm the influence of patterning on the TENG device, a simulation study has been conducted by Muthu 
et al.51. The simulation results showed that the output voltage of the TENG with linear patterns on the surface 
was significantly improved compared with flat, circle, and X pattern thin films. In addition to the effect of the 
surface area, Yinhu et al. group studied the effect of surface microstructures on the capacitance in TENG11. They 
found that introducing microstructures decreased the capacitance of the structure. In our study, the effect of 
induced voltage and the capacitance in the contact-separation mode was coupled to the cable equation within the 
Hodgkin-Huxley model to represent the electrophysiological behavior of the neuron in response to the TENG 
movement. The results (Figs. 4a–c and 5a–b) show that by increasing the contact-release speed, the neuron would 
start to fire. Small values of the speed resulted in no action potential or single action potential while by increas-
ing the contact-release speed the neuron started to fire. This finding could be associated with the fact that at a 
lower speed, the ion channels were not active because of small level of induced voltage on the cell membrane. 
Furthermore, in the case of no action potential, the resting potential of the neuron was slightly elevated.

The firing rate is known as an electrophysiological characterization of neuromuscular disorders53. Parkin-
son’s disease reveal hyperactive neurons in the subthalamic nucleus that have increased firing rates and bursting 
activity compared with controls54. Figure 6 explains the firing rate dependency on the contact-release speed of 
the two substrates in which, the firing rate increased with the speed.

Figures 7a–b show the results of the calculated FWHM and the time delay between two consecutive evoked 
action potentials vs. the contact-release speed for different structures. The results display a slight decrease in 
the FWHM with an increase in the speed for both firing and resting neuron. The variation in FWHM does not 
change for different microstructures on the surface of electrodes. By increasing the contact-release speed, the 
time between two consecutive pulses becomes shorter and the peaks become narrower. This behavior is consist-
ent with the results of the firing rate. For the firing neuron, the presence of the TENG had no obvious effect on 
the time between two consecutive pulses.

The main focus of this study was on the vertical contact-separation mode as an ideal model of the TENG, 
while other modes of operation could be considered for further studies.

Conclusion
Based on the importance of the influence of the TENG on stimulation of the excitable cells, we have compu-
tationally modelled the effect of the TENG on the electrophysiological behavior of the neurons. The effect of 
the electrodes with different surface modifications on the induced voltage of the TENG and its capacitance in 
different positions was calculated. The effect of presence of the TENG on the neuron activity was introduced 
in the cable equation within the H–H model. The results show that the microstructured electrodes resulted in 
different output voltages and capacitance of the TENG. Regarding the stimulation of neurons with the TENG 
structures, the results indicate that the contact-release speed of the TENG had a direct influence on the evoking 
and propagation of action potentials in neurons.

Data availability
Derived data supporting the findings of this study are available from the corresponding author on request.

Figure 7.   (a) FWHM of action potential during propagation. (b) Time delay between two consecutive pulses.
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